droidfish/DroidFish/jni/stockfish/position.cpp

1691 lines
51 KiB
C++
Raw Normal View History

2011-11-12 20:44:06 +01:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
2011-11-12 20:44:06 +01:00
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <cstring>
#include <iostream>
#include <sstream>
#include <algorithm>
2011-11-12 20:44:06 +01:00
#include "bitcount.h"
#include "movegen.h"
#include "notation.h"
2011-11-12 20:44:06 +01:00
#include "position.h"
#include "psqtab.h"
#include "rkiss.h"
#include "thread.h"
#include "tt.h"
using std::string;
using std::cout;
using std::endl;
static const string PieceToChar(" PNBRQK pnbrqk");
2011-11-12 20:44:06 +01:00
CACHE_LINE_ALIGNMENT
Score pieceSquareTable[16][64]; // [piece][square]
Value PieceValue[2][18] = { // [Mg / Eg][piece / pieceType]
{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg },
{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } };
namespace Zobrist {
Key psq[2][8][64]; // [color][pieceType][square / piece count]
Key enpassant[8]; // [file]
Key castle[16]; // [castleRight]
Key side;
Key exclusion;
/// init() initializes at startup the various arrays used to compute hash keys
/// and the piece square tables. The latter is a two-step operation: First, the
/// white halves of the tables are copied from PSQT[] tables. Second, the black
/// halves of the tables are initialized by flipping and changing the sign of
/// the white scores.
void init() {
RKISS rk;
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
for (Square s = SQ_A1; s <= SQ_H8; s++)
psq[c][pt][s] = rk.rand<Key>();
for (File f = FILE_A; f <= FILE_H; f++)
enpassant[f] = rk.rand<Key>();
for (int cr = CASTLES_NONE; cr <= ALL_CASTLES; cr++)
{
Bitboard b = cr;
while (b)
{
Key k = castle[1ULL << pop_lsb(&b)];
castle[cr] ^= k ? k : rk.rand<Key>();
}
}
side = rk.rand<Key>();
exclusion = rk.rand<Key>();
for (PieceType pt = PAWN; pt <= KING; pt++)
{
PieceValue[Mg][make_piece(BLACK, pt)] = PieceValue[Mg][pt];
PieceValue[Eg][make_piece(BLACK, pt)] = PieceValue[Eg][pt];
Score v = make_score(PieceValue[Mg][pt], PieceValue[Eg][pt]);
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
pieceSquareTable[make_piece(WHITE, pt)][ s] = (v + PSQT[pt][s]);
pieceSquareTable[make_piece(BLACK, pt)][~s] = -(v + PSQT[pt][s]);
}
}
}
} // namespace Zobrist
namespace {
/// next_attacker() is an helper function used by see() to locate the least
/// valuable attacker for the side to move, remove the attacker we just found
/// from the 'occupied' bitboard and scan for new X-ray attacks behind it.
template<int Pt> FORCE_INLINE
PieceType next_attacker(const Bitboard* bb, const Square& to, const Bitboard& stmAttackers,
Bitboard& occupied, Bitboard& attackers) {
if (stmAttackers & bb[Pt])
{
Bitboard b = stmAttackers & bb[Pt];
occupied ^= b & ~(b - 1);
if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN)
attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]);
if (Pt == ROOK || Pt == QUEEN)
attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]);
return (PieceType)Pt;
}
return next_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers);
}
template<> FORCE_INLINE
PieceType next_attacker<KING>(const Bitboard*, const Square&, const Bitboard&, Bitboard&, Bitboard&) {
return KING; // No need to update bitboards, it is the last cycle
}
} // namespace
2011-11-12 20:44:06 +01:00
/// CheckInfo c'tor
CheckInfo::CheckInfo(const Position& pos) {
Color them = ~pos.side_to_move();
ksq = pos.king_square(them);
2011-11-12 20:44:06 +01:00
pinned = pos.pinned_pieces();
dcCandidates = pos.discovered_check_candidates();
2011-11-12 20:44:06 +01:00
checkSq[PAWN] = pos.attacks_from<PAWN>(ksq, them);
2011-11-12 20:44:06 +01:00
checkSq[KNIGHT] = pos.attacks_from<KNIGHT>(ksq);
checkSq[BISHOP] = pos.attacks_from<BISHOP>(ksq);
checkSq[ROOK] = pos.attacks_from<ROOK>(ksq);
checkSq[QUEEN] = checkSq[BISHOP] | checkSq[ROOK];
checkSq[KING] = 0;
2011-11-12 20:44:06 +01:00
}
/// Position::operator=() creates a copy of 'pos'. We want the new born Position
/// object do not depend on any external data so we detach state pointer from
/// the source one.
2011-11-12 20:44:06 +01:00
Position& Position::operator=(const Position& pos) {
2011-11-12 20:44:06 +01:00
memcpy(this, &pos, sizeof(Position));
startState = *st;
st = &startState;
2011-11-12 20:44:06 +01:00
nodes = 0;
assert(pos_is_ok());
return *this;
2011-11-12 20:44:06 +01:00
}
/// Position::from_fen() initializes the position object with the given FEN
/// string. This function is not very robust - make sure that input FENs are
/// correct (this is assumed to be the responsibility of the GUI).
void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
2011-11-12 20:44:06 +01:00
/*
A FEN string defines a particular position using only the ASCII character set.
A FEN string contains six fields separated by a space. The fields are:
2011-11-12 20:44:06 +01:00
1) Piece placement (from white's perspective). Each rank is described, starting
with rank 8 and ending with rank 1; within each rank, the contents of each
square are described from file A through file H. Following the Standard
Algebraic Notation (SAN), each piece is identified by a single letter taken
from the standard English names. White pieces are designated using upper-case
letters ("PNBRQK") while Black take lowercase ("pnbrqk"). Blank squares are
noted using digits 1 through 8 (the number of blank squares), and "/"
separates ranks.
2011-11-12 20:44:06 +01:00
2) Active color. "w" means white moves next, "b" means black.
3) Castling availability. If neither side can castle, this is "-". Otherwise,
this has one or more letters: "K" (White can castle kingside), "Q" (White
can castle queenside), "k" (Black can castle kingside), and/or "q" (Black
can castle queenside).
2011-11-12 20:44:06 +01:00
4) En passant target square (in algebraic notation). If there's no en passant
target square, this is "-". If a pawn has just made a 2-square move, this
is the position "behind" the pawn. This is recorded regardless of whether
there is a pawn in position to make an en passant capture.
2011-11-12 20:44:06 +01:00
5) Halfmove clock. This is the number of halfmoves since the last pawn advance
or capture. This is used to determine if a draw can be claimed under the
fifty-move rule.
2011-11-12 20:44:06 +01:00
6) Fullmove number. The number of the full move. It starts at 1, and is
incremented after Black's move.
2011-11-12 20:44:06 +01:00
*/
char col, row, token;
size_t p;
2011-11-12 20:44:06 +01:00
Square sq = SQ_A8;
std::istringstream fen(fenStr);
2011-11-12 20:44:06 +01:00
clear();
fen >> std::noskipws;
2011-11-12 20:44:06 +01:00
// 1. Piece placement
while ((fen >> token) && !isspace(token))
2011-11-12 20:44:06 +01:00
{
if (isdigit(token))
sq += Square(token - '0'); // Advance the given number of files
else if (token == '/')
sq -= Square(16);
else if ((p = PieceToChar.find(token)) != string::npos)
2011-11-12 20:44:06 +01:00
{
put_piece(Piece(p), sq);
2011-11-12 20:44:06 +01:00
sq++;
}
}
// 2. Active color
fen >> token;
2011-11-12 20:44:06 +01:00
sideToMove = (token == 'w' ? WHITE : BLACK);
fen >> token;
// 3. Castling availability. Compatible with 3 standards: Normal FEN standard,
// Shredder-FEN that uses the letters of the columns on which the rooks began
// the game instead of KQkq and also X-FEN standard that, in case of Chess960,
// if an inner rook is associated with the castling right, the castling tag is
// replaced by the file letter of the involved rook, as for the Shredder-FEN.
while ((fen >> token) && !isspace(token))
{
Square rsq;
Color c = islower(token) ? BLACK : WHITE;
2011-11-12 20:44:06 +01:00
token = char(toupper(token));
2011-11-12 20:44:06 +01:00
if (token == 'K')
for (rsq = relative_square(c, SQ_H1); type_of(piece_on(rsq)) != ROOK; rsq--) {}
2011-11-12 20:44:06 +01:00
else if (token == 'Q')
for (rsq = relative_square(c, SQ_A1); type_of(piece_on(rsq)) != ROOK; rsq++) {}
2011-11-12 20:44:06 +01:00
else if (token >= 'A' && token <= 'H')
rsq = File(token - 'A') | relative_rank(c, RANK_1);
else
continue;
set_castle_right(c, rsq);
2011-11-12 20:44:06 +01:00
}
// 4. En passant square. Ignore if no pawn capture is possible
if ( ((fen >> col) && (col >= 'a' && col <= 'h'))
&& ((fen >> row) && (row == '3' || row == '6')))
{
st->epSquare = File(col - 'a') | Rank(row - '1');
2011-11-12 20:44:06 +01:00
if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)))
st->epSquare = SQ_NONE;
}
2011-11-12 20:44:06 +01:00
// 5-6. Halfmove clock and fullmove number
fen >> std::skipws >> st->rule50 >> startPosPly;
2011-11-12 20:44:06 +01:00
// Convert from fullmove starting from 1 to ply starting from 0,
// handle also common incorrect FEN with fullmove = 0.
startPosPly = std::max(2 * (startPosPly - 1), 0) + int(sideToMove == BLACK);
2011-11-12 20:44:06 +01:00
st->key = compute_key();
st->pawnKey = compute_pawn_key();
st->materialKey = compute_material_key();
st->psqScore = compute_psq_score();
2011-11-12 20:44:06 +01:00
st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
chess960 = isChess960;
thisThread = th;
2011-11-12 20:44:06 +01:00
assert(pos_is_ok());
2011-11-12 20:44:06 +01:00
}
/// Position::set_castle_right() is an helper function used to set castling
/// rights given the corresponding color and the rook starting square.
2011-11-12 20:44:06 +01:00
void Position::set_castle_right(Color c, Square rfrom) {
Square kfrom = king_square(c);
CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE;
CastleRight cr = make_castle_right(c, cs);
st->castleRights |= cr;
castleRightsMask[kfrom] |= cr;
castleRightsMask[rfrom] |= cr;
castleRookSquare[c][cs] = rfrom;
Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1);
Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1);
for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); s++)
if (s != kfrom && s != rfrom)
castlePath[c][cs] |= s;
for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); s++)
if (s != kfrom && s != rfrom)
castlePath[c][cs] |= s;
2011-11-12 20:44:06 +01:00
}
/// Position::to_fen() returns a FEN representation of the position. In case
/// of Chess960 the Shredder-FEN notation is used. Mainly a debugging function.
const string Position::to_fen() const {
std::ostringstream fen;
2011-11-12 20:44:06 +01:00
Square sq;
int emptyCnt;
2011-11-12 20:44:06 +01:00
for (Rank rank = RANK_8; rank >= RANK_1; rank--)
2011-11-12 20:44:06 +01:00
{
emptyCnt = 0;
2011-11-12 20:44:06 +01:00
for (File file = FILE_A; file <= FILE_H; file++)
{
sq = file | rank;
2011-11-12 20:44:06 +01:00
if (is_empty(sq))
emptyCnt++;
else
2011-11-12 20:44:06 +01:00
{
if (emptyCnt > 0)
2011-11-12 20:44:06 +01:00
{
fen << emptyCnt;
emptyCnt = 0;
2011-11-12 20:44:06 +01:00
}
fen << PieceToChar[piece_on(sq)];
}
2011-11-12 20:44:06 +01:00
}
if (emptyCnt > 0)
fen << emptyCnt;
if (rank > RANK_1)
fen << '/';
2011-11-12 20:44:06 +01:00
}
fen << (sideToMove == WHITE ? " w " : " b ");
2011-11-12 20:44:06 +01:00
if (can_castle(WHITE_OO))
fen << (chess960 ? char(toupper(file_to_char(file_of(castle_rook_square(WHITE, KING_SIDE))))) : 'K');
2011-11-12 20:44:06 +01:00
if (can_castle(WHITE_OOO))
fen << (chess960 ? char(toupper(file_to_char(file_of(castle_rook_square(WHITE, QUEEN_SIDE))))) : 'Q');
2011-11-12 20:44:06 +01:00
if (can_castle(BLACK_OO))
fen << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, KING_SIDE))) : 'k');
2011-11-12 20:44:06 +01:00
if (can_castle(BLACK_OOO))
fen << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, QUEEN_SIDE))) : 'q');
2011-11-12 20:44:06 +01:00
if (st->castleRights == CASTLES_NONE)
fen << '-';
fen << (ep_square() == SQ_NONE ? " - " : " " + square_to_string(ep_square()) + " ")
<< st->rule50 << " " << 1 + (startPosPly - int(sideToMove == BLACK)) / 2;
return fen.str();
2011-11-12 20:44:06 +01:00
}
/// Position::print() prints an ASCII representation of the position to
/// the standard output. If a move is given then also the san is printed.
void Position::print(Move move) const {
const string dottedLine = "\n+---+---+---+---+---+---+---+---+";
const string twoRows = dottedLine + "\n| | . | | . | | . | | . |"
+ dottedLine + "\n| . | | . | | . | | . | |";
string brd = twoRows + twoRows + twoRows + twoRows + dottedLine;
2011-11-12 20:44:06 +01:00
sync_cout;
2011-11-12 20:44:06 +01:00
if (move)
{
Position p(*this);
cout << "\nMove is: " << (sideToMove == BLACK ? ".." : "") << move_to_san(p, move);
2011-11-12 20:44:06 +01:00
}
for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
if (piece_on(sq) != NO_PIECE)
brd[513 - 68*rank_of(sq) + 4*file_of(sq)] = PieceToChar[piece_on(sq)];
2011-11-12 20:44:06 +01:00
cout << brd << "\nFen is: " << to_fen() << "\nKey is: " << st->key << sync_endl;
2011-11-12 20:44:06 +01:00
}
/// Position:hidden_checkers<>() returns a bitboard of all pinned (against the
/// king) pieces for the given color. Or, when template parameter FindPinned is
/// false, the function return the pieces of the given color candidate for a
/// discovery check against the enemy king.
2011-11-12 20:44:06 +01:00
template<bool FindPinned>
Bitboard Position::hidden_checkers() const {
2011-11-12 20:44:06 +01:00
// Pinned pieces protect our king, dicovery checks attack the enemy king
Bitboard b, result = 0;
Bitboard pinners = pieces(FindPinned ? ~sideToMove : sideToMove);
Square ksq = king_square(FindPinned ? sideToMove : ~sideToMove);
2011-11-12 20:44:06 +01:00
// Pinners are sliders, that give check when candidate pinned is removed
pinners &= (pieces(ROOK, QUEEN) & PseudoAttacks[ROOK][ksq])
| (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq]);
2011-11-12 20:44:06 +01:00
while (pinners)
{
b = between_bb(ksq, pop_lsb(&pinners)) & pieces();
2011-11-12 20:44:06 +01:00
if (b && !more_than_one(b) && (b & pieces(sideToMove)))
2011-11-12 20:44:06 +01:00
result |= b;
}
return result;
}
// Explicit template instantiations
template Bitboard Position::hidden_checkers<true>() const;
template Bitboard Position::hidden_checkers<false>() const;
2011-11-12 20:44:06 +01:00
/// Position::attackers_to() computes a bitboard of all pieces which attack a
/// given square. Slider attacks use occ bitboard as occupancy.
2011-11-12 20:44:06 +01:00
Bitboard Position::attackers_to(Square s, Bitboard occ) const {
2011-11-12 20:44:06 +01:00
return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN))
| (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN))
2011-11-12 20:44:06 +01:00
| (attacks_from<KNIGHT>(s) & pieces(KNIGHT))
| (attacks_bb<ROOK>(s, occ) & pieces(ROOK, QUEEN))
| (attacks_bb<BISHOP>(s, occ) & pieces(BISHOP, QUEEN))
2011-11-12 20:44:06 +01:00
| (attacks_from<KING>(s) & pieces(KING));
}
/// Position::attacks_from() computes a bitboard of all attacks of a given piece
/// put in a given square. Slider attacks use occ bitboard as occupancy.
2011-11-12 20:44:06 +01:00
Bitboard Position::attacks_from(Piece p, Square s, Bitboard occ) {
assert(is_ok(s));
2011-11-12 20:44:06 +01:00
switch (type_of(p))
2011-11-12 20:44:06 +01:00
{
case BISHOP: return attacks_bb<BISHOP>(s, occ);
case ROOK : return attacks_bb<ROOK>(s, occ);
case QUEEN : return attacks_bb<BISHOP>(s, occ) | attacks_bb<ROOK>(s, occ);
default : return StepAttacksBB[p][s];
2011-11-12 20:44:06 +01:00
}
}
/// Position::move_attacks_square() tests whether a move from the current
/// position attacks a given square.
bool Position::move_attacks_square(Move m, Square s) const {
assert(is_ok(m));
assert(is_ok(s));
2011-11-12 20:44:06 +01:00
Bitboard occ, xray;
Square from = from_sq(m);
Square to = to_sq(m);
Piece piece = piece_moved(m);
2011-11-12 20:44:06 +01:00
assert(!is_empty(from));
2011-11-12 20:44:06 +01:00
// Update occupancy as if the piece is moving
occ = pieces() ^ from ^ to;
2011-11-12 20:44:06 +01:00
// The piece moved in 'to' attacks the square 's' ?
if (attacks_from(piece, to, occ) & s)
return true;
2011-11-12 20:44:06 +01:00
// Scan for possible X-ray attackers behind the moved piece
xray = (attacks_bb< ROOK>(s, occ) & pieces(color_of(piece), QUEEN, ROOK))
| (attacks_bb<BISHOP>(s, occ) & pieces(color_of(piece), QUEEN, BISHOP));
2011-11-12 20:44:06 +01:00
// Verify attackers are triggered by our move and not already existing
return xray && (xray ^ (xray & attacks_from<QUEEN>(s)));
2011-11-12 20:44:06 +01:00
}
/// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal
bool Position::pl_move_is_legal(Move m, Bitboard pinned) const {
assert(is_ok(m));
assert(pinned == pinned_pieces());
2011-11-12 20:44:06 +01:00
Color us = sideToMove;
Square from = from_sq(m);
2011-11-12 20:44:06 +01:00
assert(color_of(piece_moved(m)) == us);
assert(piece_on(king_square(us)) == make_piece(us, KING));
// En passant captures are a tricky special case. Because they are rather
// uncommon, we do it simply by testing whether the king is attacked after
// the move is made.
if (type_of(m) == ENPASSANT)
2011-11-12 20:44:06 +01:00
{
Color them = ~us;
Square to = to_sq(m);
Square capsq = to + pawn_push(them);
2011-11-12 20:44:06 +01:00
Square ksq = king_square(us);
Bitboard b = (pieces() ^ from ^ capsq) | to;
2011-11-12 20:44:06 +01:00
assert(to == ep_square());
assert(piece_moved(m) == make_piece(us, PAWN));
2011-11-12 20:44:06 +01:00
assert(piece_on(capsq) == make_piece(them, PAWN));
assert(piece_on(to) == NO_PIECE);
2011-11-12 20:44:06 +01:00
return !(attacks_bb< ROOK>(ksq, b) & pieces(them, QUEEN, ROOK))
&& !(attacks_bb<BISHOP>(ksq, b) & pieces(them, QUEEN, BISHOP));
2011-11-12 20:44:06 +01:00
}
// If the moving piece is a king, check whether the destination
// square is attacked by the opponent. Castling moves are checked
// for legality during move generation.
if (type_of(piece_on(from)) == KING)
return type_of(m) == CASTLE || !(attackers_to(to_sq(m)) & pieces(~us));
2011-11-12 20:44:06 +01:00
// A non-king move is legal if and only if it is not pinned or it
// is moving along the ray towards or away from the king.
return !pinned
|| !(pinned & from)
|| squares_aligned(from, to_sq(m), king_square(us));
2011-11-12 20:44:06 +01:00
}
/// Position::move_is_legal() takes a random move and tests whether the move
/// is legal. This version is not very fast and should be used only in non
/// time-critical paths.
2011-11-12 20:44:06 +01:00
bool Position::move_is_legal(const Move m) const {
for (MoveList<LEGAL> ml(*this); !ml.end(); ++ml)
if (ml.move() == m)
return true;
2011-11-12 20:44:06 +01:00
return false;
}
/// Position::is_pseudo_legal() takes a random move and tests whether the move
/// is pseudo legal. It is used to validate moves from TT that can be corrupted
/// due to SMP concurrent access or hash position key aliasing.
2011-11-12 20:44:06 +01:00
bool Position::is_pseudo_legal(const Move m) const {
2011-11-12 20:44:06 +01:00
Color us = sideToMove;
Color them = ~sideToMove;
Square from = from_sq(m);
Square to = to_sq(m);
Piece pc = piece_moved(m);
2011-11-12 20:44:06 +01:00
// Use a slower but simpler function for uncommon cases
if (type_of(m) != NORMAL)
2011-11-12 20:44:06 +01:00
return move_is_legal(m);
// Is not a promotion, so promotion piece must be empty
if (promotion_type(m) - 2 != NO_PIECE_TYPE)
return false;
2011-11-12 20:44:06 +01:00
// If the from square is not occupied by a piece belonging to the side to
// move, the move is obviously not legal.
if (pc == NO_PIECE || color_of(pc) != us)
2011-11-12 20:44:06 +01:00
return false;
// The destination square cannot be occupied by a friendly piece
if (color_of(piece_on(to)) == us)
2011-11-12 20:44:06 +01:00
return false;
// Handle the special case of a pawn move
if (type_of(pc) == PAWN)
2011-11-12 20:44:06 +01:00
{
// Move direction must be compatible with pawn color
int direction = to - from;
if ((us == WHITE) != (direction > 0))
return false;
// We have already handled promotion moves, so destination
// cannot be on the 8/1th rank.
if (rank_of(to) == RANK_8 || rank_of(to) == RANK_1)
2011-11-12 20:44:06 +01:00
return false;
// Proceed according to the square delta between the origin and
// destination squares.
switch (direction)
{
case DELTA_NW:
case DELTA_NE:
case DELTA_SW:
case DELTA_SE:
// Capture. The destination square must be occupied by an enemy
// piece (en passant captures was handled earlier).
if (color_of(piece_on(to)) != them)
return false;
// From and to files must be one file apart, avoids a7h5
if (abs(file_of(from) - file_of(to)) != 1)
return false;
break;
2011-11-12 20:44:06 +01:00
case DELTA_N:
case DELTA_S:
// Pawn push. The destination square must be empty.
if (!is_empty(to))
return false;
break;
2011-11-12 20:44:06 +01:00
case DELTA_NN:
// Double white pawn push. The destination square must be on the fourth
// rank, and both the destination square and the square between the
// source and destination squares must be empty.
if ( rank_of(to) != RANK_4
|| !is_empty(to)
|| !is_empty(from + DELTA_N))
2011-11-12 20:44:06 +01:00
return false;
break;
2011-11-12 20:44:06 +01:00
case DELTA_SS:
// Double black pawn push. The destination square must be on the fifth
// rank, and both the destination square and the square between the
// source and destination squares must be empty.
if ( rank_of(to) != RANK_5
|| !is_empty(to)
|| !is_empty(from + DELTA_S))
return false;
break;
2011-11-12 20:44:06 +01:00
default:
return false;
}
}
else if (!(attacks_from(pc, from) & to))
2011-11-12 20:44:06 +01:00
return false;
// Evasions generator already takes care to avoid some kind of illegal moves
// and pl_move_is_legal() relies on this. So we have to take care that the
// same kind of moves are filtered out here.
if (in_check())
{
if (type_of(pc) != KING)
{
Bitboard b = checkers();
Square checksq = pop_lsb(&b);
2011-11-12 20:44:06 +01:00
if (b) // double check ? In this case a king move is required
return false;
2011-11-12 20:44:06 +01:00
// Our move must be a blocking evasion or a capture of the checking piece
if (!((between_bb(checksq, king_square(us)) | checkers()) & to))
return false;
}
// In case of king moves under check we have to remove king so to catch
// as invalid moves like b1a1 when opposite queen is on c1.
else if (attackers_to(to, pieces() ^ from) & pieces(~us))
return false;
}
2011-11-12 20:44:06 +01:00
return true;
2011-11-12 20:44:06 +01:00
}
/// Position::move_gives_check() tests whether a pseudo-legal move gives a check
2011-11-12 20:44:06 +01:00
bool Position::move_gives_check(Move m, const CheckInfo& ci) const {
assert(is_ok(m));
assert(ci.dcCandidates == discovered_check_candidates());
assert(color_of(piece_moved(m)) == sideToMove);
2011-11-12 20:44:06 +01:00
Square from = from_sq(m);
Square to = to_sq(m);
PieceType pt = type_of(piece_on(from));
2011-11-12 20:44:06 +01:00
// Direct check ?
if (ci.checkSq[pt] & to)
2011-11-12 20:44:06 +01:00
return true;
// Discovery check ?
if (ci.dcCandidates && (ci.dcCandidates & from))
2011-11-12 20:44:06 +01:00
{
// For pawn and king moves we need to verify also direction
if ( (pt != PAWN && pt != KING)
|| !squares_aligned(from, to, king_square(~sideToMove)))
2011-11-12 20:44:06 +01:00
return true;
}
// Can we skip the ugly special cases ?
if (type_of(m) == NORMAL)
2011-11-12 20:44:06 +01:00
return false;
Color us = sideToMove;
Square ksq = king_square(~us);
2011-11-12 20:44:06 +01:00
// Promotion with check ?
if (type_of(m) == PROMOTION)
return attacks_from(Piece(promotion_type(m)), to, pieces() ^ from) & ksq;
2011-11-12 20:44:06 +01:00
// En passant capture with check ? We have already handled the case
// of direct checks and ordinary discovered check, the only case we
// need to handle is the unusual case of a discovered check through
// the captured pawn.
if (type_of(m) == ENPASSANT)
2011-11-12 20:44:06 +01:00
{
Square capsq = file_of(to) | rank_of(from);
Bitboard b = (pieces() ^ from ^ capsq) | to;
return (attacks_bb< ROOK>(ksq, b) & pieces(us, QUEEN, ROOK))
| (attacks_bb<BISHOP>(ksq, b) & pieces(us, QUEEN, BISHOP));
2011-11-12 20:44:06 +01:00
}
// Castling with check ?
if (type_of(m) == CASTLE)
2011-11-12 20:44:06 +01:00
{
Square kfrom = from;
Square rfrom = to; // 'King captures the rook' notation
Square kto = relative_square(us, rfrom > kfrom ? SQ_G1 : SQ_C1);
Square rto = relative_square(us, rfrom > kfrom ? SQ_F1 : SQ_D1);
Bitboard b = (pieces() ^ kfrom ^ rfrom) | rto | kto;
2011-11-12 20:44:06 +01:00
return attacks_bb<ROOK>(rto, b) & ksq;
2011-11-12 20:44:06 +01:00
}
return false;
}
/// Position::do_move() makes a move, and saves all information necessary
/// to a StateInfo object. The move is assumed to be legal. Pseudo-legal
/// moves should be filtered out before this function is called.
void Position::do_move(Move m, StateInfo& newSt) {
CheckInfo ci(*this);
do_move(m, newSt, ci, move_gives_check(m, ci));
}
void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveIsCheck) {
assert(is_ok(m));
2011-11-12 20:44:06 +01:00
assert(&newSt != st);
nodes++;
Key k = st->key;
2011-11-12 20:44:06 +01:00
// Copy some fields of old state to our new StateInfo object except the ones
// which are recalculated from scratch anyway, then switch our state pointer
// to point to the new, ready to be updated, state.
2011-11-12 20:44:06 +01:00
memcpy(&newSt, st, sizeof(ReducedStateInfo));
newSt.previous = st;
st = &newSt;
// Update side to move
k ^= Zobrist::side;
2011-11-12 20:44:06 +01:00
// Increment the 50 moves rule draw counter. Resetting it to zero in the
// case of a capture or a pawn move is taken care of later.
2011-11-12 20:44:06 +01:00
st->rule50++;
st->pliesFromNull++;
if (type_of(m) == CASTLE)
2011-11-12 20:44:06 +01:00
{
st->key = k;
do_castle_move<true>(m);
2011-11-12 20:44:06 +01:00
return;
}
Color us = sideToMove;
Color them = ~us;
Square from = from_sq(m);
Square to = to_sq(m);
2011-11-12 20:44:06 +01:00
Piece piece = piece_on(from);
PieceType pt = type_of(piece);
PieceType capture = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to));
2011-11-12 20:44:06 +01:00
assert(color_of(piece) == us);
assert(color_of(piece_on(to)) != us);
assert(capture != KING);
2011-11-12 20:44:06 +01:00
if (capture)
{
Square capsq = to;
// If the captured piece is a pawn, update pawn hash key, otherwise
// update non-pawn material.
if (capture == PAWN)
{
if (type_of(m) == ENPASSANT)
{
capsq += pawn_push(them);
assert(pt == PAWN);
assert(to == st->epSquare);
assert(relative_rank(us, to) == RANK_6);
assert(piece_on(to) == NO_PIECE);
assert(piece_on(capsq) == make_piece(them, PAWN));
board[capsq] = NO_PIECE;
}
st->pawnKey ^= Zobrist::psq[them][PAWN][capsq];
}
else
st->npMaterial[them] -= PieceValue[Mg][capture];
// Remove the captured piece
byTypeBB[ALL_PIECES] ^= capsq;
byTypeBB[capture] ^= capsq;
byColorBB[them] ^= capsq;
// Update piece list, move the last piece at index[capsq] position and
// shrink the list.
//
// WARNING: This is a not revresible operation. When we will reinsert the
// captured piece in undo_move() we will put it at the end of the list and
// not in its original place, it means index[] and pieceList[] are not
// guaranteed to be invariant to a do_move() + undo_move() sequence.
Square lastSquare = pieceList[them][capture][--pieceCount[them][capture]];
index[lastSquare] = index[capsq];
pieceList[them][capture][index[lastSquare]] = lastSquare;
pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE;
// Update hash keys
k ^= Zobrist::psq[them][capture][capsq];
st->materialKey ^= Zobrist::psq[them][capture][pieceCount[them][capture]];
// Update incremental scores
st->psqScore -= pieceSquareTable[make_piece(them, capture)][capsq];
// Reset rule 50 counter
st->rule50 = 0;
}
2011-11-12 20:44:06 +01:00
// Update hash key
k ^= Zobrist::psq[us][pt][from] ^ Zobrist::psq[us][pt][to];
2011-11-12 20:44:06 +01:00
// Reset en passant square
if (st->epSquare != SQ_NONE)
{
k ^= Zobrist::enpassant[file_of(st->epSquare)];
2011-11-12 20:44:06 +01:00
st->epSquare = SQ_NONE;
}
// Update castle rights if needed
if (st->castleRights && (castleRightsMask[from] | castleRightsMask[to]))
2011-11-12 20:44:06 +01:00
{
int cr = castleRightsMask[from] | castleRightsMask[to];
k ^= Zobrist::castle[st->castleRights & cr];
st->castleRights &= ~cr;
2011-11-12 20:44:06 +01:00
}
// Prefetch TT access as soon as we know key is updated
prefetch((char*)TT.first_entry(k));
2011-11-12 20:44:06 +01:00
// Move the piece
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
byTypeBB[ALL_PIECES] ^= from_to_bb;
byTypeBB[pt] ^= from_to_bb;
byColorBB[us] ^= from_to_bb;
2011-11-12 20:44:06 +01:00
board[to] = board[from];
board[from] = NO_PIECE;
2011-11-12 20:44:06 +01:00
// Update piece lists, index[from] is not updated and becomes stale. This
// works as long as index[] is accessed just by known occupied squares.
2011-11-12 20:44:06 +01:00
index[to] = index[from];
pieceList[us][pt][index[to]] = to;
// If the moving piece is a pawn do some special extra work
2011-11-12 20:44:06 +01:00
if (pt == PAWN)
{
// Set en-passant square, only if moved pawn can be captured
if ( (int(to) ^ int(from)) == 16
&& (attacks_from<PAWN>(from + pawn_push(us), us) & pieces(them, PAWN)))
2011-11-12 20:44:06 +01:00
{
st->epSquare = Square((from + to) / 2);
k ^= Zobrist::enpassant[file_of(st->epSquare)];
2011-11-12 20:44:06 +01:00
}
if (type_of(m) == PROMOTION)
2011-11-12 20:44:06 +01:00
{
PieceType promotion = promotion_type(m);
2011-11-12 20:44:06 +01:00
assert(relative_rank(us, to) == RANK_8);
2011-11-12 20:44:06 +01:00
assert(promotion >= KNIGHT && promotion <= QUEEN);
// Replace the pawn with the promoted piece
byTypeBB[PAWN] ^= to;
byTypeBB[promotion] |= to;
2011-11-12 20:44:06 +01:00
board[to] = make_piece(us, promotion);
// Update piece lists, move the last pawn at index[to] position
// and shrink the list. Add a new promotion piece to the list.
Square lastSquare = pieceList[us][PAWN][--pieceCount[us][PAWN]];
index[lastSquare] = index[to];
pieceList[us][PAWN][index[lastSquare]] = lastSquare;
2011-11-12 20:44:06 +01:00
pieceList[us][PAWN][pieceCount[us][PAWN]] = SQ_NONE;
index[to] = pieceCount[us][promotion];
2011-11-12 20:44:06 +01:00
pieceList[us][promotion][index[to]] = to;
// Update hash keys
k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to];
st->pawnKey ^= Zobrist::psq[us][PAWN][to];
st->materialKey ^= Zobrist::psq[us][promotion][pieceCount[us][promotion]++]
^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]];
2011-11-12 20:44:06 +01:00
// Update incremental score
st->psqScore += pieceSquareTable[make_piece(us, promotion)][to]
- pieceSquareTable[make_piece(us, PAWN)][to];
2011-11-12 20:44:06 +01:00
// Update material
st->npMaterial[us] += PieceValue[Mg][promotion];
2011-11-12 20:44:06 +01:00
}
// Update pawn hash key
st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to];
// Reset rule 50 draw counter
st->rule50 = 0;
2011-11-12 20:44:06 +01:00
}
// Prefetch pawn and material hash tables
prefetch((char*)thisThread->pawnTable.entries[st->pawnKey]);
prefetch((char*)thisThread->materialTable.entries[st->materialKey]);
2011-11-12 20:44:06 +01:00
// Update incremental scores
st->psqScore += psq_delta(piece, from, to);
2011-11-12 20:44:06 +01:00
// Set capture piece
st->capturedType = capture;
// Update the key with the final value
st->key = k;
2011-11-12 20:44:06 +01:00
// Update checkers bitboard, piece must be already moved
st->checkersBB = 0;
2011-11-12 20:44:06 +01:00
if (moveIsCheck)
{
if (type_of(m) != NORMAL)
st->checkersBB = attackers_to(king_square(them)) & pieces(us);
2011-11-12 20:44:06 +01:00
else
{
// Direct checks
if (ci.checkSq[pt] & to)
st->checkersBB |= to;
2011-11-12 20:44:06 +01:00
// Discovery checks
if (ci.dcCandidates && (ci.dcCandidates & from))
2011-11-12 20:44:06 +01:00
{
if (pt != ROOK)
st->checkersBB |= attacks_from<ROOK>(king_square(them)) & pieces(us, QUEEN, ROOK);
2011-11-12 20:44:06 +01:00
if (pt != BISHOP)
st->checkersBB |= attacks_from<BISHOP>(king_square(them)) & pieces(us, QUEEN, BISHOP);
2011-11-12 20:44:06 +01:00
}
}
}
sideToMove = ~sideToMove;
2011-11-12 20:44:06 +01:00
assert(pos_is_ok());
2011-11-12 20:44:06 +01:00
}
/// Position::undo_move() unmakes a move. When it returns, the position should
/// be restored to exactly the same state as before the move was made.
void Position::undo_move(Move m) {
assert(is_ok(m));
2011-11-12 20:44:06 +01:00
sideToMove = ~sideToMove;
2011-11-12 20:44:06 +01:00
if (type_of(m) == CASTLE)
2011-11-12 20:44:06 +01:00
{
do_castle_move<false>(m);
2011-11-12 20:44:06 +01:00
return;
}
Color us = sideToMove;
Color them = ~us;
Square from = from_sq(m);
Square to = to_sq(m);
Piece piece = piece_on(to);
PieceType pt = type_of(piece);
PieceType capture = st->capturedType;
2011-11-12 20:44:06 +01:00
assert(is_empty(from));
assert(color_of(piece) == us);
assert(capture != KING);
2011-11-12 20:44:06 +01:00
if (type_of(m) == PROMOTION)
2011-11-12 20:44:06 +01:00
{
PieceType promotion = promotion_type(m);
2011-11-12 20:44:06 +01:00
assert(promotion == pt);
assert(relative_rank(us, to) == RANK_8);
2011-11-12 20:44:06 +01:00
assert(promotion >= KNIGHT && promotion <= QUEEN);
// Replace the promoted piece with the pawn
byTypeBB[promotion] ^= to;
byTypeBB[PAWN] |= to;
board[to] = make_piece(us, PAWN);
2011-11-12 20:44:06 +01:00
// Update piece lists, move the last promoted piece at index[to] position
// and shrink the list. Add a new pawn to the list.
Square lastSquare = pieceList[us][promotion][--pieceCount[us][promotion]];
index[lastSquare] = index[to];
pieceList[us][promotion][index[lastSquare]] = lastSquare;
2011-11-12 20:44:06 +01:00
pieceList[us][promotion][pieceCount[us][promotion]] = SQ_NONE;
index[to] = pieceCount[us][PAWN]++;
2011-11-12 20:44:06 +01:00
pieceList[us][PAWN][index[to]] = to;
pt = PAWN;
2011-11-12 20:44:06 +01:00
}
// Put the piece back at the source square
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
byTypeBB[ALL_PIECES] ^= from_to_bb;
byTypeBB[pt] ^= from_to_bb;
byColorBB[us] ^= from_to_bb;
2011-11-12 20:44:06 +01:00
board[from] = board[to];
board[to] = NO_PIECE;
2011-11-12 20:44:06 +01:00
// Update piece lists, index[to] is not updated and becomes stale. This
// works as long as index[] is accessed just by known occupied squares.
2011-11-12 20:44:06 +01:00
index[from] = index[to];
pieceList[us][pt][index[from]] = from;
if (capture)
2011-11-12 20:44:06 +01:00
{
Square capsq = to;
if (type_of(m) == ENPASSANT)
{
capsq -= pawn_push(us);
2011-11-12 20:44:06 +01:00
assert(pt == PAWN);
assert(to == st->previous->epSquare);
assert(relative_rank(us, to) == RANK_6);
assert(piece_on(capsq) == NO_PIECE);
}
2011-11-12 20:44:06 +01:00
// Restore the captured piece
byTypeBB[ALL_PIECES] |= capsq;
byTypeBB[capture] |= capsq;
byColorBB[them] |= capsq;
2011-11-12 20:44:06 +01:00
board[capsq] = make_piece(them, capture);
2011-11-12 20:44:06 +01:00
// Update piece list, add a new captured piece in capsq square
index[capsq] = pieceCount[them][capture]++;
pieceList[them][capture][index[capsq]] = capsq;
2011-11-12 20:44:06 +01:00
}
// Finally point our state pointer back to the previous state
st = st->previous;
assert(pos_is_ok());
2011-11-12 20:44:06 +01:00
}
/// Position::do_castle_move() is a private method used to do/undo a castling
/// move. Note that castling moves are encoded as "king captures friendly rook"
/// moves, for instance white short castling in a non-Chess960 game is encoded
/// as e1h1.
template<bool Do>
void Position::do_castle_move(Move m) {
2011-11-12 20:44:06 +01:00
assert(is_ok(m));
assert(type_of(m) == CASTLE);
2011-11-12 20:44:06 +01:00
Square kto, kfrom, rfrom, rto, kAfter, rAfter;
2011-11-12 20:44:06 +01:00
Color us = sideToMove;
Square kBefore = from_sq(m);
Square rBefore = to_sq(m);
2011-11-12 20:44:06 +01:00
// Find after-castle squares for king and rook
if (rBefore > kBefore) // O-O
2011-11-12 20:44:06 +01:00
{
kAfter = relative_square(us, SQ_G1);
rAfter = relative_square(us, SQ_F1);
2011-11-12 20:44:06 +01:00
}
else // O-O-O
{
kAfter = relative_square(us, SQ_C1);
rAfter = relative_square(us, SQ_D1);
}
kfrom = Do ? kBefore : kAfter;
rfrom = Do ? rBefore : rAfter;
2011-11-12 20:44:06 +01:00
kto = Do ? kAfter : kBefore;
rto = Do ? rAfter : rBefore;
assert(piece_on(kfrom) == make_piece(us, KING));
assert(piece_on(rfrom) == make_piece(us, ROOK));
// Move the pieces, with some care; in chess960 could be kto == rfrom
Bitboard k_from_to_bb = SquareBB[kfrom] ^ SquareBB[kto];
Bitboard r_from_to_bb = SquareBB[rfrom] ^ SquareBB[rto];
byTypeBB[KING] ^= k_from_to_bb;
byTypeBB[ROOK] ^= r_from_to_bb;
byTypeBB[ALL_PIECES] ^= k_from_to_bb ^ r_from_to_bb;
byColorBB[us] ^= k_from_to_bb ^ r_from_to_bb;
2011-11-12 20:44:06 +01:00
// Update board
Piece king = make_piece(us, KING);
Piece rook = make_piece(us, ROOK);
board[kfrom] = board[rfrom] = NO_PIECE;
board[kto] = king;
board[rto] = rook;
2011-11-12 20:44:06 +01:00
// Update piece lists
pieceList[us][KING][index[kfrom]] = kto;
pieceList[us][ROOK][index[rfrom]] = rto;
int tmp = index[rfrom]; // In Chess960 could be kto == rfrom
index[kto] = index[kfrom];
index[rto] = tmp;
2011-11-12 20:44:06 +01:00
if (Do)
{
// Reset capture field
st->capturedType = NO_PIECE_TYPE;
2011-11-12 20:44:06 +01:00
// Update incremental scores
st->psqScore += psq_delta(king, kfrom, kto);
st->psqScore += psq_delta(rook, rfrom, rto);
// Update hash key
st->key ^= Zobrist::psq[us][KING][kfrom] ^ Zobrist::psq[us][KING][kto];
st->key ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto];
// Clear en passant square
if (st->epSquare != SQ_NONE)
{
st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
st->epSquare = SQ_NONE;
}
// Update castling rights
st->key ^= Zobrist::castle[st->castleRights & castleRightsMask[kfrom]];
st->castleRights &= ~castleRightsMask[kfrom];
// Update checkers BB
st->checkersBB = attackers_to(king_square(~us)) & pieces(us);
2011-11-12 20:44:06 +01:00
sideToMove = ~sideToMove;
}
else
// Undo: point our state pointer back to the previous state
st = st->previous;
2011-11-12 20:44:06 +01:00
assert(pos_is_ok());
}
/// Position::do_null_move() is used to do/undo a "null move": It flips the side
/// to move and updates the hash key without executing any move on the board.
template<bool Do>
2011-11-12 20:44:06 +01:00
void Position::do_null_move(StateInfo& backupSt) {
assert(!in_check());
// Back up the information necessary to undo the null move to the supplied
// StateInfo object. Note that differently from normal case here backupSt
// is actually used as a backup storage not as the new state. This reduces
// the number of fields to be copied.
StateInfo* src = Do ? st : &backupSt;
StateInfo* dst = Do ? &backupSt : st;
2011-11-12 20:44:06 +01:00
dst->key = src->key;
dst->epSquare = src->epSquare;
dst->psqScore = src->psqScore;
dst->rule50 = src->rule50;
dst->pliesFromNull = src->pliesFromNull;
2011-11-12 20:44:06 +01:00
sideToMove = ~sideToMove;
2011-11-12 20:44:06 +01:00
if (Do)
{
if (st->epSquare != SQ_NONE)
st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
2011-11-12 20:44:06 +01:00
st->key ^= Zobrist::side;
prefetch((char*)TT.first_entry(st->key));
2011-11-12 20:44:06 +01:00
st->epSquare = SQ_NONE;
st->rule50++;
st->pliesFromNull = 0;
}
2011-11-12 20:44:06 +01:00
assert(pos_is_ok());
2011-11-12 20:44:06 +01:00
}
// Explicit template instantiations
template void Position::do_null_move<false>(StateInfo& backupSt);
template void Position::do_null_move<true>(StateInfo& backupSt);
2011-11-12 20:44:06 +01:00
/// Position::see() is a static exchange evaluator: It tries to estimate the
/// material gain or loss resulting from a move. There are three versions of
/// this function: One which takes a destination square as input, one takes a
/// move, and one which takes a 'from' and a 'to' square. The function does
/// not yet understand promotions captures.
int Position::see_sign(Move m) const {
assert(is_ok(m));
2011-11-12 20:44:06 +01:00
// Early return if SEE cannot be negative because captured piece value
// is not less then capturing one. Note that king moves always return
// here because king midgame value is set to 0.
if (PieceValue[Mg][piece_on(to_sq(m))] >= PieceValue[Mg][piece_moved(m)])
2011-11-12 20:44:06 +01:00
return 1;
return see(m);
2011-11-12 20:44:06 +01:00
}
int Position::see(Move m) const {
2011-11-12 20:44:06 +01:00
Square from, to;
Bitboard occupied, attackers, stmAttackers;
2011-11-12 20:44:06 +01:00
int swapList[32], slIndex = 1;
PieceType captured;
2011-11-12 20:44:06 +01:00
Color stm;
assert(is_ok(m));
2011-11-12 20:44:06 +01:00
from = from_sq(m);
to = to_sq(m);
captured = type_of(piece_on(to));
occupied = pieces() ^ from;
2011-11-12 20:44:06 +01:00
// Handle en passant moves
if (type_of(m) == ENPASSANT)
2011-11-12 20:44:06 +01:00
{
Square capQq = to - pawn_push(sideToMove);
2011-11-12 20:44:06 +01:00
assert(!captured);
assert(type_of(piece_on(capQq)) == PAWN);
2011-11-12 20:44:06 +01:00
// Remove the captured pawn
occupied ^= capQq;
captured = PAWN;
2011-11-12 20:44:06 +01:00
}
else if (type_of(m) == CASTLE)
// Castle moves are implemented as king capturing the rook so cannot be
// handled correctly. Simply return 0 that is always the correct value
// unless the rook is ends up under attack.
return 0;
2011-11-12 20:44:06 +01:00
// Find all attackers to the destination square, with the moving piece
// removed, but possibly an X-ray attacker added behind it.
attackers = attackers_to(to, occupied);
2011-11-12 20:44:06 +01:00
// If the opponent has no attackers we are finished
stm = ~color_of(piece_on(from));
stmAttackers = attackers & pieces(stm);
2011-11-12 20:44:06 +01:00
if (!stmAttackers)
return PieceValue[Mg][captured];
2011-11-12 20:44:06 +01:00
// The destination square is defended, which makes things rather more
// difficult to compute. We proceed by building up a "swap list" containing
// the material gain or loss at each stop in a sequence of captures to the
// destination square, where the sides alternately capture, and always
// capture with the least valuable piece. After each capture, we look for
// new X-ray attacks from behind the capturing piece.
swapList[0] = PieceValue[Mg][captured];
captured = type_of(piece_on(from));
2011-11-12 20:44:06 +01:00
do {
assert(slIndex < 32);
2011-11-12 20:44:06 +01:00
// Add the new entry to the swap list
swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[Mg][captured];
2011-11-12 20:44:06 +01:00
slIndex++;
// Locate and remove from 'occupied' the next least valuable attacker
captured = next_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
attackers &= occupied; // Remove the just found attacker
stm = ~stm;
stmAttackers = attackers & pieces(stm);
2011-11-12 20:44:06 +01:00
if (captured == KING)
2011-11-12 20:44:06 +01:00
{
// Stop before processing a king capture
if (stmAttackers)
swapList[slIndex++] = QueenValueMg * 16;
2011-11-12 20:44:06 +01:00
break;
}
2011-11-12 20:44:06 +01:00
} while (stmAttackers);
// Having built the swap list, we negamax through it to find the best
// achievable score from the point of view of the side to move.
while (--slIndex)
swapList[slIndex-1] = std::min(-swapList[slIndex], swapList[slIndex-1]);
2011-11-12 20:44:06 +01:00
return swapList[0];
}
/// Position::clear() erases the position object to a pristine state, with an
/// empty board, white to move, and no castling rights.
void Position::clear() {
memset(this, 0, sizeof(Position));
startState.epSquare = SQ_NONE;
2011-11-12 20:44:06 +01:00
st = &startState;
for (int i = 0; i < 8; i++)
for (int j = 0; j < 16; j++)
pieceList[0][i][j] = pieceList[1][i][j] = SQ_NONE;
for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
board[sq] = NO_PIECE;
2011-11-12 20:44:06 +01:00
}
/// Position::put_piece() puts a piece on the given square of the board,
/// updating the board array, pieces list, bitboards, and piece counts.
void Position::put_piece(Piece p, Square s) {
Color c = color_of(p);
PieceType pt = type_of(p);
2011-11-12 20:44:06 +01:00
board[s] = p;
index[s] = pieceCount[c][pt]++;
pieceList[c][pt][index[s]] = s;
byTypeBB[ALL_PIECES] |= s;
byTypeBB[pt] |= s;
byColorBB[c] |= s;
2011-11-12 20:44:06 +01:00
}
/// Position::compute_key() computes the hash key of the position. The hash
/// key is usually updated incrementally as moves are made and unmade, the
/// compute_key() function is only used when a new position is set up, and
/// to verify the correctness of the hash key when running in debug mode.
Key Position::compute_key() const {
Key k = Zobrist::castle[st->castleRights];
2011-11-12 20:44:06 +01:00
for (Bitboard b = pieces(); b; )
{
Square s = pop_lsb(&b);
k ^= Zobrist::psq[color_of(piece_on(s))][type_of(piece_on(s))][s];
}
2011-11-12 20:44:06 +01:00
if (ep_square() != SQ_NONE)
k ^= Zobrist::enpassant[file_of(ep_square())];
2011-11-12 20:44:06 +01:00
if (sideToMove == BLACK)
k ^= Zobrist::side;
2011-11-12 20:44:06 +01:00
return k;
2011-11-12 20:44:06 +01:00
}
/// Position::compute_pawn_key() computes the hash key of the position. The
/// hash key is usually updated incrementally as moves are made and unmade,
/// the compute_pawn_key() function is only used when a new position is set
/// up, and to verify the correctness of the pawn hash key when running in
/// debug mode.
Key Position::compute_pawn_key() const {
Key k = 0;
2011-11-12 20:44:06 +01:00
for (Bitboard b = pieces(PAWN); b; )
2011-11-12 20:44:06 +01:00
{
Square s = pop_lsb(&b);
k ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s];
2011-11-12 20:44:06 +01:00
}
return k;
2011-11-12 20:44:06 +01:00
}
/// Position::compute_material_key() computes the hash key of the position.
/// The hash key is usually updated incrementally as moves are made and unmade,
/// the compute_material_key() function is only used when a new position is set
/// up, and to verify the correctness of the material hash key when running in
/// debug mode.
Key Position::compute_material_key() const {
Key k = 0;
2011-11-12 20:44:06 +01:00
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= QUEEN; pt++)
for (int cnt = 0; cnt < piece_count(c, pt); cnt++)
k ^= Zobrist::psq[c][pt][cnt];
return k;
2011-11-12 20:44:06 +01:00
}
/// Position::compute_psq_score() computes the incremental scores for the middle
2011-11-12 20:44:06 +01:00
/// game and the endgame. These functions are used to initialize the incremental
/// scores when a new position is set up, and to verify that the scores are correctly
/// updated by do_move and undo_move when the program is running in debug mode.
Score Position::compute_psq_score() const {
2011-11-12 20:44:06 +01:00
Score score = SCORE_ZERO;
2011-11-12 20:44:06 +01:00
for (Bitboard b = pieces(); b; )
{
Square s = pop_lsb(&b);
score += pieceSquareTable[piece_on(s)][s];
}
2011-11-12 20:44:06 +01:00
return score;
2011-11-12 20:44:06 +01:00
}
/// Position::compute_non_pawn_material() computes the total non-pawn middle
/// game material value for the given side. Material values are updated
/// incrementally during the search, this function is only used while
/// initializing a new Position object.
Value Position::compute_non_pawn_material(Color c) const {
Value value = VALUE_ZERO;
2011-11-12 20:44:06 +01:00
for (PieceType pt = KNIGHT; pt <= QUEEN; pt++)
value += piece_count(c, pt) * PieceValue[Mg][pt];
2011-11-12 20:44:06 +01:00
return value;
2011-11-12 20:44:06 +01:00
}
/// Position::is_draw() tests whether the position is drawn by material,
/// repetition, or the 50 moves rule. It does not detect stalemates, this
/// must be done by the search.
template<bool SkipRepetition>
2011-11-12 20:44:06 +01:00
bool Position::is_draw() const {
// Draw by material?
if ( !pieces(PAWN)
&& (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMg))
2011-11-12 20:44:06 +01:00
return true;
// Draw by the 50 moves rule?
if (st->rule50 > 99 && (!in_check() || MoveList<LEGAL>(*this).size()))
2011-11-12 20:44:06 +01:00
return true;
// Draw by repetition?
if (!SkipRepetition)
{
int i = 4, e = std::min(st->rule50, st->pliesFromNull);
if (i <= e)
{
StateInfo* stp = st->previous->previous;
do {
stp = stp->previous->previous;
if (stp->key == st->key)
return true;
i +=2;
} while (i <= e);
}
}
2011-11-12 20:44:06 +01:00
return false;
}
// Explicit template instantiations
template bool Position::is_draw<false>() const;
template bool Position::is_draw<true>() const;
2011-11-12 20:44:06 +01:00
/// Position::flip() flips position with the white and black sides reversed. This
2011-11-12 20:44:06 +01:00
/// is only useful for debugging especially for finding evaluation symmetry bugs.
void Position::flip() {
2011-11-12 20:44:06 +01:00
const Position pos(*this);
2011-11-12 20:44:06 +01:00
clear();
sideToMove = ~pos.side_to_move();
thisThread = pos.this_thread();
nodes = pos.nodes_searched();
chess960 = pos.is_chess960();
startPosPly = pos.startpos_ply_counter();
2011-11-12 20:44:06 +01:00
for (Square s = SQ_A1; s <= SQ_H8; s++)
if (!pos.is_empty(s))
put_piece(Piece(pos.piece_on(s) ^ 8), ~s);
2011-11-12 20:44:06 +01:00
if (pos.can_castle(WHITE_OO))
set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, KING_SIDE));
if (pos.can_castle(WHITE_OOO))
set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, QUEEN_SIDE));
if (pos.can_castle(BLACK_OO))
set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, KING_SIDE));
if (pos.can_castle(BLACK_OOO))
set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, QUEEN_SIDE));
2011-11-12 20:44:06 +01:00
if (pos.st->epSquare != SQ_NONE)
st->epSquare = ~pos.st->epSquare;
2011-11-12 20:44:06 +01:00
st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
2011-11-12 20:44:06 +01:00
st->key = compute_key();
st->pawnKey = compute_pawn_key();
st->materialKey = compute_material_key();
st->psqScore = compute_psq_score();
2011-11-12 20:44:06 +01:00
st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
assert(pos_is_ok());
2011-11-12 20:44:06 +01:00
}
/// Position::pos_is_ok() performs some consitency checks for the position object.
2011-11-12 20:44:06 +01:00
/// This is meant to be helpful when debugging.
bool Position::pos_is_ok(int* failedStep) const {
2011-11-12 20:44:06 +01:00
int dummy, *step = failedStep ? failedStep : &dummy;
2011-11-12 20:44:06 +01:00
// What features of the position should be verified?
const bool all = false;
const bool debugBitboards = all || false;
const bool debugKingCount = all || false;
const bool debugKingCapture = all || false;
const bool debugCheckerCount = all || false;
const bool debugKey = all || false;
const bool debugMaterialKey = all || false;
const bool debugPawnKey = all || false;
const bool debugIncrementalEval = all || false;
const bool debugNonPawnMaterial = all || false;
const bool debugPieceCounts = all || false;
const bool debugPieceList = all || false;
const bool debugCastleSquares = all || false;
*step = 1;
if (sideToMove != WHITE && sideToMove != BLACK)
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, piece_on(king_square(WHITE)) != W_KING)
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, piece_on(king_square(BLACK)) != B_KING)
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, debugKingCount)
2011-11-12 20:44:06 +01:00
{
int kingCount[2] = {};
2011-11-12 20:44:06 +01:00
for (Square s = SQ_A1; s <= SQ_H8; s++)
if (type_of(piece_on(s)) == KING)
kingCount[color_of(piece_on(s))]++;
2011-11-12 20:44:06 +01:00
if (kingCount[0] != 1 || kingCount[1] != 1)
return false;
}
if ((*step)++, debugKingCapture)
if (attackers_to(king_square(~sideToMove)) & pieces(sideToMove))
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, debugCheckerCount && popcount<Full>(st->checkersBB) > 2)
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, debugBitboards)
2011-11-12 20:44:06 +01:00
{
// The intersection of the white and black pieces must be empty
if (pieces(WHITE) & pieces(BLACK))
2011-11-12 20:44:06 +01:00
return false;
// The union of the white and black pieces must be equal to all
// occupied squares
if ((pieces(WHITE) | pieces(BLACK)) != pieces())
2011-11-12 20:44:06 +01:00
return false;
// Separate piece type bitboards must have empty intersections
for (PieceType p1 = PAWN; p1 <= KING; p1++)
for (PieceType p2 = PAWN; p2 <= KING; p2++)
if (p1 != p2 && (pieces(p1) & pieces(p2)))
return false;
}
if ((*step)++, ep_square() != SQ_NONE && relative_rank(sideToMove, ep_square()) != RANK_6)
return false;
2011-11-12 20:44:06 +01:00
if ((*step)++, debugKey && st->key != compute_key())
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, debugPawnKey && st->pawnKey != compute_pawn_key())
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, debugMaterialKey && st->materialKey != compute_material_key())
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, debugIncrementalEval && st->psqScore != compute_psq_score())
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, debugNonPawnMaterial)
2011-11-12 20:44:06 +01:00
{
if ( st->npMaterial[WHITE] != compute_non_pawn_material(WHITE)
|| st->npMaterial[BLACK] != compute_non_pawn_material(BLACK))
2011-11-12 20:44:06 +01:00
return false;
}
if ((*step)++, debugPieceCounts)
2011-11-12 20:44:06 +01:00
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt)))
2011-11-12 20:44:06 +01:00
return false;
if ((*step)++, debugPieceList)
2011-11-12 20:44:06 +01:00
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
for (int i = 0; i < pieceCount[c][pt]; i++)
{
if (piece_on(piece_list(c, pt)[i]) != make_piece(c, pt))
2011-11-12 20:44:06 +01:00
return false;
if (index[piece_list(c, pt)[i]] != i)
2011-11-12 20:44:06 +01:00
return false;
}
if ((*step)++, debugCastleSquares)
for (Color c = WHITE; c <= BLACK; c++)
for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
{
CastleRight cr = make_castle_right(c, s);
if (!can_castle(cr))
continue;
2011-11-12 20:44:06 +01:00
if ((castleRightsMask[king_square(c)] & cr) != cr)
return false;
if ( piece_on(castleRookSquare[c][s]) != make_piece(c, ROOK)
|| castleRightsMask[castleRookSquare[c][s]] != cr)
return false;
}
2011-11-12 20:44:06 +01:00
*step = 0;
2011-11-12 20:44:06 +01:00
return true;
}