mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-02-07 04:39:13 +01:00
DroidFish: Updated stockfish engine to version 2.2.
This commit is contained in:
parent
d8782830a9
commit
e00df7370c
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -21,16 +21,19 @@
|
|||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "misc.h"
|
||||
#include "position.h"
|
||||
#include "search.h"
|
||||
#include "thread.h"
|
||||
#include "ucioption.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace Search;
|
||||
|
||||
static const string Defaults[] = {
|
||||
static const char* Defaults[] = {
|
||||
"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
|
||||
"r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w KQkq -",
|
||||
"8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8 w - -",
|
||||
"r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w KQkq - 0 10",
|
||||
"8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8 w - - 0 11",
|
||||
"4rrk1/pp1n3p/3q2pQ/2p1pb2/2PP4/2P3N1/P2B2PP/4RRK1 b - - 7 19",
|
||||
"rq3rk1/ppp2ppp/1bnpb3/3N2B1/3NP3/7P/PPPQ1PP1/2KR3R w - - 7 14",
|
||||
"r1bq1r1k/1pp1n1pp/1p1p4/4p2Q/4Pp2/1BNP4/PPP2PPP/3R1RK1 w - - 2 14",
|
||||
|
@ -43,30 +46,24 @@ static const string Defaults[] = {
|
|||
"3r1rk1/p5pp/bpp1pp2/8/q1PP1P2/b3P3/P2NQRPP/1R2B1K1 b - - 6 22",
|
||||
"r1q2rk1/2p1bppp/2Pp4/p6b/Q1PNp3/4B3/PP1R1PPP/2K4R w - - 2 18",
|
||||
"4k2r/1pb2ppp/1p2p3/1R1p4/3P4/2r1PN2/P4PPP/1R4K1 b - - 3 22",
|
||||
"3q2k1/pb3p1p/4pbp1/2r5/PpN2N2/1P2P2P/5PP1/Q2R2K1 b - - 4 26",
|
||||
""
|
||||
"3q2k1/pb3p1p/4pbp1/2r5/PpN2N2/1P2P2P/5PP1/Q2R2K1 b - - 4 26"
|
||||
};
|
||||
|
||||
|
||||
/// benchmark() runs a simple benchmark by letting Stockfish analyze a set
|
||||
/// of positions for a given limit each. There are five parameters; the
|
||||
/// of positions for a given limit each. There are five parameters; the
|
||||
/// transposition table size, the number of search threads that should
|
||||
/// be used, the limit value spent for each position (optional, default
|
||||
/// is ply 12), an optional file name where to look for positions in fen
|
||||
/// format (default are the BenchmarkPositions defined above) and the type
|
||||
/// of the limit value: depth (default), time in secs or number of nodes.
|
||||
/// The analysis is written to a file named bench.txt.
|
||||
/// be used, the limit value spent for each position (optional, default is
|
||||
/// depth 12), an optional file name where to look for positions in fen
|
||||
/// format (defaults are the positions defined above) and the type of the
|
||||
/// limit value: depth (default), time in secs or number of nodes.
|
||||
|
||||
void benchmark(int argc, char* argv[]) {
|
||||
|
||||
vector<string> fenList;
|
||||
SearchLimits limits;
|
||||
int64_t totalNodes;
|
||||
vector<string> fens;
|
||||
LimitsType limits;
|
||||
int time;
|
||||
|
||||
// Load default positions
|
||||
for (int i = 0; !Defaults[i].empty(); i++)
|
||||
fenList.push_back(Defaults[i]);
|
||||
int64_t nodes = 0;
|
||||
|
||||
// Assign default values to missing arguments
|
||||
string ttSize = argc > 2 ? argv[2] : "128";
|
||||
|
@ -75,79 +72,64 @@ void benchmark(int argc, char* argv[]) {
|
|||
string fenFile = argc > 5 ? argv[5] : "default";
|
||||
string valType = argc > 6 ? argv[6] : "depth";
|
||||
|
||||
Options["Hash"].set_value(ttSize);
|
||||
Options["Threads"].set_value(threads);
|
||||
Options["OwnBook"].set_value("false");
|
||||
Options["Hash"] = ttSize;
|
||||
Options["Threads"] = threads;
|
||||
Options["OwnBook"] = false;
|
||||
|
||||
// Search should be limited by nodes, time or depth ?
|
||||
if (valType == "nodes")
|
||||
limits.maxNodes = atoi(valStr.c_str());
|
||||
else if (valType == "time")
|
||||
if (valType == "time")
|
||||
limits.maxTime = 1000 * atoi(valStr.c_str()); // maxTime is in ms
|
||||
|
||||
else if (valType == "nodes")
|
||||
limits.maxNodes = atoi(valStr.c_str());
|
||||
|
||||
else
|
||||
limits.maxDepth = atoi(valStr.c_str());
|
||||
|
||||
// Do we need to load positions from a given FEN file ?
|
||||
if (fenFile != "default")
|
||||
{
|
||||
string fen;
|
||||
ifstream f(fenFile.c_str());
|
||||
ifstream file(fenFile.c_str());
|
||||
|
||||
if (f.is_open())
|
||||
if (!file.is_open())
|
||||
{
|
||||
fenList.clear();
|
||||
|
||||
while (getline(f, fen))
|
||||
if (!fen.empty())
|
||||
fenList.push_back(fen);
|
||||
|
||||
f.close();
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "Unable to open FEN file " << fenFile << endl;
|
||||
cerr << "Unable to open file " << fenFile << endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
while (getline(file, fen))
|
||||
if (!fen.empty())
|
||||
fens.push_back(fen);
|
||||
|
||||
file.close();
|
||||
}
|
||||
else
|
||||
fens.assign(Defaults, Defaults + 16);
|
||||
|
||||
// Ok, let's start the benchmark !
|
||||
totalNodes = 0;
|
||||
time = get_system_time();
|
||||
time = system_time();
|
||||
|
||||
for (size_t i = 0; i < fenList.size(); i++)
|
||||
for (size_t i = 0; i < fens.size(); i++)
|
||||
{
|
||||
Move moves[] = { MOVE_NONE };
|
||||
Position pos(fenList[i], false, 0);
|
||||
Position pos(fens[i], false, 0);
|
||||
|
||||
cerr << "\nBench position: " << i + 1 << '/' << fenList.size() << endl;
|
||||
cerr << "\nPosition: " << i + 1 << '/' << fens.size() << endl;
|
||||
|
||||
if (valType == "perft")
|
||||
{
|
||||
int64_t cnt = perft(pos, limits.maxDepth * ONE_PLY);
|
||||
totalNodes += cnt;
|
||||
|
||||
cerr << "\nPerft " << limits.maxDepth << " nodes counted: " << cnt << endl;
|
||||
cerr << "\nPerft " << limits.maxDepth << " leaf nodes: " << cnt << endl;
|
||||
nodes += cnt;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!think(pos, limits, moves))
|
||||
break;
|
||||
|
||||
totalNodes += pos.nodes_searched();
|
||||
Threads.start_thinking(pos, limits, vector<Move>(), false);
|
||||
nodes += RootPosition.nodes_searched();
|
||||
}
|
||||
}
|
||||
|
||||
time = get_system_time() - time;
|
||||
time = system_time() - time;
|
||||
|
||||
cerr << "\n==============================="
|
||||
cerr << "\n==========================="
|
||||
<< "\nTotal time (ms) : " << time
|
||||
<< "\nNodes searched : " << totalNodes
|
||||
<< "\nNodes/second : " << (int)(totalNodes / (time / 1000.0)) << endl << endl;
|
||||
|
||||
// MS Visual C++ debug window always unconditionally closes when program
|
||||
// exits, this is bad because we want to read results before.
|
||||
#if (defined(WINDOWS) || defined(WIN32) || defined(WIN64))
|
||||
cerr << "Press any key to exit" << endl;
|
||||
cin >> time;
|
||||
#endif
|
||||
<< "\nNodes searched : " << nodes
|
||||
<< "\nNodes/second : " << int(nodes / (time / 1000.0)) << endl;
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -28,31 +28,31 @@ namespace {
|
|||
RESULT_UNKNOWN,
|
||||
RESULT_INVALID,
|
||||
RESULT_WIN,
|
||||
RESULT_LOSS,
|
||||
RESULT_DRAW
|
||||
};
|
||||
|
||||
struct KPKPosition {
|
||||
Result classify_knowns(int index);
|
||||
Result classify(int index, Result db[]);
|
||||
|
||||
private:
|
||||
void from_index(int index);
|
||||
bool is_legal() const;
|
||||
bool is_immediate_draw() const;
|
||||
bool is_immediate_win() const;
|
||||
Bitboard wk_attacks() const { return StepAttacksBB[WK][whiteKingSquare]; }
|
||||
Bitboard bk_attacks() const { return StepAttacksBB[BK][blackKingSquare]; }
|
||||
Bitboard pawn_attacks() const { return StepAttacksBB[WP][pawnSquare]; }
|
||||
Result classify_white(const Result db[]);
|
||||
Result classify_black(const Result db[]);
|
||||
Bitboard wk_attacks() const { return StepAttacksBB[W_KING][whiteKingSquare]; }
|
||||
Bitboard bk_attacks() const { return StepAttacksBB[B_KING][blackKingSquare]; }
|
||||
Bitboard pawn_attacks() const { return StepAttacksBB[W_PAWN][pawnSquare]; }
|
||||
|
||||
Square whiteKingSquare, blackKingSquare, pawnSquare;
|
||||
Color sideToMove;
|
||||
};
|
||||
|
||||
// The possible pawns squares are 24, the first 4 files and ranks from 2 to 7
|
||||
const int IndexMax = 2 * 24 * 64 * 64; // color * wp_sq * wk_sq * bk_sq
|
||||
const int IndexMax = 2 * 24 * 64 * 64; // color * wp_sq * wk_sq * bk_sq = 196608
|
||||
|
||||
// Each uint32_t stores results of 32 positions, one per bit
|
||||
uint32_t KPKBitbase[IndexMax / 32];
|
||||
|
||||
Result classify_wtm(const KPKPosition& pos, const Result bb[]);
|
||||
Result classify_btm(const KPKPosition& pos, const Result bb[]);
|
||||
int compute_index(Square wksq, Square bksq, Square wpsq, Color stm);
|
||||
}
|
||||
|
||||
|
@ -65,64 +65,49 @@ uint32_t probe_kpk_bitbase(Square wksq, Square wpsq, Square bksq, Color stm) {
|
|||
}
|
||||
|
||||
|
||||
void init_kpk_bitbase() {
|
||||
void kpk_bitbase_init() {
|
||||
|
||||
Result bb[IndexMax];
|
||||
Result db[IndexMax];
|
||||
KPKPosition pos;
|
||||
bool repeat;
|
||||
int index, bit, repeat = 1;
|
||||
|
||||
// Initialize table
|
||||
for (int i = 0; i < IndexMax; i++)
|
||||
{
|
||||
pos.from_index(i);
|
||||
bb[i] = !pos.is_legal() ? RESULT_INVALID
|
||||
: pos.is_immediate_draw() ? RESULT_DRAW
|
||||
: pos.is_immediate_win() ? RESULT_WIN : RESULT_UNKNOWN;
|
||||
}
|
||||
for (index = 0; index < IndexMax; index++)
|
||||
db[index] = pos.classify_knowns(index);
|
||||
|
||||
// Iterate until all positions are classified (30 cycles needed)
|
||||
do {
|
||||
repeat = false;
|
||||
|
||||
for (int i = 0; i < IndexMax; i++)
|
||||
if (bb[i] == RESULT_UNKNOWN)
|
||||
{
|
||||
pos.from_index(i);
|
||||
|
||||
bb[i] = (pos.sideToMove == WHITE) ? classify_wtm(pos, bb)
|
||||
: classify_btm(pos, bb);
|
||||
if (bb[i] != RESULT_UNKNOWN)
|
||||
repeat = true;
|
||||
}
|
||||
|
||||
} while (repeat);
|
||||
while (repeat)
|
||||
for (repeat = index = 0; index < IndexMax; index++)
|
||||
if ( db[index] == RESULT_UNKNOWN
|
||||
&& pos.classify(index, db) != RESULT_UNKNOWN)
|
||||
repeat = 1;
|
||||
|
||||
// Map 32 position results into one KPKBitbase[] entry
|
||||
for (int i = 0; i < IndexMax / 32; i++)
|
||||
for (int j = 0; j < 32; j++)
|
||||
if (bb[32 * i + j] == RESULT_WIN || bb[32 * i + j] == RESULT_LOSS)
|
||||
KPKBitbase[i] |= (1 << j);
|
||||
for (index = 0; index < IndexMax / 32; index++)
|
||||
for (bit = 0; bit < 32; bit++)
|
||||
if (db[32 * index + bit] == RESULT_WIN)
|
||||
KPKBitbase[index] |= (1 << bit);
|
||||
}
|
||||
|
||||
|
||||
namespace {
|
||||
|
||||
// A KPK bitbase index is an integer in [0, IndexMax] range
|
||||
//
|
||||
// Information is mapped in this way
|
||||
//
|
||||
// bit 0: side to move (WHITE or BLACK)
|
||||
// bit 1- 6: black king square (from SQ_A1 to SQ_H8)
|
||||
// bit 7-12: white king square (from SQ_A1 to SQ_H8)
|
||||
// bit 13-14: white pawn file (from FILE_A to FILE_D)
|
||||
// bit 15-17: white pawn rank - 1 (from RANK_2 - 1 to RANK_7 - 1)
|
||||
// A KPK bitbase index is an integer in [0, IndexMax] range
|
||||
//
|
||||
// Information is mapped in this way
|
||||
//
|
||||
// bit 0: side to move (WHITE or BLACK)
|
||||
// bit 1- 6: black king square (from SQ_A1 to SQ_H8)
|
||||
// bit 7-12: white king square (from SQ_A1 to SQ_H8)
|
||||
// bit 13-14: white pawn file (from FILE_A to FILE_D)
|
||||
// bit 15-17: white pawn rank - 1 (from RANK_2 - 1 to RANK_7 - 1)
|
||||
|
||||
int compute_index(Square wksq, Square bksq, Square wpsq, Color stm) {
|
||||
|
||||
assert(square_file(wpsq) <= FILE_D);
|
||||
assert(file_of(wpsq) <= FILE_D);
|
||||
|
||||
int p = int(square_file(wpsq)) + 4 * int(square_rank(wpsq) - 1);
|
||||
int r = int(stm) + 2 * int(bksq) + 128 * int(wksq) + 8192 * p;
|
||||
int p = file_of(wpsq) + 4 * (rank_of(wpsq) - 1);
|
||||
int r = stm + 2 * bksq + 128 * wksq + 8192 * p;
|
||||
|
||||
assert(r >= 0 && r < IndexMax);
|
||||
|
||||
|
@ -131,73 +116,79 @@ namespace {
|
|||
|
||||
void KPKPosition::from_index(int index) {
|
||||
|
||||
int s = (index / 8192) % 24;
|
||||
|
||||
sideToMove = Color(index % 2);
|
||||
blackKingSquare = Square((index / 2) % 64);
|
||||
whiteKingSquare = Square((index / 128) % 64);
|
||||
pawnSquare = make_square(File(s % 4), Rank(s / 4 + 1));
|
||||
int s = index >> 13;
|
||||
sideToMove = Color(index & 1);
|
||||
blackKingSquare = Square((index >> 1) & 63);
|
||||
whiteKingSquare = Square((index >> 7) & 63);
|
||||
pawnSquare = make_square(File(s & 3), Rank((s >> 2) + 1));
|
||||
}
|
||||
|
||||
bool KPKPosition::is_legal() const {
|
||||
Result KPKPosition::classify_knowns(int index) {
|
||||
|
||||
from_index(index);
|
||||
|
||||
// Check if two pieces are on the same square
|
||||
if ( whiteKingSquare == pawnSquare
|
||||
|| whiteKingSquare == blackKingSquare
|
||||
|| blackKingSquare == pawnSquare)
|
||||
return false;
|
||||
return RESULT_INVALID;
|
||||
|
||||
if (sideToMove == WHITE)
|
||||
{
|
||||
if ( bit_is_set(wk_attacks(), blackKingSquare)
|
||||
|| bit_is_set(pawn_attacks(), blackKingSquare))
|
||||
return false;
|
||||
}
|
||||
else if (bit_is_set(bk_attacks(), whiteKingSquare))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool KPKPosition::is_immediate_draw() const {
|
||||
|
||||
if (sideToMove == BLACK)
|
||||
{
|
||||
Bitboard wka = wk_attacks();
|
||||
Bitboard bka = bk_attacks();
|
||||
|
||||
// Case 1: Stalemate
|
||||
if ((bka & ~(wka | pawn_attacks())) == EmptyBoardBB)
|
||||
return true;
|
||||
|
||||
// Case 2: King can capture pawn
|
||||
if (bit_is_set(bka, pawnSquare) && !bit_is_set(wka, pawnSquare))
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Case 1: Stalemate (possible pawn files are only from A to D)
|
||||
if ( whiteKingSquare == SQ_A8
|
||||
&& pawnSquare == SQ_A7
|
||||
&& (blackKingSquare == SQ_C7 || blackKingSquare == SQ_C8))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool KPKPosition::is_immediate_win() const {
|
||||
// Check if a king can be captured
|
||||
if ( bit_is_set(wk_attacks(), blackKingSquare)
|
||||
|| (bit_is_set(pawn_attacks(), blackKingSquare) && sideToMove == WHITE))
|
||||
return RESULT_INVALID;
|
||||
|
||||
// The position is an immediate win if it is white to move and the
|
||||
// white pawn can be promoted without getting captured.
|
||||
return sideToMove == WHITE
|
||||
&& square_rank(pawnSquare) == RANK_7
|
||||
&& whiteKingSquare != pawnSquare + DELTA_N
|
||||
&& ( square_distance(blackKingSquare, pawnSquare + DELTA_N) > 1
|
||||
|| bit_is_set(wk_attacks(), pawnSquare + DELTA_N));
|
||||
if ( rank_of(pawnSquare) == RANK_7
|
||||
&& sideToMove == WHITE
|
||||
&& whiteKingSquare != pawnSquare + DELTA_N
|
||||
&& ( square_distance(blackKingSquare, pawnSquare + DELTA_N) > 1
|
||||
|| bit_is_set(wk_attacks(), pawnSquare + DELTA_N)))
|
||||
return RESULT_WIN;
|
||||
|
||||
// Check for known draw positions
|
||||
//
|
||||
// Case 1: Stalemate
|
||||
if ( sideToMove == BLACK
|
||||
&& !(bk_attacks() & ~(wk_attacks() | pawn_attacks())))
|
||||
return RESULT_DRAW;
|
||||
|
||||
// Case 2: King can capture pawn
|
||||
if ( sideToMove == BLACK
|
||||
&& bit_is_set(bk_attacks(), pawnSquare) && !bit_is_set(wk_attacks(), pawnSquare))
|
||||
return RESULT_DRAW;
|
||||
|
||||
// Case 3: Black king in front of white pawn
|
||||
if ( blackKingSquare == pawnSquare + DELTA_N
|
||||
&& rank_of(pawnSquare) < RANK_7)
|
||||
return RESULT_DRAW;
|
||||
|
||||
// Case 4: White king in front of pawn and black has opposition
|
||||
if ( whiteKingSquare == pawnSquare + DELTA_N
|
||||
&& blackKingSquare == pawnSquare + DELTA_N + DELTA_N + DELTA_N
|
||||
&& rank_of(pawnSquare) < RANK_5
|
||||
&& sideToMove == WHITE)
|
||||
return RESULT_DRAW;
|
||||
|
||||
// Case 5: Stalemate with rook pawn
|
||||
if ( blackKingSquare == SQ_A8
|
||||
&& file_of(pawnSquare) == FILE_A)
|
||||
return RESULT_DRAW;
|
||||
|
||||
return RESULT_UNKNOWN;
|
||||
}
|
||||
|
||||
Result classify_wtm(const KPKPosition& pos, const Result bb[]) {
|
||||
Result KPKPosition::classify(int index, Result db[]) {
|
||||
|
||||
// If one move leads to a position classified as RESULT_LOSS, the result
|
||||
from_index(index);
|
||||
db[index] = (sideToMove == WHITE ? classify_white(db) : classify_black(db));
|
||||
return db[index];
|
||||
}
|
||||
|
||||
Result KPKPosition::classify_white(const Result db[]) {
|
||||
|
||||
// If one move leads to a position classified as RESULT_WIN, the result
|
||||
// of the current position is RESULT_WIN. If all moves lead to positions
|
||||
// classified as RESULT_DRAW, the current position is classified RESULT_DRAW
|
||||
// otherwise the current position is classified as RESULT_UNKNOWN.
|
||||
|
@ -208,13 +199,13 @@ namespace {
|
|||
Result r;
|
||||
|
||||
// King moves
|
||||
b = pos.wk_attacks();
|
||||
b = wk_attacks();
|
||||
while (b)
|
||||
{
|
||||
s = pop_1st_bit(&b);
|
||||
r = bb[compute_index(s, pos.blackKingSquare, pos.pawnSquare, BLACK)];
|
||||
r = db[compute_index(s, blackKingSquare, pawnSquare, BLACK)];
|
||||
|
||||
if (r == RESULT_LOSS)
|
||||
if (r == RESULT_WIN)
|
||||
return RESULT_WIN;
|
||||
|
||||
if (r == RESULT_UNKNOWN)
|
||||
|
@ -222,26 +213,24 @@ namespace {
|
|||
}
|
||||
|
||||
// Pawn moves
|
||||
if (square_rank(pos.pawnSquare) < RANK_7)
|
||||
if (rank_of(pawnSquare) < RANK_7)
|
||||
{
|
||||
s = pos.pawnSquare + DELTA_N;
|
||||
r = bb[compute_index(pos.whiteKingSquare, pos.blackKingSquare, s, BLACK)];
|
||||
s = pawnSquare + DELTA_N;
|
||||
r = db[compute_index(whiteKingSquare, blackKingSquare, s, BLACK)];
|
||||
|
||||
if (r == RESULT_LOSS)
|
||||
if (r == RESULT_WIN)
|
||||
return RESULT_WIN;
|
||||
|
||||
if (r == RESULT_UNKNOWN)
|
||||
unknownFound = true;
|
||||
|
||||
// Double pawn push
|
||||
if ( square_rank(s) == RANK_3
|
||||
&& s != pos.whiteKingSquare
|
||||
&& s != pos.blackKingSquare)
|
||||
if (rank_of(s) == RANK_3 && r != RESULT_INVALID)
|
||||
{
|
||||
s += DELTA_N;
|
||||
r = bb[compute_index(pos.whiteKingSquare, pos.blackKingSquare, s, BLACK)];
|
||||
r = db[compute_index(whiteKingSquare, blackKingSquare, s, BLACK)];
|
||||
|
||||
if (r == RESULT_LOSS)
|
||||
if (r == RESULT_WIN)
|
||||
return RESULT_WIN;
|
||||
|
||||
if (r == RESULT_UNKNOWN)
|
||||
|
@ -251,14 +240,12 @@ namespace {
|
|||
return unknownFound ? RESULT_UNKNOWN : RESULT_DRAW;
|
||||
}
|
||||
|
||||
|
||||
Result classify_btm(const KPKPosition& pos, const Result bb[]) {
|
||||
Result KPKPosition::classify_black(const Result db[]) {
|
||||
|
||||
// If one move leads to a position classified as RESULT_DRAW, the result
|
||||
// of the current position is RESULT_DRAW. If all moves lead to positions
|
||||
// classified as RESULT_WIN, the current position is classified as
|
||||
// RESULT_LOSS. Otherwise, the current position is classified as
|
||||
// RESULT_UNKNOWN.
|
||||
// classified as RESULT_WIN, the position is classified as RESULT_WIN.
|
||||
// Otherwise, the current position is classified as RESULT_UNKNOWN.
|
||||
|
||||
bool unknownFound = false;
|
||||
Bitboard b;
|
||||
|
@ -266,11 +253,11 @@ namespace {
|
|||
Result r;
|
||||
|
||||
// King moves
|
||||
b = pos.bk_attacks();
|
||||
b = bk_attacks();
|
||||
while (b)
|
||||
{
|
||||
s = pop_1st_bit(&b);
|
||||
r = bb[compute_index(pos.whiteKingSquare, s, pos.pawnSquare, WHITE)];
|
||||
r = db[compute_index(whiteKingSquare, s, pawnSquare, WHITE)];
|
||||
|
||||
if (r == RESULT_DRAW)
|
||||
return RESULT_DRAW;
|
||||
|
@ -278,7 +265,7 @@ namespace {
|
|||
if (r == RESULT_UNKNOWN)
|
||||
unknownFound = true;
|
||||
}
|
||||
return unknownFound ? RESULT_UNKNOWN : RESULT_LOSS;
|
||||
return unknownFound ? RESULT_UNKNOWN : RESULT_WIN;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -17,159 +17,27 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
|
||||
#include "bitboard.h"
|
||||
#include "bitcount.h"
|
||||
#include "rkiss.h"
|
||||
|
||||
#if defined(IS_64BIT)
|
||||
Bitboard RMasks[64];
|
||||
Bitboard RMagics[64];
|
||||
Bitboard* RAttacks[64];
|
||||
int RShifts[64];
|
||||
|
||||
const uint64_t BMult[64] = {
|
||||
0x0440049104032280ULL, 0x1021023C82008040ULL, 0x0404040082000048ULL,
|
||||
0x48C4440084048090ULL, 0x2801104026490000ULL, 0x4100880442040800ULL,
|
||||
0x0181011002E06040ULL, 0x9101004104200E00ULL, 0x1240848848310401ULL,
|
||||
0x2000142828050024ULL, 0x00001004024D5000ULL, 0x0102044400800200ULL,
|
||||
0x8108108820112000ULL, 0xA880818210C00046ULL, 0x4008008801082000ULL,
|
||||
0x0060882404049400ULL, 0x0104402004240810ULL, 0x000A002084250200ULL,
|
||||
0x00100B0880801100ULL, 0x0004080201220101ULL, 0x0044008080A00000ULL,
|
||||
0x0000202200842000ULL, 0x5006004882D00808ULL, 0x0000200045080802ULL,
|
||||
0x0086100020200601ULL, 0xA802080A20112C02ULL, 0x0080411218080900ULL,
|
||||
0x000200A0880080A0ULL, 0x9A01010000104000ULL, 0x0028008003100080ULL,
|
||||
0x0211021004480417ULL, 0x0401004188220806ULL, 0x00825051400C2006ULL,
|
||||
0x00140C0210943000ULL, 0x0000242800300080ULL, 0x00C2208120080200ULL,
|
||||
0x2430008200002200ULL, 0x1010100112008040ULL, 0x8141050100020842ULL,
|
||||
0x0000822081014405ULL, 0x800C049E40400804ULL, 0x4A0404028A000820ULL,
|
||||
0x0022060201041200ULL, 0x0360904200840801ULL, 0x0881A08208800400ULL,
|
||||
0x0060202C00400420ULL, 0x1204440086061400ULL, 0x0008184042804040ULL,
|
||||
0x0064040315300400ULL, 0x0C01008801090A00ULL, 0x0808010401140C00ULL,
|
||||
0x04004830C2020040ULL, 0x0080005002020054ULL, 0x40000C14481A0490ULL,
|
||||
0x0010500101042048ULL, 0x1010100200424000ULL, 0x0000640901901040ULL,
|
||||
0x00000A0201014840ULL, 0x00840082AA011002ULL, 0x010010840084240AULL,
|
||||
0x0420400810420608ULL, 0x8D40230408102100ULL, 0x4A00200612222409ULL,
|
||||
0x0A08520292120600ULL
|
||||
};
|
||||
|
||||
const uint64_t RMult[64] = {
|
||||
0x0A8002C000108020ULL, 0x4440200140003000ULL, 0x8080200010011880ULL,
|
||||
0x0380180080141000ULL, 0x1A00060008211044ULL, 0x410001000A0C0008ULL,
|
||||
0x9500060004008100ULL, 0x0100024284A20700ULL, 0x0000802140008000ULL,
|
||||
0x0080C01002A00840ULL, 0x0402004282011020ULL, 0x9862000820420050ULL,
|
||||
0x0001001448011100ULL, 0x6432800200800400ULL, 0x040100010002000CULL,
|
||||
0x0002800D0010C080ULL, 0x90C0008000803042ULL, 0x4010004000200041ULL,
|
||||
0x0003010010200040ULL, 0x0A40828028001000ULL, 0x0123010008000430ULL,
|
||||
0x0024008004020080ULL, 0x0060040001104802ULL, 0x00582200028400D1ULL,
|
||||
0x4000802080044000ULL, 0x0408208200420308ULL, 0x0610038080102000ULL,
|
||||
0x3601000900100020ULL, 0x0000080080040180ULL, 0x00C2020080040080ULL,
|
||||
0x0080084400100102ULL, 0x4022408200014401ULL, 0x0040052040800082ULL,
|
||||
0x0B08200280804000ULL, 0x008A80A008801000ULL, 0x4000480080801000ULL,
|
||||
0x0911808800801401ULL, 0x822A003002001894ULL, 0x401068091400108AULL,
|
||||
0x000004A10A00004CULL, 0x2000800640008024ULL, 0x1486408102020020ULL,
|
||||
0x000100A000D50041ULL, 0x00810050020B0020ULL, 0x0204000800808004ULL,
|
||||
0x00020048100A000CULL, 0x0112000831020004ULL, 0x0009000040810002ULL,
|
||||
0x0440490200208200ULL, 0x8910401000200040ULL, 0x6404200050008480ULL,
|
||||
0x4B824A2010010100ULL, 0x04080801810C0080ULL, 0x00000400802A0080ULL,
|
||||
0x8224080110026400ULL, 0x40002C4104088200ULL, 0x01002100104A0282ULL,
|
||||
0x1208400811048021ULL, 0x3201014A40D02001ULL, 0x0005100019200501ULL,
|
||||
0x0101000208001005ULL, 0x0002008450080702ULL, 0x001002080301D00CULL,
|
||||
0x410201CE5C030092ULL
|
||||
};
|
||||
|
||||
const int BShift[64] = {
|
||||
58, 59, 59, 59, 59, 59, 59, 58, 59, 59, 59, 59, 59, 59, 59, 59,
|
||||
59, 59, 57, 57, 57, 57, 59, 59, 59, 59, 57, 55, 55, 57, 59, 59,
|
||||
59, 59, 57, 55, 55, 57, 59, 59, 59, 59, 57, 57, 57, 57, 59, 59,
|
||||
59, 59, 59, 59, 59, 59, 59, 59, 58, 59, 59, 59, 59, 59, 59, 58
|
||||
};
|
||||
|
||||
const int RShift[64] = {
|
||||
52, 53, 53, 53, 53, 53, 53, 52, 53, 54, 54, 54, 54, 54, 54, 53,
|
||||
53, 54, 54, 54, 54, 54, 54, 53, 53, 54, 54, 54, 54, 54, 54, 53,
|
||||
53, 54, 54, 54, 54, 54, 54, 53, 53, 54, 54, 54, 54, 54, 54, 53,
|
||||
53, 54, 54, 54, 54, 54, 54, 53, 52, 53, 53, 53, 53, 53, 53, 52
|
||||
};
|
||||
|
||||
#else // if !defined(IS_64BIT)
|
||||
|
||||
const uint64_t BMult[64] = {
|
||||
0x54142844C6A22981ULL, 0x710358A6EA25C19EULL, 0x704F746D63A4A8DCULL,
|
||||
0xBFED1A0B80F838C5ULL, 0x90561D5631E62110ULL, 0x2804260376E60944ULL,
|
||||
0x84A656409AA76871ULL, 0xF0267F64C28B6197ULL, 0x70764EBB762F0585ULL,
|
||||
0x92AA09E0CFE161DEULL, 0x41EE1F6BB266F60EULL, 0xDDCBF04F6039C444ULL,
|
||||
0x5A3FAB7BAC0D988AULL, 0xD3727877FA4EAA03ULL, 0xD988402D868DDAAEULL,
|
||||
0x812B291AFA075C7CULL, 0x94FAF987B685A932ULL, 0x3ED867D8470D08DBULL,
|
||||
0x92517660B8901DE8ULL, 0x2D97E43E058814B4ULL, 0x880A10C220B25582ULL,
|
||||
0xC7C6520D1F1A0477ULL, 0xDBFC7FBCD7656AA6ULL, 0x78B1B9BFB1A2B84FULL,
|
||||
0x2F20037F112A0BC1ULL, 0x657171EA2269A916ULL, 0xC08302B07142210EULL,
|
||||
0x0880A4403064080BULL, 0x3602420842208C00ULL, 0x852800DC7E0B6602ULL,
|
||||
0x595A3FBBAA0F03B2ULL, 0x9F01411558159D5EULL, 0x2B4A4A5F88B394F2ULL,
|
||||
0x4AFCBFFC292DD03AULL, 0x4A4094A3B3F10522ULL, 0xB06F00B491F30048ULL,
|
||||
0xD5B3820280D77004ULL, 0x8B2E01E7C8E57A75ULL, 0x2D342794E886C2E6ULL,
|
||||
0xC302C410CDE21461ULL, 0x111F426F1379C274ULL, 0xE0569220ABB31588ULL,
|
||||
0x5026D3064D453324ULL, 0xE2076040C343CD8AULL, 0x93EFD1E1738021EEULL,
|
||||
0xB680804BED143132ULL, 0x44E361B21986944CULL, 0x44C60170EF5C598CULL,
|
||||
0xF4DA475C195C9C94ULL, 0xA3AFBB5F72060B1DULL, 0xBC75F410E41C4FFCULL,
|
||||
0xB51C099390520922ULL, 0x902C011F8F8EC368ULL, 0x950B56B3D6F5490AULL,
|
||||
0x3909E0635BF202D0ULL, 0x5744F90206EC10CCULL, 0xDC59FD76317ABBC1ULL,
|
||||
0x881C7C67FCBFC4F6ULL, 0x47CA41E7E440D423ULL, 0xEB0C88112048D004ULL,
|
||||
0x51C60E04359AEF1AULL, 0x1AA1FE0E957A5554ULL, 0xDD9448DB4F5E3104ULL,
|
||||
0xDC01F6DCA4BEBBDCULL,
|
||||
};
|
||||
|
||||
const uint64_t RMult[64] = {
|
||||
0xD7445CDEC88002C0ULL, 0xD0A505C1F2001722ULL, 0xE065D1C896002182ULL,
|
||||
0x9A8C41E75A000892ULL, 0x8900B10C89002AA8ULL, 0x9B28D1C1D60005A2ULL,
|
||||
0x015D6C88DE002D9AULL, 0xB1DBFC802E8016A9ULL, 0x149A1042D9D60029ULL,
|
||||
0xB9C08050599E002FULL, 0x132208C3AF300403ULL, 0xC1000CE2E9C50070ULL,
|
||||
0x9D9AA13C99020012ULL, 0xB6B078DAF71E0046ULL, 0x9D880182FB6E002EULL,
|
||||
0x52889F467E850037ULL, 0xDA6DC008D19A8480ULL, 0x468286034F902420ULL,
|
||||
0x7140AC09DC54C020ULL, 0xD76FFFFA39548808ULL, 0xEA901C4141500808ULL,
|
||||
0xC91004093F953A02ULL, 0x02882AFA8F6BB402ULL, 0xAEBE335692442C01ULL,
|
||||
0x0E904A22079FB91EULL, 0x13A514851055F606ULL, 0x76C782018C8FE632ULL,
|
||||
0x1DC012A9D116DA06ULL, 0x3C9E0037264FFFA6ULL, 0x2036002853C6E4A2ULL,
|
||||
0xE3FE08500AFB47D4ULL, 0xF38AF25C86B025C2ULL, 0xC0800E2182CF9A40ULL,
|
||||
0x72002480D1F60673ULL, 0x2500200BAE6E9B53ULL, 0xC60018C1EEFCA252ULL,
|
||||
0x0600590473E3608AULL, 0x46002C4AB3FE51B2ULL, 0xA200011486BCC8D2ULL,
|
||||
0xB680078095784C63ULL, 0x2742002639BF11AEULL, 0xC7D60021A5BDB142ULL,
|
||||
0xC8C04016BB83D820ULL, 0xBD520028123B4842ULL, 0x9D1600344AC2A832ULL,
|
||||
0x6A808005631C8A05ULL, 0x604600A148D5389AULL, 0xE2E40103D40DEA65ULL,
|
||||
0x945B5A0087C62A81ULL, 0x012DC200CD82D28EULL, 0x2431C600B5F9EF76ULL,
|
||||
0xFB142A006A9B314AULL, 0x06870E00A1C97D62ULL, 0x2A9DB2004A2689A2ULL,
|
||||
0xD3594600CAF5D1A2ULL, 0xEE0E4900439344A7ULL, 0x89C4D266CA25007AULL,
|
||||
0x3E0013A2743F97E3ULL, 0x0180E31A0431378AULL, 0x3A9E465A4D42A512ULL,
|
||||
0x98D0A11A0C0D9CC2ULL, 0x8E711C1ABA19B01EULL, 0x8DCDC836DD201142ULL,
|
||||
0x5AC08A4735370479ULL,
|
||||
};
|
||||
|
||||
const int BShift[64] = {
|
||||
26, 27, 27, 27, 27, 27, 27, 26, 27, 27, 27, 27, 27, 27, 27, 27,
|
||||
27, 27, 25, 25, 25, 25, 27, 27, 27, 27, 25, 23, 23, 25, 27, 27,
|
||||
27, 27, 25, 23, 23, 25, 27, 27, 27, 27, 25, 25, 25, 25, 27, 27,
|
||||
27, 27, 27, 27, 27, 27, 27, 27, 26, 27, 27, 27, 27, 27, 27, 26
|
||||
};
|
||||
|
||||
const int RShift[64] = {
|
||||
20, 21, 21, 21, 21, 21, 21, 20, 21, 22, 22, 22, 22, 22, 22, 21,
|
||||
21, 22, 22, 22, 22, 22, 22, 21, 21, 22, 22, 22, 22, 22, 22, 21,
|
||||
21, 22, 22, 22, 22, 22, 22, 21, 21, 22, 22, 22, 22, 22, 22, 21,
|
||||
21, 22, 22, 22, 22, 22, 22, 21, 20, 21, 21, 21, 21, 21, 21, 20
|
||||
};
|
||||
|
||||
#endif // defined(IS_64BIT)
|
||||
|
||||
// Global bitboards definitions with static storage duration are
|
||||
// automatically set to zero before enter main().
|
||||
Bitboard RMask[64];
|
||||
int RAttackIndex[64];
|
||||
Bitboard RAttacks[0x19000];
|
||||
|
||||
Bitboard BMask[64];
|
||||
int BAttackIndex[64];
|
||||
Bitboard BAttacks[0x1480];
|
||||
Bitboard BMasks[64];
|
||||
Bitboard BMagics[64];
|
||||
Bitboard* BAttacks[64];
|
||||
int BShifts[64];
|
||||
|
||||
Bitboard SetMaskBB[65];
|
||||
Bitboard ClearMaskBB[65];
|
||||
|
||||
Bitboard SquaresByColorBB[2];
|
||||
Bitboard FileBB[8];
|
||||
Bitboard RankBB[8];
|
||||
Bitboard NeighboringFilesBB[8];
|
||||
|
@ -186,19 +54,18 @@ Bitboard RookPseudoAttacks[64];
|
|||
Bitboard QueenPseudoAttacks[64];
|
||||
|
||||
uint8_t BitCount8Bit[256];
|
||||
|
||||
int SquareDistance[64][64];
|
||||
|
||||
namespace {
|
||||
|
||||
void init_masks();
|
||||
void init_step_attacks();
|
||||
void init_pseudo_attacks();
|
||||
void init_between_bitboards();
|
||||
Bitboard index_to_bitboard(int index, Bitboard mask);
|
||||
Bitboard sliding_attacks(int sq, Bitboard occupied, int deltas[][2],
|
||||
int fmin, int fmax, int rmin, int rmax);
|
||||
void init_sliding_attacks(Bitboard attacks[], int attackIndex[], Bitboard mask[],
|
||||
const int shift[], const Bitboard mult[], int deltas[][2]);
|
||||
CACHE_LINE_ALIGNMENT
|
||||
|
||||
int BSFTable[64];
|
||||
Bitboard RookTable[0x19000]; // Storage space for rook attacks
|
||||
Bitboard BishopTable[0x1480]; // Storage space for bishop attacks
|
||||
|
||||
void init_magic_bitboards(PieceType pt, Bitboard* attacks[], Bitboard magics[],
|
||||
Bitboard masks[], int shifts[]);
|
||||
}
|
||||
|
||||
|
||||
|
@ -211,7 +78,7 @@ void print_bitboard(Bitboard b) {
|
|||
{
|
||||
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
|
||||
for (File f = FILE_A; f <= FILE_H; f++)
|
||||
std::cout << "| " << (bit_is_set(b, make_square(f, r)) ? 'X' : ' ') << ' ';
|
||||
std::cout << "| " << (bit_is_set(b, make_square(f, r)) ? "X " : " ");
|
||||
|
||||
std::cout << "|\n";
|
||||
}
|
||||
|
@ -225,39 +92,22 @@ void print_bitboard(Bitboard b) {
|
|||
|
||||
#if defined(IS_64BIT) && !defined(USE_BSFQ)
|
||||
|
||||
static CACHE_LINE_ALIGNMENT
|
||||
const int BitTable[64] = {
|
||||
0, 1, 2, 7, 3, 13, 8, 19, 4, 25, 14, 28, 9, 34, 20, 40, 5, 17, 26,
|
||||
38, 15, 46, 29, 48, 10, 31, 35, 54, 21, 50, 41, 57, 63, 6, 12, 18, 24, 27,
|
||||
33, 39, 16, 37, 45, 47, 30, 53, 49, 56, 62, 11, 23, 32, 36, 44, 52, 55, 61,
|
||||
22, 43, 51, 60, 42, 59, 58
|
||||
};
|
||||
|
||||
Square first_1(Bitboard b) {
|
||||
return Square(BitTable[((b & -b) * 0x218a392cd3d5dbfULL) >> 58]);
|
||||
return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]);
|
||||
}
|
||||
|
||||
Square pop_1st_bit(Bitboard* b) {
|
||||
Bitboard bb = *b;
|
||||
*b &= (*b - 1);
|
||||
return Square(BitTable[((bb & -bb) * 0x218a392cd3d5dbfULL) >> 58]);
|
||||
return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]);
|
||||
}
|
||||
|
||||
#elif !defined(USE_BSFQ)
|
||||
|
||||
static CACHE_LINE_ALIGNMENT
|
||||
const int BitTable[64] = {
|
||||
63, 30, 3, 32, 25, 41, 22, 33, 15, 50, 42, 13, 11, 53, 19, 34, 61, 29, 2,
|
||||
51, 21, 43, 45, 10, 18, 47, 1, 54, 9, 57, 0, 35, 62, 31, 40, 4, 49, 5,
|
||||
52, 26, 60, 6, 23, 44, 46, 27, 56, 16, 7, 39, 48, 24, 59, 14, 12, 55, 38,
|
||||
28, 58, 20, 37, 17, 36, 8
|
||||
};
|
||||
|
||||
Square first_1(Bitboard b) {
|
||||
|
||||
b ^= (b - 1);
|
||||
uint32_t fold = int(b) ^ int(b >> 32);
|
||||
return Square(BitTable[(fold * 0x783a9b23) >> 26]);
|
||||
uint32_t fold = unsigned(b) ^ unsigned(b >> 32);
|
||||
return Square(BSFTable[(fold * 0x783A9B23) >> 26]);
|
||||
}
|
||||
|
||||
// Use type-punning
|
||||
|
@ -284,12 +134,12 @@ Square pop_1st_bit(Bitboard* bb) {
|
|||
|
||||
if (u.dw.l)
|
||||
{
|
||||
ret = Square(BitTable[((u.dw.l ^ (u.dw.l - 1)) * 0x783a9b23) >> 26]);
|
||||
ret = Square(BSFTable[((u.dw.l ^ (u.dw.l - 1)) * 0x783A9B23) >> 26]);
|
||||
u.dw.l &= (u.dw.l - 1);
|
||||
*bb = u.b;
|
||||
return ret;
|
||||
}
|
||||
ret = Square(BitTable[((~(u.dw.h ^ (u.dw.h - 1))) * 0x783a9b23) >> 26]);
|
||||
ret = Square(BSFTable[((~(u.dw.h ^ (u.dw.h - 1))) * 0x783A9B23) >> 26]);
|
||||
u.dw.h &= (u.dw.h - 1);
|
||||
*bb = u.b;
|
||||
return ret;
|
||||
|
@ -298,189 +148,219 @@ Square pop_1st_bit(Bitboard* bb) {
|
|||
#endif // !defined(USE_BSFQ)
|
||||
|
||||
|
||||
/// init_bitboards() initializes various bitboard arrays. It is called during
|
||||
/// bitboards_init() initializes various bitboard arrays. It is called during
|
||||
/// program initialization.
|
||||
|
||||
void init_bitboards() {
|
||||
void bitboards_init() {
|
||||
|
||||
int rookDeltas[4][2] = {{0,1},{0,-1},{1,0},{-1,0}};
|
||||
int bishopDeltas[4][2] = {{1,1},{-1,1},{1,-1},{-1,-1}};
|
||||
for (Bitboard b = 0; b < 256; b++)
|
||||
BitCount8Bit[b] = (uint8_t)popcount<Max15>(b);
|
||||
|
||||
init_masks();
|
||||
init_step_attacks();
|
||||
init_sliding_attacks(RAttacks, RAttackIndex, RMask, RShift, RMult, rookDeltas);
|
||||
init_sliding_attacks(BAttacks, BAttackIndex, BMask, BShift, BMult, bishopDeltas);
|
||||
init_pseudo_attacks();
|
||||
init_between_bitboards();
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
{
|
||||
SetMaskBB[s] = 1ULL << s;
|
||||
ClearMaskBB[s] = ~SetMaskBB[s];
|
||||
}
|
||||
|
||||
ClearMaskBB[SQ_NONE] = ~0ULL;
|
||||
|
||||
FileBB[FILE_A] = FileABB;
|
||||
RankBB[RANK_1] = Rank1BB;
|
||||
|
||||
for (int f = FILE_B; f <= FILE_H; f++)
|
||||
{
|
||||
FileBB[f] = FileBB[f - 1] << 1;
|
||||
RankBB[f] = RankBB[f - 1] << 8;
|
||||
}
|
||||
|
||||
for (int f = FILE_A; f <= FILE_H; f++)
|
||||
{
|
||||
NeighboringFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
|
||||
ThisAndNeighboringFilesBB[f] = FileBB[f] | NeighboringFilesBB[f];
|
||||
}
|
||||
|
||||
for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++)
|
||||
{
|
||||
InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1];
|
||||
InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1];
|
||||
}
|
||||
|
||||
for (Color c = WHITE; c <= BLACK; c++)
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
{
|
||||
SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s);
|
||||
PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(file_of(s));
|
||||
AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(file_of(s));
|
||||
}
|
||||
|
||||
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
|
||||
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
|
||||
SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2));
|
||||
|
||||
for (int i = 0; i < 64; i++)
|
||||
if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems
|
||||
{
|
||||
Bitboard b = 1ULL << i;
|
||||
b ^= b - 1;
|
||||
b ^= b >> 32;
|
||||
BSFTable[uint32_t(b * 0x783A9B23) >> 26] = i;
|
||||
}
|
||||
else
|
||||
BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i;
|
||||
|
||||
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
|
||||
{}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
|
||||
|
||||
for (Color c = WHITE; c <= BLACK; c++)
|
||||
for (PieceType pt = PAWN; pt <= KING; pt++)
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
for (int k = 0; steps[pt][k]; k++)
|
||||
{
|
||||
Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]);
|
||||
|
||||
if (square_is_ok(to) && square_distance(s, to) < 3)
|
||||
set_bit(&StepAttacksBB[make_piece(c, pt)][s], to);
|
||||
}
|
||||
|
||||
init_magic_bitboards(ROOK, RAttacks, RMagics, RMasks, RShifts);
|
||||
init_magic_bitboards(BISHOP, BAttacks, BMagics, BMasks, BShifts);
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
{
|
||||
BishopPseudoAttacks[s] = bishop_attacks_bb(s, 0);
|
||||
RookPseudoAttacks[s] = rook_attacks_bb(s, 0);
|
||||
QueenPseudoAttacks[s] = queen_attacks_bb(s, 0);
|
||||
}
|
||||
|
||||
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
|
||||
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
|
||||
if (bit_is_set(QueenPseudoAttacks[s1], s2))
|
||||
{
|
||||
Square delta = (s2 - s1) / square_distance(s1, s2);
|
||||
|
||||
for (Square s = s1 + delta; s != s2; s += delta)
|
||||
set_bit(&BetweenBB[s1][s2], s);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
namespace {
|
||||
|
||||
// All functions below are used to precompute various bitboards during
|
||||
// program initialization. Some of the functions may be difficult to
|
||||
// understand, but they all seem to work correctly, and it should never
|
||||
// be necessary to touch any of them.
|
||||
Bitboard sliding_attacks(PieceType pt, Square sq, Bitboard occupied) {
|
||||
|
||||
void init_masks() {
|
||||
|
||||
SquaresByColorBB[DARK] = 0xAA55AA55AA55AA55ULL;
|
||||
SquaresByColorBB[LIGHT] = ~SquaresByColorBB[DARK];
|
||||
|
||||
FileBB[FILE_A] = FileABB;
|
||||
RankBB[RANK_1] = Rank1BB;
|
||||
|
||||
for (int f = FILE_B; f <= FILE_H; f++)
|
||||
{
|
||||
FileBB[f] = FileBB[f - 1] << 1;
|
||||
RankBB[f] = RankBB[f - 1] << 8;
|
||||
}
|
||||
|
||||
for (int f = FILE_A; f <= FILE_H; f++)
|
||||
{
|
||||
NeighboringFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
|
||||
ThisAndNeighboringFilesBB[f] = FileBB[f] | NeighboringFilesBB[f];
|
||||
}
|
||||
|
||||
for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++)
|
||||
{
|
||||
InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1];
|
||||
InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1];
|
||||
}
|
||||
|
||||
SetMaskBB[SQ_NONE] = EmptyBoardBB;
|
||||
ClearMaskBB[SQ_NONE] = ~SetMaskBB[SQ_NONE];
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
{
|
||||
SetMaskBB[s] = (1ULL << s);
|
||||
ClearMaskBB[s] = ~SetMaskBB[s];
|
||||
}
|
||||
|
||||
for (Color c = WHITE; c <= BLACK; c++)
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
{
|
||||
SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s);
|
||||
PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s);
|
||||
AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s);
|
||||
}
|
||||
|
||||
for (Bitboard b = 0; b < 256; b++)
|
||||
BitCount8Bit[b] = (uint8_t)count_1s<CNT32>(b);
|
||||
}
|
||||
|
||||
void init_step_attacks() {
|
||||
|
||||
const int step[][9] = {
|
||||
{0},
|
||||
{7,9,0}, {17,15,10,6,-6,-10,-15,-17,0}, {0}, {0}, {0},
|
||||
{9,7,-7,-9,8,1,-1,-8,0}, {0}, {0},
|
||||
{-7,-9,0}, {17,15,10,6,-6,-10,-15,-17,0}, {0}, {0}, {0},
|
||||
{9,7,-7,-9,8,1,-1,-8,0}
|
||||
};
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
for (Piece pc = WP; pc <= BK; pc++)
|
||||
for (int k = 0; step[pc][k] != 0; k++)
|
||||
{
|
||||
Square to = s + Square(step[pc][k]);
|
||||
|
||||
if (square_is_ok(to) && square_distance(s, to) < 3)
|
||||
set_bit(&StepAttacksBB[pc][s], to);
|
||||
}
|
||||
}
|
||||
|
||||
Bitboard sliding_attacks(int sq, Bitboard occupied, int deltas[][2],
|
||||
int fmin, int fmax, int rmin, int rmax) {
|
||||
int dx, dy, f, r;
|
||||
int rk = sq / 8;
|
||||
int fl = sq % 8;
|
||||
Bitboard attacks = EmptyBoardBB;
|
||||
Square deltas[][4] = { { DELTA_N, DELTA_E, DELTA_S, DELTA_W },
|
||||
{ DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW } };
|
||||
Bitboard attacks = 0;
|
||||
Square* delta = (pt == ROOK ? deltas[0] : deltas[1]);
|
||||
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
dx = deltas[i][0];
|
||||
dy = deltas[i][1];
|
||||
f = fl + dx;
|
||||
r = rk + dy;
|
||||
Square s = sq + delta[i];
|
||||
|
||||
while ( (dx == 0 || (f >= fmin && f <= fmax))
|
||||
&& (dy == 0 || (r >= rmin && r <= rmax)))
|
||||
while (square_is_ok(s) && square_distance(s, s - delta[i]) == 1)
|
||||
{
|
||||
attacks |= (1ULL << (f + r * 8));
|
||||
set_bit(&attacks, s);
|
||||
|
||||
if (occupied & (1ULL << (f + r * 8)))
|
||||
if (bit_is_set(occupied, s))
|
||||
break;
|
||||
|
||||
f += dx;
|
||||
r += dy;
|
||||
s += delta[i];
|
||||
}
|
||||
}
|
||||
return attacks;
|
||||
}
|
||||
|
||||
Bitboard index_to_bitboard(int index, Bitboard mask) {
|
||||
|
||||
Bitboard result = EmptyBoardBB;
|
||||
int sq, cnt = 0;
|
||||
Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) {
|
||||
|
||||
while (mask)
|
||||
Bitboard magic;
|
||||
|
||||
// Values s1 and s2 are used to rotate the candidate magic of a
|
||||
// quantity known to be the optimal to quickly find the magics.
|
||||
int s1 = booster & 63, s2 = (booster >> 6) & 63;
|
||||
|
||||
while (true)
|
||||
{
|
||||
sq = pop_1st_bit(&mask);
|
||||
magic = rk.rand<Bitboard>();
|
||||
magic = (magic >> s1) | (magic << (64 - s1));
|
||||
magic &= rk.rand<Bitboard>();
|
||||
magic = (magic >> s2) | (magic << (64 - s2));
|
||||
magic &= rk.rand<Bitboard>();
|
||||
|
||||
if (index & (1 << cnt++))
|
||||
result |= (1ULL << sq);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void init_sliding_attacks(Bitboard attacks[], int attackIndex[], Bitboard mask[],
|
||||
const int shift[], const Bitboard mult[], int deltas[][2]) {
|
||||
Bitboard b, v;
|
||||
int i, j, index;
|
||||
|
||||
for (i = index = 0; i < 64; i++)
|
||||
{
|
||||
attackIndex[i] = index;
|
||||
mask[i] = sliding_attacks(i, 0, deltas, 1, 6, 1, 6);
|
||||
j = 1 << ((CpuIs64Bit ? 64 : 32) - shift[i]);
|
||||
|
||||
for (int k = 0; k < j; k++)
|
||||
{
|
||||
b = index_to_bitboard(k, mask[i]);
|
||||
v = CpuIs64Bit ? b * mult[i] : unsigned(b * mult[i] ^ (b >> 32) * (mult[i] >> 32));
|
||||
attacks[index + (v >> shift[i])] = sliding_attacks(i, b, deltas, 0, 7, 0, 7);
|
||||
}
|
||||
index += j;
|
||||
if (BitCount8Bit[(mask * magic) >> 56] >= 6)
|
||||
return magic;
|
||||
}
|
||||
}
|
||||
|
||||
void init_pseudo_attacks() {
|
||||
|
||||
// init_magic_bitboards() computes all rook and bishop magics at startup.
|
||||
// Magic bitboards are used to look up attacks of sliding pieces. As reference
|
||||
// see chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
|
||||
// use the so called "fancy" approach.
|
||||
|
||||
void init_magic_bitboards(PieceType pt, Bitboard* attacks[], Bitboard magics[],
|
||||
Bitboard masks[], int shifts[]) {
|
||||
|
||||
int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 },
|
||||
{ 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } };
|
||||
RKISS rk;
|
||||
Bitboard occupancy[4096], reference[4096], edges, b;
|
||||
int i, size, index, booster;
|
||||
|
||||
// attacks[s] is a pointer to the beginning of the attacks table for square 's'
|
||||
attacks[SQ_A1] = (pt == ROOK ? RookTable : BishopTable);
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
{
|
||||
BishopPseudoAttacks[s] = bishop_attacks_bb(s, EmptyBoardBB);
|
||||
RookPseudoAttacks[s] = rook_attacks_bb(s, EmptyBoardBB);
|
||||
QueenPseudoAttacks[s] = queen_attacks_bb(s, EmptyBoardBB);
|
||||
// Board edges are not considered in the relevant occupancies
|
||||
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
|
||||
|
||||
// Given a square 's', the mask is the bitboard of sliding attacks from
|
||||
// 's' computed on an empty board. The index must be big enough to contain
|
||||
// all the attacks for each possible subset of the mask and so is 2 power
|
||||
// the number of 1s of the mask. Hence we deduce the size of the shift to
|
||||
// apply to the 64 or 32 bits word to get the index.
|
||||
masks[s] = sliding_attacks(pt, s, 0) & ~edges;
|
||||
shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
|
||||
|
||||
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
|
||||
// store the corresponding sliding attacks bitboard in reference[].
|
||||
b = size = 0;
|
||||
do {
|
||||
occupancy[size] = b;
|
||||
reference[size++] = sliding_attacks(pt, s, b);
|
||||
b = (b - masks[s]) & masks[s];
|
||||
} while (b);
|
||||
|
||||
// Set the offset for the table of the next square. We have individual
|
||||
// table sizes for each square with "Fancy Magic Bitboards".
|
||||
if (s < SQ_H8)
|
||||
attacks[s + 1] = attacks[s] + size;
|
||||
|
||||
booster = MagicBoosters[Is64Bit][rank_of(s)];
|
||||
|
||||
// Find a magic for square 's' picking up an (almost) random number
|
||||
// until we find the one that passes the verification test.
|
||||
do {
|
||||
magics[s] = pick_random(masks[s], rk, booster);
|
||||
memset(attacks[s], 0, size * sizeof(Bitboard));
|
||||
|
||||
// A good magic must map every possible occupancy to an index that
|
||||
// looks up the correct sliding attack in the attacks[s] database.
|
||||
// Note that we build up the database for square 's' as a side
|
||||
// effect of verifying the magic.
|
||||
for (i = 0; i < size; i++)
|
||||
{
|
||||
index = (pt == ROOK ? rook_index(s, occupancy[i])
|
||||
: bishop_index(s, occupancy[i]));
|
||||
|
||||
if (!attacks[s][index])
|
||||
attacks[s][index] = reference[i];
|
||||
|
||||
else if (attacks[s][index] != reference[i])
|
||||
break;
|
||||
}
|
||||
} while (i != size);
|
||||
}
|
||||
}
|
||||
|
||||
void init_between_bitboards() {
|
||||
|
||||
Square s1, s2, s3, d;
|
||||
int f, r;
|
||||
|
||||
for (s1 = SQ_A1; s1 <= SQ_H8; s1++)
|
||||
for (s2 = SQ_A1; s2 <= SQ_H8; s2++)
|
||||
if (bit_is_set(QueenPseudoAttacks[s1], s2))
|
||||
{
|
||||
f = file_distance(s1, s2);
|
||||
r = rank_distance(s1, s2);
|
||||
|
||||
d = (s2 - s1) / Max(f, r);
|
||||
|
||||
for (s3 = s1 + d; s3 != s2; s3 += d)
|
||||
set_bit(&(BetweenBB[s1][s2]), s3);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -23,27 +23,6 @@
|
|||
|
||||
#include "types.h"
|
||||
|
||||
const Bitboard EmptyBoardBB = 0;
|
||||
|
||||
const Bitboard FileABB = 0x0101010101010101ULL;
|
||||
const Bitboard FileBBB = FileABB << 1;
|
||||
const Bitboard FileCBB = FileABB << 2;
|
||||
const Bitboard FileDBB = FileABB << 3;
|
||||
const Bitboard FileEBB = FileABB << 4;
|
||||
const Bitboard FileFBB = FileABB << 5;
|
||||
const Bitboard FileGBB = FileABB << 6;
|
||||
const Bitboard FileHBB = FileABB << 7;
|
||||
|
||||
const Bitboard Rank1BB = 0xFF;
|
||||
const Bitboard Rank2BB = Rank1BB << (8 * 1);
|
||||
const Bitboard Rank3BB = Rank1BB << (8 * 2);
|
||||
const Bitboard Rank4BB = Rank1BB << (8 * 3);
|
||||
const Bitboard Rank5BB = Rank1BB << (8 * 4);
|
||||
const Bitboard Rank6BB = Rank1BB << (8 * 5);
|
||||
const Bitboard Rank7BB = Rank1BB << (8 * 6);
|
||||
const Bitboard Rank8BB = Rank1BB << (8 * 7);
|
||||
|
||||
extern Bitboard SquaresByColorBB[2];
|
||||
extern Bitboard FileBB[8];
|
||||
extern Bitboard NeighboringFilesBB[8];
|
||||
extern Bitboard ThisAndNeighboringFilesBB[8];
|
||||
|
@ -60,17 +39,15 @@ extern Bitboard SquaresInFrontMask[2][64];
|
|||
extern Bitboard PassedPawnMask[2][64];
|
||||
extern Bitboard AttackSpanMask[2][64];
|
||||
|
||||
extern const uint64_t RMult[64];
|
||||
extern const int RShift[64];
|
||||
extern Bitboard RMask[64];
|
||||
extern int RAttackIndex[64];
|
||||
extern Bitboard RAttacks[0x19000];
|
||||
extern uint64_t RMagics[64];
|
||||
extern int RShifts[64];
|
||||
extern Bitboard RMasks[64];
|
||||
extern Bitboard* RAttacks[64];
|
||||
|
||||
extern const uint64_t BMult[64];
|
||||
extern const int BShift[64];
|
||||
extern Bitboard BMask[64];
|
||||
extern int BAttackIndex[64];
|
||||
extern Bitboard BAttacks[0x1480];
|
||||
extern uint64_t BMagics[64];
|
||||
extern int BShifts[64];
|
||||
extern Bitboard BMasks[64];
|
||||
extern Bitboard* BAttacks[64];
|
||||
|
||||
extern Bitboard BishopPseudoAttacks[64];
|
||||
extern Bitboard RookPseudoAttacks[64];
|
||||
|
@ -86,11 +63,11 @@ inline Bitboard bit_is_set(Bitboard b, Square s) {
|
|||
return b & SetMaskBB[s];
|
||||
}
|
||||
|
||||
inline void set_bit(Bitboard *b, Square s) {
|
||||
inline void set_bit(Bitboard* b, Square s) {
|
||||
*b |= SetMaskBB[s];
|
||||
}
|
||||
|
||||
inline void clear_bit(Bitboard *b, Square s) {
|
||||
inline void clear_bit(Bitboard* b, Square s) {
|
||||
*b &= ClearMaskBB[s];
|
||||
}
|
||||
|
||||
|
@ -102,7 +79,7 @@ inline Bitboard make_move_bb(Square from, Square to) {
|
|||
return SetMaskBB[from] | SetMaskBB[to];
|
||||
}
|
||||
|
||||
inline void do_move_bb(Bitboard *b, Bitboard move_bb) {
|
||||
inline void do_move_bb(Bitboard* b, Bitboard move_bb) {
|
||||
*b ^= move_bb;
|
||||
}
|
||||
|
||||
|
@ -115,7 +92,7 @@ inline Bitboard rank_bb(Rank r) {
|
|||
}
|
||||
|
||||
inline Bitboard rank_bb(Square s) {
|
||||
return RankBB[square_rank(s)];
|
||||
return RankBB[rank_of(s)];
|
||||
}
|
||||
|
||||
inline Bitboard file_bb(File f) {
|
||||
|
@ -123,33 +100,25 @@ inline Bitboard file_bb(File f) {
|
|||
}
|
||||
|
||||
inline Bitboard file_bb(Square s) {
|
||||
return FileBB[square_file(s)];
|
||||
return FileBB[file_of(s)];
|
||||
}
|
||||
|
||||
|
||||
/// neighboring_files_bb takes a file or a square as input and returns a
|
||||
/// bitboard representing all squares on the neighboring files.
|
||||
/// neighboring_files_bb takes a file as input and returns a bitboard representing
|
||||
/// all squares on the neighboring files.
|
||||
|
||||
inline Bitboard neighboring_files_bb(File f) {
|
||||
return NeighboringFilesBB[f];
|
||||
}
|
||||
|
||||
inline Bitboard neighboring_files_bb(Square s) {
|
||||
return NeighboringFilesBB[square_file(s)];
|
||||
}
|
||||
|
||||
|
||||
/// this_and_neighboring_files_bb takes a file or a square as input and returns
|
||||
/// a bitboard representing all squares on the given and neighboring files.
|
||||
/// this_and_neighboring_files_bb takes a file as input and returns a bitboard
|
||||
/// representing all squares on the given and neighboring files.
|
||||
|
||||
inline Bitboard this_and_neighboring_files_bb(File f) {
|
||||
return ThisAndNeighboringFilesBB[f];
|
||||
}
|
||||
|
||||
inline Bitboard this_and_neighboring_files_bb(Square s) {
|
||||
return ThisAndNeighboringFilesBB[square_file(s)];
|
||||
}
|
||||
|
||||
|
||||
/// in_front_bb() takes a color and a rank or square as input, and returns a
|
||||
/// bitboard representing all the squares on all ranks in front of the rank
|
||||
|
@ -162,7 +131,7 @@ inline Bitboard in_front_bb(Color c, Rank r) {
|
|||
}
|
||||
|
||||
inline Bitboard in_front_bb(Color c, Square s) {
|
||||
return InFrontBB[c][square_rank(s)];
|
||||
return InFrontBB[c][rank_of(s)];
|
||||
}
|
||||
|
||||
|
||||
|
@ -173,32 +142,35 @@ inline Bitboard in_front_bb(Color c, Square s) {
|
|||
|
||||
#if defined(IS_64BIT)
|
||||
|
||||
inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) {
|
||||
Bitboard b = blockers & RMask[s];
|
||||
return RAttacks[RAttackIndex[s] + ((b * RMult[s]) >> RShift[s])];
|
||||
FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) {
|
||||
return unsigned(((occ & RMasks[s]) * RMagics[s]) >> RShifts[s]);
|
||||
}
|
||||
|
||||
inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) {
|
||||
Bitboard b = blockers & BMask[s];
|
||||
return BAttacks[BAttackIndex[s] + ((b * BMult[s]) >> BShift[s])];
|
||||
FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) {
|
||||
return unsigned(((occ & BMasks[s]) * BMagics[s]) >> BShifts[s]);
|
||||
}
|
||||
|
||||
#else // if !defined(IS_64BIT)
|
||||
|
||||
inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) {
|
||||
Bitboard b = blockers & RMask[s];
|
||||
return RAttacks[RAttackIndex[s] +
|
||||
(unsigned(int(b) * int(RMult[s]) ^ int(b >> 32) * int(RMult[s] >> 32)) >> RShift[s])];
|
||||
FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) {
|
||||
Bitboard b = occ & RMasks[s];
|
||||
return unsigned(int(b) * int(RMagics[s]) ^ int(b >> 32) * int(RMagics[s] >> 32)) >> RShifts[s];
|
||||
}
|
||||
|
||||
inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) {
|
||||
Bitboard b = blockers & BMask[s];
|
||||
return BAttacks[BAttackIndex[s] +
|
||||
(unsigned(int(b) * int(BMult[s]) ^ int(b >> 32) * int(BMult[s] >> 32)) >> BShift[s])];
|
||||
FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) {
|
||||
Bitboard b = occ & BMasks[s];
|
||||
return unsigned(int(b) * int(BMagics[s]) ^ int(b >> 32) * int(BMagics[s] >> 32)) >> BShifts[s];
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
inline Bitboard rook_attacks_bb(Square s, Bitboard occ) {
|
||||
return RAttacks[s][rook_index(s, occ)];
|
||||
}
|
||||
|
||||
inline Bitboard bishop_attacks_bb(Square s, Bitboard occ) {
|
||||
return BAttacks[s][bishop_index(s, occ)];
|
||||
}
|
||||
|
||||
inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) {
|
||||
return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers);
|
||||
}
|
||||
|
@ -249,7 +221,16 @@ inline Bitboard attack_span_mask(Color c, Square s) {
|
|||
|
||||
inline bool squares_aligned(Square s1, Square s2, Square s3) {
|
||||
return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3])
|
||||
& ((1ULL << s1) | (1ULL << s2) | (1ULL << s3));
|
||||
& ( SetMaskBB[s1] | SetMaskBB[s2] | SetMaskBB[s3]);
|
||||
}
|
||||
|
||||
|
||||
/// same_color_squares() returns a bitboard representing all squares with
|
||||
/// the same color of the given square.
|
||||
|
||||
inline Bitboard same_color_squares(Square s) {
|
||||
return bit_is_set(0xAA55AA55AA55AA55ULL, s) ? 0xAA55AA55AA55AA55ULL
|
||||
: ~0xAA55AA55AA55AA55ULL;
|
||||
}
|
||||
|
||||
|
||||
|
@ -290,6 +271,6 @@ extern Square pop_1st_bit(Bitboard* b);
|
|||
|
||||
|
||||
extern void print_bitboard(Bitboard b);
|
||||
extern void init_bitboards();
|
||||
extern void bitboards_init();
|
||||
|
||||
#endif // !defined(BITBOARD_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -21,25 +21,29 @@
|
|||
#if !defined(BITCOUNT_H_INCLUDED)
|
||||
#define BITCOUNT_H_INCLUDED
|
||||
|
||||
#include <cassert>
|
||||
#include "types.h"
|
||||
|
||||
enum BitCountType {
|
||||
CNT64,
|
||||
CNT64_MAX15,
|
||||
CNT32,
|
||||
CNT32_MAX15,
|
||||
CNT_POPCNT
|
||||
CNT_64,
|
||||
CNT_64_MAX15,
|
||||
CNT_32,
|
||||
CNT_32_MAX15,
|
||||
CNT_HW_POPCNT
|
||||
};
|
||||
|
||||
/// count_1s() counts the number of nonzero bits in a bitboard.
|
||||
/// We have different optimized versions according if platform
|
||||
/// is 32 or 64 bits, and to the maximum number of nonzero bits.
|
||||
/// We also support hardware popcnt instruction. See Readme.txt
|
||||
/// on how to pgo compile with popcnt support.
|
||||
template<BitCountType> inline int count_1s(Bitboard);
|
||||
/// Determine at compile time the best popcount<> specialization according if
|
||||
/// platform is 32 or 64 bits, to the maximum number of nonzero bits to count or
|
||||
/// use hardware popcnt instruction when available.
|
||||
const BitCountType Full = HasPopCnt ? CNT_HW_POPCNT : Is64Bit ? CNT_64 : CNT_32;
|
||||
const BitCountType Max15 = HasPopCnt ? CNT_HW_POPCNT : Is64Bit ? CNT_64_MAX15 : CNT_32_MAX15;
|
||||
|
||||
|
||||
/// popcount() counts the number of nonzero bits in a bitboard
|
||||
template<BitCountType> inline int popcount(Bitboard);
|
||||
|
||||
template<>
|
||||
inline int count_1s<CNT64>(Bitboard b) {
|
||||
inline int popcount<CNT_64>(Bitboard b) {
|
||||
b -= ((b>>1) & 0x5555555555555555ULL);
|
||||
b = ((b>>2) & 0x3333333333333333ULL) + (b & 0x3333333333333333ULL);
|
||||
b = ((b>>4) + b) & 0x0F0F0F0F0F0F0F0FULL;
|
||||
|
@ -48,7 +52,7 @@ inline int count_1s<CNT64>(Bitboard b) {
|
|||
}
|
||||
|
||||
template<>
|
||||
inline int count_1s<CNT64_MAX15>(Bitboard b) {
|
||||
inline int popcount<CNT_64_MAX15>(Bitboard b) {
|
||||
b -= (b>>1) & 0x5555555555555555ULL;
|
||||
b = ((b>>2) & 0x3333333333333333ULL) + (b & 0x3333333333333333ULL);
|
||||
b *= 0x1111111111111111ULL;
|
||||
|
@ -56,7 +60,7 @@ inline int count_1s<CNT64_MAX15>(Bitboard b) {
|
|||
}
|
||||
|
||||
template<>
|
||||
inline int count_1s<CNT32>(Bitboard b) {
|
||||
inline int popcount<CNT_32>(Bitboard b) {
|
||||
unsigned w = unsigned(b >> 32), v = unsigned(b);
|
||||
v -= (v >> 1) & 0x55555555; // 0-2 in 2 bits
|
||||
w -= (w >> 1) & 0x55555555;
|
||||
|
@ -69,7 +73,7 @@ inline int count_1s<CNT32>(Bitboard b) {
|
|||
}
|
||||
|
||||
template<>
|
||||
inline int count_1s<CNT32_MAX15>(Bitboard b) {
|
||||
inline int popcount<CNT_32_MAX15>(Bitboard b) {
|
||||
unsigned w = unsigned(b >> 32), v = unsigned(b);
|
||||
v -= (v >> 1) & 0x55555555; // 0-2 in 2 bits
|
||||
w -= (w >> 1) & 0x55555555;
|
||||
|
@ -81,17 +85,27 @@ inline int count_1s<CNT32_MAX15>(Bitboard b) {
|
|||
}
|
||||
|
||||
template<>
|
||||
inline int count_1s<CNT_POPCNT>(Bitboard b) {
|
||||
inline int popcount<CNT_HW_POPCNT>(Bitboard b) {
|
||||
|
||||
#if !defined(USE_POPCNT)
|
||||
|
||||
assert(false);
|
||||
return int(b != 0); // Avoid 'b not used' warning
|
||||
|
||||
#elif defined(_MSC_VER) && defined(__INTEL_COMPILER)
|
||||
|
||||
return _mm_popcnt_u64(b);
|
||||
|
||||
#elif defined(_MSC_VER)
|
||||
|
||||
return (int)__popcnt64(b);
|
||||
#elif defined(__GNUC__)
|
||||
|
||||
#else
|
||||
|
||||
unsigned long ret;
|
||||
__asm__("popcnt %1, %0" : "=r" (ret) : "r" (b));
|
||||
return ret;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -28,6 +28,7 @@
|
|||
#include <iostream>
|
||||
|
||||
#include "book.h"
|
||||
#include "misc.h"
|
||||
#include "movegen.h"
|
||||
|
||||
using namespace std;
|
||||
|
@ -35,7 +36,7 @@ using namespace std;
|
|||
namespace {
|
||||
|
||||
// Random numbers from PolyGlot, used to compute book hash keys
|
||||
const uint64_t Random64[781] = {
|
||||
const Key PolyGlotRandoms[781] = {
|
||||
0x9D39247E33776D41ULL, 0x2AF7398005AAA5C7ULL, 0x44DB015024623547ULL,
|
||||
0x9C15F73E62A76AE2ULL, 0x75834465489C0C89ULL, 0x3290AC3A203001BFULL,
|
||||
0x0FBBAD1F61042279ULL, 0xE83A908FF2FB60CAULL, 0x0D7E765D58755C10ULL,
|
||||
|
@ -299,57 +300,56 @@ namespace {
|
|||
0xF8D626AAAF278509ULL
|
||||
};
|
||||
|
||||
// Indices to the Random64[] array
|
||||
const int PieceIdx = 0;
|
||||
const int CastleIdx = 768;
|
||||
const int EnPassantIdx = 772;
|
||||
const int TurnIdx = 780;
|
||||
// Offsets to the PolyGlotRandoms[] array of zobrist keys
|
||||
const Key* ZobPiece = PolyGlotRandoms + 0;
|
||||
const Key* ZobCastle = PolyGlotRandoms + 768;
|
||||
const Key* ZobEnPassant = PolyGlotRandoms + 772;
|
||||
const Key* ZobTurn = PolyGlotRandoms + 780;
|
||||
|
||||
// Piece offset is calculated as 64 * (PolyPiece ^ 1) where
|
||||
// PolyPiece is: BP = 0, WP = 1, BN = 2, WN = 3 ... BK = 10, WK = 11
|
||||
const int PieceOfs[] = { 0, 64, 192, 320, 448, 576, 704, 0,
|
||||
0, 0, 128, 256, 384, 512, 640 };
|
||||
|
||||
// book_key() builds up a PolyGlot hash key out of a position
|
||||
uint64_t book_key(const Position& pos) {
|
||||
|
||||
// Piece offset is calculated as (64 * PolyPieceType + square), where
|
||||
// PolyPieceType is: BP = 0, WP = 1, BN = 2, WN = 3 .... BK = 10, WK = 11
|
||||
static const int PieceToPoly[] = { 0, 1, 3, 5, 7, 9, 11, 0, 0, 0, 2, 4, 6, 8, 10 };
|
||||
|
||||
uint64_t result = 0;
|
||||
Bitboard b = pos.occupied_squares();
|
||||
|
||||
while (b)
|
||||
{
|
||||
Square s = pop_1st_bit(&b);
|
||||
int p = PieceToPoly[int(pos.piece_on(s))];
|
||||
result ^= Random64[PieceIdx + 64 * p + int(s)];
|
||||
result ^= ZobPiece[PieceOfs[pos.piece_on(s)] + s];
|
||||
}
|
||||
|
||||
if (pos.can_castle_kingside(WHITE))
|
||||
result ^= Random64[CastleIdx + 0];
|
||||
if (pos.can_castle(WHITE_OO))
|
||||
result ^= ZobCastle[0];
|
||||
|
||||
if (pos.can_castle_queenside(WHITE))
|
||||
result ^= Random64[CastleIdx + 1];
|
||||
if (pos.can_castle(WHITE_OOO))
|
||||
result ^= ZobCastle[1];
|
||||
|
||||
if (pos.can_castle_kingside(BLACK))
|
||||
result ^= Random64[CastleIdx + 2];
|
||||
if (pos.can_castle(BLACK_OO))
|
||||
result ^= ZobCastle[2];
|
||||
|
||||
if (pos.can_castle_queenside(BLACK))
|
||||
result ^= Random64[CastleIdx + 3];
|
||||
if (pos.can_castle(BLACK_OOO))
|
||||
result ^= ZobCastle[3];
|
||||
|
||||
if (pos.ep_square() != SQ_NONE)
|
||||
result ^= Random64[EnPassantIdx + square_file(pos.ep_square())];
|
||||
result ^= ZobEnPassant[file_of(pos.ep_square())];
|
||||
|
||||
if (pos.side_to_move() == WHITE)
|
||||
result ^= Random64[TurnIdx];
|
||||
result ^= ZobTurn[0];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/// Book c'tor. Make random number generation less deterministic, for book moves
|
||||
Book::Book() {
|
||||
Book::Book() : bookSize(0) {
|
||||
|
||||
for (int i = abs(get_system_time() % 10000); i > 0; i--)
|
||||
for (int i = abs(system_time() % 10000); i > 0; i--)
|
||||
RKiss.rand<unsigned>();
|
||||
}
|
||||
|
||||
|
@ -362,8 +362,8 @@ Book::~Book() {
|
|||
}
|
||||
|
||||
|
||||
/// Book::close() closes the file only if it is open, otherwise
|
||||
/// we can end up in a little mess due to how std::ifstream works.
|
||||
/// Book::close() closes the file only if it is open, otherwise the call fails
|
||||
/// and the failbit internal state flag is set.
|
||||
|
||||
void Book::close() {
|
||||
|
||||
|
@ -371,24 +371,24 @@ void Book::close() {
|
|||
bookFile.close();
|
||||
|
||||
bookName = "";
|
||||
bookSize = 0;
|
||||
}
|
||||
|
||||
|
||||
/// Book::open() opens a book file with a given file name
|
||||
/// Book::open() opens a book file with a given name
|
||||
|
||||
void Book::open(const string& fileName) {
|
||||
|
||||
// Close old file before opening the new
|
||||
close();
|
||||
|
||||
bookFile.open(fileName.c_str(), ifstream::in | ifstream::binary);
|
||||
bookFile.open(fileName.c_str(), ifstream::in | ifstream::binary |ios::ate);
|
||||
|
||||
// Silently return when asked to open a non-exsistent file
|
||||
if (!bookFile.is_open())
|
||||
return;
|
||||
|
||||
// Get the book size in number of entries
|
||||
bookFile.seekg(0, ios::end);
|
||||
// Get the book size in number of entries, we are already at the file end
|
||||
bookSize = long(bookFile.tellg()) / sizeof(BookEntry);
|
||||
|
||||
if (!bookFile.good())
|
||||
|
@ -402,46 +402,39 @@ void Book::open(const string& fileName) {
|
|||
}
|
||||
|
||||
|
||||
/// Book::get_move() gets a book move for a given position. Returns
|
||||
/// MOVE_NONE if no book move is found. If findBestMove is true then
|
||||
/// return always the highest rated book move.
|
||||
/// Book::probe() gets a book move for a given position. Returns MOVE_NONE
|
||||
/// if no book move is found. If findBest is true then returns always the
|
||||
/// highest rated move otherwise chooses randomly based on the move score.
|
||||
|
||||
Move Book::get_move(const Position& pos, bool findBestMove) {
|
||||
Move Book::probe(const Position& pos, bool findBest) {
|
||||
|
||||
if (!bookFile.is_open() || bookSize == 0)
|
||||
if (!bookSize || !bookFile.is_open())
|
||||
return MOVE_NONE;
|
||||
|
||||
BookEntry entry;
|
||||
int bookMove = MOVE_NONE;
|
||||
unsigned score, scoresSum = 0, bestScore = 0;
|
||||
unsigned scoresSum = 0, bestScore = 0, bookMove = 0;
|
||||
uint64_t key = book_key(pos);
|
||||
int idx = first_entry(key) - 1;
|
||||
|
||||
// Choose a book move among the possible moves for the given position
|
||||
for (int idx = find_entry(key); idx < bookSize; idx++)
|
||||
while (++idx < bookSize && (entry = read_entry(idx), entry.key == key))
|
||||
{
|
||||
entry = read_entry(idx);
|
||||
scoresSum += entry.count;
|
||||
|
||||
if (entry.key != key)
|
||||
break;
|
||||
|
||||
score = entry.count;
|
||||
|
||||
if (!findBestMove)
|
||||
{
|
||||
// Choose book move according to its score. If a move has a very
|
||||
// high score it has more probability to be choosen then a one with
|
||||
// lower score. Note that first entry is always chosen.
|
||||
scoresSum += score;
|
||||
if (RKiss.rand<unsigned>() % scoresSum < score)
|
||||
bookMove = entry.move;
|
||||
}
|
||||
else if (score > bestScore)
|
||||
{
|
||||
bestScore = score;
|
||||
// Choose book move according to its score. If a move has a very
|
||||
// high score it has higher probability to be choosen than a move
|
||||
// with lower score. Note that first entry is always chosen.
|
||||
if ( RKiss.rand<unsigned>() % scoresSum < entry.count
|
||||
|| (findBest && entry.count > bestScore))
|
||||
bookMove = entry.move;
|
||||
}
|
||||
|
||||
if (entry.count > bestScore)
|
||||
bestScore = entry.count;
|
||||
}
|
||||
|
||||
if (!bookMove)
|
||||
return MOVE_NONE;
|
||||
|
||||
// A PolyGlot book move is encoded as follows:
|
||||
//
|
||||
// bit 0- 5: destination square (from 0 to 63)
|
||||
|
@ -452,33 +445,31 @@ Move Book::get_move(const Position& pos, bool findBestMove) {
|
|||
// book move is a promotion we have to convert to our representation, in
|
||||
// all other cases we can directly compare with a Move after having
|
||||
// masked out special Move's flags that are not supported by PolyGlot.
|
||||
int p = (bookMove >> 12) & 7;
|
||||
int promotion = (bookMove >> 12) & 7;
|
||||
|
||||
if (p)
|
||||
bookMove = int(make_promotion_move(move_from(Move(bookMove)),
|
||||
move_to(Move(bookMove)), PieceType(p + 1)));
|
||||
|
||||
// Verify the book move (if any) is legal
|
||||
MoveStack mlist[MAX_MOVES];
|
||||
MoveStack* last = generate<MV_LEGAL>(pos, mlist);
|
||||
for (MoveStack* cur = mlist; cur != last; cur++)
|
||||
if ((int(cur->move) & ~(3 << 14)) == bookMove) // Mask out special flags
|
||||
return cur->move;
|
||||
if (promotion)
|
||||
bookMove = make_promotion_move(move_from(Move(bookMove)),
|
||||
move_to(Move(bookMove)),
|
||||
PieceType(promotion + 1));
|
||||
// Verify the book move is legal
|
||||
for (MoveList<MV_LEGAL> ml(pos); !ml.end(); ++ml)
|
||||
if (unsigned(ml.move() & ~(3 << 14)) == bookMove) // Mask out special flags
|
||||
return ml.move();
|
||||
|
||||
return MOVE_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// Book::find_entry() takes a book key as input, and does a binary search
|
||||
/// through the book file for the given key. The index to the first book
|
||||
/// entry with the same key as the input is returned. When the key is not
|
||||
/// Book::first_entry() takes a book key as input, and does a binary search
|
||||
/// through the book file for the given key. The index to the first (leftmost)
|
||||
/// book entry with the same key as the input is returned. When the key is not
|
||||
/// found in the book file, bookSize is returned.
|
||||
|
||||
int Book::find_entry(uint64_t key) {
|
||||
int Book::first_entry(uint64_t key) {
|
||||
|
||||
int left, right, mid;
|
||||
|
||||
// Binary search (finds the leftmost entry)
|
||||
// Binary search (finds the leftmost entry with given key)
|
||||
left = 0;
|
||||
right = bookSize - 1;
|
||||
|
||||
|
@ -502,15 +493,17 @@ int Book::find_entry(uint64_t key) {
|
|||
}
|
||||
|
||||
|
||||
/// Book::get_number() reads sizeof(T) chars from the file's binary byte
|
||||
/// Book::operator>>() reads sizeof(T) chars from the file's binary byte
|
||||
/// stream and converts them in a number of type T.
|
||||
template<typename T>
|
||||
void Book::get_number(T& n) {
|
||||
Book& Book::operator>>(T& n) {
|
||||
|
||||
n = 0;
|
||||
|
||||
for (size_t i = 0; i < sizeof(T); i++)
|
||||
n = (n << 8) + (T)bookFile.get();
|
||||
n = T((n << 8) + bookFile.get());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
|
@ -526,10 +519,7 @@ BookEntry Book::read_entry(int idx) {
|
|||
|
||||
bookFile.seekg(idx * sizeof(BookEntry), ios_base::beg);
|
||||
|
||||
get_number(e.key);
|
||||
get_number(e.move);
|
||||
get_number(e.count);
|
||||
get_number(e.learn);
|
||||
*this >> e.key >> e.move >> e.count >> e.learn;
|
||||
|
||||
if (!bookFile.good())
|
||||
{
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -23,14 +23,13 @@
|
|||
#include <fstream>
|
||||
#include <string>
|
||||
|
||||
#include "move.h"
|
||||
#include "position.h"
|
||||
#include "rkiss.h"
|
||||
|
||||
|
||||
// A Polyglot book is a series of "entries" of 16 bytes. All integers are
|
||||
// stored highest byte first (regardless of size). The entries are ordered
|
||||
// according to key. Lowest key first.
|
||||
/// A Polyglot book is a series of "entries" of 16 bytes. All integers are
|
||||
/// stored highest byte first (regardless of size). The entries are ordered
|
||||
/// according to key. Lowest key first.
|
||||
struct BookEntry {
|
||||
uint64_t key;
|
||||
uint16_t move;
|
||||
|
@ -44,19 +43,19 @@ public:
|
|||
~Book();
|
||||
void open(const std::string& fileName);
|
||||
void close();
|
||||
Move get_move(const Position& pos, bool findBestMove);
|
||||
Move probe(const Position& pos, bool findBestMove);
|
||||
const std::string name() const { return bookName; }
|
||||
|
||||
private:
|
||||
template<typename T> void get_number(T& n);
|
||||
template<typename T> Book& operator>>(T& n);
|
||||
|
||||
BookEntry read_entry(int idx);
|
||||
int find_entry(uint64_t key);
|
||||
int first_entry(uint64_t key);
|
||||
|
||||
RKISS RKiss;
|
||||
std::ifstream bookFile;
|
||||
std::string bookName;
|
||||
int bookSize;
|
||||
RKISS RKiss;
|
||||
};
|
||||
|
||||
#endif // !defined(BOOK_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -17,6 +17,7 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
|
||||
#include "bitcount.h"
|
||||
|
@ -59,107 +60,75 @@ namespace {
|
|||
// the two kings in basic endgames.
|
||||
const int DistanceBonus[8] = { 0, 0, 100, 80, 60, 40, 20, 10 };
|
||||
|
||||
// Penalty for big distance between king and knight for the defending king
|
||||
// and knight in KR vs KN endgames.
|
||||
const int KRKNKingKnightDistancePenalty[8] = { 0, 0, 4, 10, 20, 32, 48, 70 };
|
||||
// Get the material key of a Position out of the given endgame key code
|
||||
// like "KBPKN". The trick here is to first forge an ad-hoc fen string
|
||||
// and then let a Position object to do the work for us. Note that the
|
||||
// fen string could correspond to an illegal position.
|
||||
Key key(const string& code, Color c) {
|
||||
|
||||
// Build corresponding key code for the opposite color: "KBPKN" -> "KNKBP"
|
||||
const string swap_colors(const string& keyCode) {
|
||||
assert(code.length() > 0 && code.length() < 8);
|
||||
assert(code[0] == 'K');
|
||||
|
||||
size_t idx = keyCode.find('K', 1);
|
||||
return keyCode.substr(idx) + keyCode.substr(0, idx);
|
||||
string sides[] = { code.substr(code.find('K', 1)), // Weaker
|
||||
code.substr(0, code.find('K', 1)) }; // Stronger
|
||||
|
||||
std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower);
|
||||
|
||||
string fen = sides[0] + char('0' + int(8 - code.length()))
|
||||
+ sides[1] + "/8/8/8/8/8/8/8 w - - 0 10";
|
||||
|
||||
return Position(fen, false, 0).material_key();
|
||||
}
|
||||
|
||||
// Get the material key of a position out of the given endgame key code
|
||||
// like "KBPKN". The trick here is to first build up a FEN string and then
|
||||
// let a Position object to do the work for us. Note that the FEN string
|
||||
// could correspond to an illegal position.
|
||||
Key mat_key(const string& keyCode) {
|
||||
|
||||
assert(keyCode.length() > 0 && keyCode.length() < 8);
|
||||
assert(keyCode[0] == 'K');
|
||||
|
||||
string fen;
|
||||
size_t i = 0;
|
||||
|
||||
// First add white and then black pieces
|
||||
do fen += keyCode[i]; while (keyCode[++i] != 'K');
|
||||
do fen += char(tolower(keyCode[i])); while (++i < keyCode.length());
|
||||
|
||||
// Add file padding and remaining empty ranks
|
||||
fen += string(1, '0' + int(8 - keyCode.length())) + "/8/8/8/8/8/8/8 w - -";
|
||||
|
||||
// Build a Position out of the fen string and get its material key
|
||||
return Position(fen, false, 0).get_material_key();
|
||||
}
|
||||
|
||||
typedef EndgameBase<Value> EF;
|
||||
typedef EndgameBase<ScaleFactor> SF;
|
||||
template<typename M>
|
||||
void delete_endgame(const typename M::value_type& p) { delete p.second; }
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
/// Endgames member definitions
|
||||
|
||||
template<> const Endgames::EFMap& Endgames::get<EF>() const { return maps.first; }
|
||||
template<> const Endgames::SFMap& Endgames::get<SF>() const { return maps.second; }
|
||||
/// Endgames members definitions
|
||||
|
||||
Endgames::Endgames() {
|
||||
|
||||
add<Endgame<Value, KNNK> >("KNNK");
|
||||
add<Endgame<Value, KPK> >("KPK");
|
||||
add<Endgame<Value, KBNK> >("KBNK");
|
||||
add<Endgame<Value, KRKP> >("KRKP");
|
||||
add<Endgame<Value, KRKB> >("KRKB");
|
||||
add<Endgame<Value, KRKN> >("KRKN");
|
||||
add<Endgame<Value, KQKR> >("KQKR");
|
||||
add<Endgame<Value, KBBKN> >("KBBKN");
|
||||
add<KPK>("KPK");
|
||||
add<KNNK>("KNNK");
|
||||
add<KBNK>("KBNK");
|
||||
add<KRKP>("KRKP");
|
||||
add<KRKB>("KRKB");
|
||||
add<KRKN>("KRKN");
|
||||
add<KQKR>("KQKR");
|
||||
add<KBBKN>("KBBKN");
|
||||
|
||||
add<Endgame<ScaleFactor, KNPK> >("KNPK");
|
||||
add<Endgame<ScaleFactor, KRPKR> >("KRPKR");
|
||||
add<Endgame<ScaleFactor, KBPKB> >("KBPKB");
|
||||
add<Endgame<ScaleFactor, KBPPKB> >("KBPPKB");
|
||||
add<Endgame<ScaleFactor, KBPKN> >("KBPKN");
|
||||
add<Endgame<ScaleFactor, KRPPKRP> >("KRPPKRP");
|
||||
add<KNPK>("KNPK");
|
||||
add<KRPKR>("KRPKR");
|
||||
add<KBPKB>("KBPKB");
|
||||
add<KBPKN>("KBPKN");
|
||||
add<KBPPKB>("KBPPKB");
|
||||
add<KRPPKRP>("KRPPKRP");
|
||||
}
|
||||
|
||||
Endgames::~Endgames() {
|
||||
|
||||
for (EFMap::const_iterator it = get<EF>().begin(); it != get<EF>().end(); ++it)
|
||||
delete it->second;
|
||||
|
||||
for (SFMap::const_iterator it = get<SF>().begin(); it != get<SF>().end(); ++it)
|
||||
delete it->second;
|
||||
for_each(m1.begin(), m1.end(), delete_endgame<M1>);
|
||||
for_each(m2.begin(), m2.end(), delete_endgame<M2>);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void Endgames::add(const string& keyCode) {
|
||||
template<EndgameType E>
|
||||
void Endgames::add(const string& code) {
|
||||
|
||||
typedef typename T::Base F;
|
||||
typedef std::map<Key, F*> M;
|
||||
typedef typename eg_family<E>::type T;
|
||||
|
||||
const_cast<M&>(get<F>()).insert(std::pair<Key, F*>(mat_key(keyCode), new T(WHITE)));
|
||||
const_cast<M&>(get<F>()).insert(std::pair<Key, F*>(mat_key(swap_colors(keyCode)), new T(BLACK)));
|
||||
map((T*)0)[key(code, WHITE)] = new Endgame<E>(WHITE);
|
||||
map((T*)0)[key(code, BLACK)] = new Endgame<E>(BLACK);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
T* Endgames::get(Key key) const {
|
||||
|
||||
typename std::map<Key, T*>::const_iterator it = get<T>().find(key);
|
||||
return it != get<T>().end() ? it->second : NULL;
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template EF* Endgames::get<EF>(Key key) const;
|
||||
template SF* Endgames::get<SF>(Key key) const;
|
||||
|
||||
|
||||
/// Mate with KX vs K. This function is used to evaluate positions with
|
||||
/// King and plenty of material vs a lone king. It simply gives the
|
||||
/// attacking side a bonus for driving the defending king towards the edge
|
||||
/// of the board, and for keeping the distance between the two kings small.
|
||||
template<>
|
||||
Value Endgame<Value, KXK>::apply(const Position& pos) const {
|
||||
Value Endgame<KXK>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
|
||||
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
|
||||
|
@ -185,7 +154,7 @@ Value Endgame<Value, KXK>::apply(const Position& pos) const {
|
|||
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
|
||||
/// defending king towards a corner square of the right color.
|
||||
template<>
|
||||
Value Endgame<Value, KBNK>::apply(const Position& pos) const {
|
||||
Value Endgame<KBNK>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
|
||||
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
|
||||
|
@ -196,15 +165,15 @@ Value Endgame<Value, KBNK>::apply(const Position& pos) const {
|
|||
|
||||
Square winnerKSq = pos.king_square(strongerSide);
|
||||
Square loserKSq = pos.king_square(weakerSide);
|
||||
Square bishopSquare = pos.piece_list(strongerSide, BISHOP, 0);
|
||||
Square bishopSquare = pos.piece_list(strongerSide, BISHOP)[0];
|
||||
|
||||
// kbnk_mate_table() tries to drive toward corners A1 or H8,
|
||||
// if we have a bishop that cannot reach the above squares we
|
||||
// mirror the kings so to drive enemy toward corners A8 or H1.
|
||||
if (opposite_color_squares(bishopSquare, SQ_A1))
|
||||
if (opposite_colors(bishopSquare, SQ_A1))
|
||||
{
|
||||
winnerKSq = flop_square(winnerKSq);
|
||||
loserKSq = flop_square(loserKSq);
|
||||
winnerKSq = mirror(winnerKSq);
|
||||
loserKSq = mirror(loserKSq);
|
||||
}
|
||||
|
||||
Value result = VALUE_KNOWN_WIN
|
||||
|
@ -217,7 +186,7 @@ Value Endgame<Value, KBNK>::apply(const Position& pos) const {
|
|||
|
||||
/// KP vs K. This endgame is evaluated with the help of a bitbase.
|
||||
template<>
|
||||
Value Endgame<Value, KPK>::apply(const Position& pos) const {
|
||||
Value Endgame<KPK>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
|
||||
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
|
||||
|
@ -231,22 +200,22 @@ Value Endgame<Value, KPK>::apply(const Position& pos) const {
|
|||
{
|
||||
wksq = pos.king_square(WHITE);
|
||||
bksq = pos.king_square(BLACK);
|
||||
wpsq = pos.piece_list(WHITE, PAWN, 0);
|
||||
wpsq = pos.piece_list(WHITE, PAWN)[0];
|
||||
stm = pos.side_to_move();
|
||||
}
|
||||
else
|
||||
{
|
||||
wksq = flip_square(pos.king_square(BLACK));
|
||||
bksq = flip_square(pos.king_square(WHITE));
|
||||
wpsq = flip_square(pos.piece_list(BLACK, PAWN, 0));
|
||||
stm = opposite_color(pos.side_to_move());
|
||||
wksq = flip(pos.king_square(BLACK));
|
||||
bksq = flip(pos.king_square(WHITE));
|
||||
wpsq = flip(pos.piece_list(BLACK, PAWN)[0]);
|
||||
stm = flip(pos.side_to_move());
|
||||
}
|
||||
|
||||
if (square_file(wpsq) >= FILE_E)
|
||||
if (file_of(wpsq) >= FILE_E)
|
||||
{
|
||||
wksq = flop_square(wksq);
|
||||
bksq = flop_square(bksq);
|
||||
wpsq = flop_square(wpsq);
|
||||
wksq = mirror(wksq);
|
||||
bksq = mirror(bksq);
|
||||
wpsq = mirror(wpsq);
|
||||
}
|
||||
|
||||
if (!probe_kpk_bitbase(wksq, wpsq, bksq, stm))
|
||||
|
@ -254,7 +223,7 @@ Value Endgame<Value, KPK>::apply(const Position& pos) const {
|
|||
|
||||
Value result = VALUE_KNOWN_WIN
|
||||
+ PawnValueEndgame
|
||||
+ Value(square_rank(wpsq));
|
||||
+ Value(rank_of(wpsq));
|
||||
|
||||
return strongerSide == pos.side_to_move() ? result : -result;
|
||||
}
|
||||
|
@ -265,7 +234,7 @@ Value Endgame<Value, KPK>::apply(const Position& pos) const {
|
|||
/// far advanced with support of the king, while the attacking king is far
|
||||
/// away.
|
||||
template<>
|
||||
Value Endgame<Value, KRKP>::apply(const Position& pos) const {
|
||||
Value Endgame<KRKP>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
|
@ -276,23 +245,23 @@ Value Endgame<Value, KRKP>::apply(const Position& pos) const {
|
|||
int tempo = (pos.side_to_move() == strongerSide);
|
||||
|
||||
wksq = pos.king_square(strongerSide);
|
||||
wrsq = pos.piece_list(strongerSide, ROOK, 0);
|
||||
wrsq = pos.piece_list(strongerSide, ROOK)[0];
|
||||
bksq = pos.king_square(weakerSide);
|
||||
bpsq = pos.piece_list(weakerSide, PAWN, 0);
|
||||
bpsq = pos.piece_list(weakerSide, PAWN)[0];
|
||||
|
||||
if (strongerSide == BLACK)
|
||||
{
|
||||
wksq = flip_square(wksq);
|
||||
wrsq = flip_square(wrsq);
|
||||
bksq = flip_square(bksq);
|
||||
bpsq = flip_square(bpsq);
|
||||
wksq = flip(wksq);
|
||||
wrsq = flip(wrsq);
|
||||
bksq = flip(bksq);
|
||||
bpsq = flip(bpsq);
|
||||
}
|
||||
|
||||
Square queeningSq = make_square(square_file(bpsq), RANK_1);
|
||||
Square queeningSq = make_square(file_of(bpsq), RANK_1);
|
||||
Value result;
|
||||
|
||||
// If the stronger side's king is in front of the pawn, it's a win
|
||||
if (wksq < bpsq && square_file(wksq) == square_file(bpsq))
|
||||
if (wksq < bpsq && file_of(wksq) == file_of(bpsq))
|
||||
result = RookValueEndgame - Value(square_distance(wksq, bpsq));
|
||||
|
||||
// If the weaker side's king is too far from the pawn and the rook,
|
||||
|
@ -303,9 +272,9 @@ Value Endgame<Value, KRKP>::apply(const Position& pos) const {
|
|||
|
||||
// If the pawn is far advanced and supported by the defending king,
|
||||
// the position is drawish
|
||||
else if ( square_rank(bksq) <= RANK_3
|
||||
else if ( rank_of(bksq) <= RANK_3
|
||||
&& square_distance(bksq, bpsq) == 1
|
||||
&& square_rank(wksq) >= RANK_4
|
||||
&& rank_of(wksq) >= RANK_4
|
||||
&& square_distance(wksq, bpsq) - tempo > 2)
|
||||
result = Value(80 - square_distance(wksq, bpsq) * 8);
|
||||
|
||||
|
@ -322,7 +291,7 @@ Value Endgame<Value, KRKP>::apply(const Position& pos) const {
|
|||
/// KR vs KB. This is very simple, and always returns drawish scores. The
|
||||
/// score is slightly bigger when the defending king is close to the edge.
|
||||
template<>
|
||||
Value Endgame<Value, KRKB>::apply(const Position& pos) const {
|
||||
Value Endgame<KRKB>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
|
@ -338,7 +307,7 @@ Value Endgame<Value, KRKB>::apply(const Position& pos) const {
|
|||
/// KR vs KN. The attacking side has slightly better winning chances than
|
||||
/// in KR vs KB, particularly if the king and the knight are far apart.
|
||||
template<>
|
||||
Value Endgame<Value, KRKN>::apply(const Position& pos) const {
|
||||
Value Endgame<KRKN>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
|
@ -346,14 +315,11 @@ Value Endgame<Value, KRKN>::apply(const Position& pos) const {
|
|||
assert(pos.piece_count(weakerSide, PAWN) == 0);
|
||||
assert(pos.piece_count(weakerSide, KNIGHT) == 1);
|
||||
|
||||
Square defendingKSq = pos.king_square(weakerSide);
|
||||
Square nSq = pos.piece_list(weakerSide, KNIGHT, 0);
|
||||
|
||||
int d = square_distance(defendingKSq, nSq);
|
||||
Value result = Value(10)
|
||||
+ MateTable[defendingKSq]
|
||||
+ KRKNKingKnightDistancePenalty[d];
|
||||
const int penalty[8] = { 0, 10, 14, 20, 30, 42, 58, 80 };
|
||||
|
||||
Square bksq = pos.king_square(weakerSide);
|
||||
Square bnsq = pos.piece_list(weakerSide, KNIGHT)[0];
|
||||
Value result = Value(MateTable[bksq] + penalty[square_distance(bksq, bnsq)]);
|
||||
return strongerSide == pos.side_to_move() ? result : -result;
|
||||
}
|
||||
|
||||
|
@ -364,7 +330,7 @@ Value Endgame<Value, KRKN>::apply(const Position& pos) const {
|
|||
/// for the defending side in the search, this is usually sufficient to be
|
||||
/// able to win KQ vs KR.
|
||||
template<>
|
||||
Value Endgame<Value, KQKR>::apply(const Position& pos) const {
|
||||
Value Endgame<KQKR>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
|
@ -383,18 +349,18 @@ Value Endgame<Value, KQKR>::apply(const Position& pos) const {
|
|||
}
|
||||
|
||||
template<>
|
||||
Value Endgame<Value, KBBKN>::apply(const Position& pos) const {
|
||||
Value Endgame<KBBKN>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 2);
|
||||
assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
|
||||
assert(pos.piece_count(weakerSide, KNIGHT) == 1);
|
||||
assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
|
||||
assert(pos.pieces(PAWN) == EmptyBoardBB);
|
||||
assert(!pos.pieces(PAWN));
|
||||
|
||||
Value result = BishopValueEndgame;
|
||||
Square wksq = pos.king_square(strongerSide);
|
||||
Square bksq = pos.king_square(weakerSide);
|
||||
Square nsq = pos.piece_list(weakerSide, KNIGHT, 0);
|
||||
Square nsq = pos.piece_list(weakerSide, KNIGHT)[0];
|
||||
|
||||
// Bonus for attacking king close to defending king
|
||||
result += Value(DistanceBonus[square_distance(wksq, bksq)]);
|
||||
|
@ -403,7 +369,7 @@ Value Endgame<Value, KBBKN>::apply(const Position& pos) const {
|
|||
result += Value(square_distance(bksq, nsq) * 32);
|
||||
|
||||
// Bonus for restricting the knight's mobility
|
||||
result += Value((8 - count_1s<CNT32_MAX15>(pos.attacks_from<KNIGHT>(nsq))) * 8);
|
||||
result += Value((8 - popcount<Max15>(pos.attacks_from<KNIGHT>(nsq))) * 8);
|
||||
|
||||
return strongerSide == pos.side_to_move() ? result : -result;
|
||||
}
|
||||
|
@ -412,22 +378,21 @@ Value Endgame<Value, KBBKN>::apply(const Position& pos) const {
|
|||
/// K and two minors vs K and one or two minors or K and two knights against
|
||||
/// king alone are always draw.
|
||||
template<>
|
||||
Value Endgame<Value, KmmKm>::apply(const Position&) const {
|
||||
Value Endgame<KmmKm>::operator()(const Position&) const {
|
||||
return VALUE_DRAW;
|
||||
}
|
||||
|
||||
template<>
|
||||
Value Endgame<Value, KNNK>::apply(const Position&) const {
|
||||
Value Endgame<KNNK>::operator()(const Position&) const {
|
||||
return VALUE_DRAW;
|
||||
}
|
||||
|
||||
/// KBPKScalingFunction scales endgames where the stronger side has king,
|
||||
/// bishop and one or more pawns. It checks for draws with rook pawns and a
|
||||
/// bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_ZERO is
|
||||
/// returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
|
||||
/// K, bishop and one or more pawns vs K. It checks for draws with rook pawns and
|
||||
/// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW
|
||||
/// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
|
||||
/// will be used.
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KBPsK>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KBPsK>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 1);
|
||||
|
@ -437,18 +402,18 @@ ScaleFactor Endgame<ScaleFactor, KBPsK>::apply(const Position& pos) const {
|
|||
// be detected even when the weaker side has some pawns.
|
||||
|
||||
Bitboard pawns = pos.pieces(PAWN, strongerSide);
|
||||
File pawnFile = square_file(pos.piece_list(strongerSide, PAWN, 0));
|
||||
File pawnFile = file_of(pos.piece_list(strongerSide, PAWN)[0]);
|
||||
|
||||
// All pawns are on a single rook file ?
|
||||
if ( (pawnFile == FILE_A || pawnFile == FILE_H)
|
||||
&& (pawns & ~file_bb(pawnFile)) == EmptyBoardBB)
|
||||
&& !(pawns & ~file_bb(pawnFile)))
|
||||
{
|
||||
Square bishopSq = pos.piece_list(strongerSide, BISHOP, 0);
|
||||
Square bishopSq = pos.piece_list(strongerSide, BISHOP)[0];
|
||||
Square queeningSq = relative_square(strongerSide, make_square(pawnFile, RANK_8));
|
||||
Square kingSq = pos.king_square(weakerSide);
|
||||
|
||||
if ( opposite_color_squares(queeningSq, bishopSq)
|
||||
&& abs(square_file(kingSq) - pawnFile) <= 1)
|
||||
if ( opposite_colors(queeningSq, bishopSq)
|
||||
&& abs(file_of(kingSq) - pawnFile) <= 1)
|
||||
{
|
||||
// The bishop has the wrong color, and the defending king is on the
|
||||
// file of the pawn(s) or the neighboring file. Find the rank of the
|
||||
|
@ -456,12 +421,12 @@ ScaleFactor Endgame<ScaleFactor, KBPsK>::apply(const Position& pos) const {
|
|||
Rank rank;
|
||||
if (strongerSide == WHITE)
|
||||
{
|
||||
for (rank = RANK_7; (rank_bb(rank) & pawns) == EmptyBoardBB; rank--) {}
|
||||
for (rank = RANK_7; !(rank_bb(rank) & pawns); rank--) {}
|
||||
assert(rank >= RANK_2 && rank <= RANK_7);
|
||||
}
|
||||
else
|
||||
{
|
||||
for (rank = RANK_2; (rank_bb(rank) & pawns) == EmptyBoardBB; rank++) {}
|
||||
for (rank = RANK_2; !(rank_bb(rank) & pawns); rank++) {}
|
||||
rank = Rank(rank ^ 7); // HACK to get the relative rank
|
||||
assert(rank >= RANK_2 && rank <= RANK_7);
|
||||
}
|
||||
|
@ -469,19 +434,17 @@ ScaleFactor Endgame<ScaleFactor, KBPsK>::apply(const Position& pos) const {
|
|||
// is placed somewhere in front of the pawn, it's a draw.
|
||||
if ( square_distance(kingSq, queeningSq) <= 1
|
||||
|| relative_rank(strongerSide, kingSq) >= rank)
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
}
|
||||
}
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KQKRPScalingFunction scales endgames where the stronger side has only
|
||||
/// king and queen, while the weaker side has at least a rook and a pawn.
|
||||
/// It tests for fortress draws with a rook on the third rank defended by
|
||||
/// a pawn.
|
||||
/// K and queen vs K, rook and one or more pawns. It tests for fortress draws with
|
||||
/// a rook on the third rank defended by a pawn.
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KQKRPs>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KQKRPs>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, QUEEN) == 1);
|
||||
|
@ -496,23 +459,22 @@ ScaleFactor Endgame<ScaleFactor, KQKRPs>::apply(const Position& pos) const {
|
|||
&& (pos.pieces(PAWN, weakerSide) & rank_bb(relative_rank(weakerSide, RANK_2)))
|
||||
&& (pos.attacks_from<KING>(kingSq) & pos.pieces(PAWN, weakerSide)))
|
||||
{
|
||||
Square rsq = pos.piece_list(weakerSide, ROOK, 0);
|
||||
Square rsq = pos.piece_list(weakerSide, ROOK)[0];
|
||||
if (pos.attacks_from<PAWN>(rsq, strongerSide) & pos.pieces(PAWN, weakerSide))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
}
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KRPKRScalingFunction scales KRP vs KR endgames. This function knows a
|
||||
/// handful of the most important classes of drawn positions, but is far
|
||||
/// from perfect. It would probably be a good idea to add more knowledge
|
||||
/// in the future.
|
||||
/// K, rook and one pawn vs K and a rook. This function knows a handful of the
|
||||
/// most important classes of drawn positions, but is far from perfect. It would
|
||||
/// probably be a good idea to add more knowledge in the future.
|
||||
///
|
||||
/// It would also be nice to rewrite the actual code for this function,
|
||||
/// which is mostly copied from Glaurung 1.x, and not very pretty.
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KRPKR>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 1);
|
||||
|
@ -520,32 +482,32 @@ ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
|
|||
assert(pos.piece_count(weakerSide, PAWN) == 0);
|
||||
|
||||
Square wksq = pos.king_square(strongerSide);
|
||||
Square wrsq = pos.piece_list(strongerSide, ROOK, 0);
|
||||
Square wpsq = pos.piece_list(strongerSide, PAWN, 0);
|
||||
Square wrsq = pos.piece_list(strongerSide, ROOK)[0];
|
||||
Square wpsq = pos.piece_list(strongerSide, PAWN)[0];
|
||||
Square bksq = pos.king_square(weakerSide);
|
||||
Square brsq = pos.piece_list(weakerSide, ROOK, 0);
|
||||
Square brsq = pos.piece_list(weakerSide, ROOK)[0];
|
||||
|
||||
// Orient the board in such a way that the stronger side is white, and the
|
||||
// pawn is on the left half of the board.
|
||||
if (strongerSide == BLACK)
|
||||
{
|
||||
wksq = flip_square(wksq);
|
||||
wrsq = flip_square(wrsq);
|
||||
wpsq = flip_square(wpsq);
|
||||
bksq = flip_square(bksq);
|
||||
brsq = flip_square(brsq);
|
||||
wksq = flip(wksq);
|
||||
wrsq = flip(wrsq);
|
||||
wpsq = flip(wpsq);
|
||||
bksq = flip(bksq);
|
||||
brsq = flip(brsq);
|
||||
}
|
||||
if (square_file(wpsq) > FILE_D)
|
||||
if (file_of(wpsq) > FILE_D)
|
||||
{
|
||||
wksq = flop_square(wksq);
|
||||
wrsq = flop_square(wrsq);
|
||||
wpsq = flop_square(wpsq);
|
||||
bksq = flop_square(bksq);
|
||||
brsq = flop_square(brsq);
|
||||
wksq = mirror(wksq);
|
||||
wrsq = mirror(wrsq);
|
||||
wpsq = mirror(wpsq);
|
||||
bksq = mirror(bksq);
|
||||
brsq = mirror(brsq);
|
||||
}
|
||||
|
||||
File f = square_file(wpsq);
|
||||
Rank r = square_rank(wpsq);
|
||||
File f = file_of(wpsq);
|
||||
Rank r = rank_of(wpsq);
|
||||
Square queeningSq = make_square(f, RANK_8);
|
||||
int tempo = (pos.side_to_move() == strongerSide);
|
||||
|
||||
|
@ -554,31 +516,31 @@ ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
|
|||
if ( r <= RANK_5
|
||||
&& square_distance(bksq, queeningSq) <= 1
|
||||
&& wksq <= SQ_H5
|
||||
&& (square_rank(brsq) == RANK_6 || (r <= RANK_3 && square_rank(wrsq) != RANK_6)))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
&& (rank_of(brsq) == RANK_6 || (r <= RANK_3 && rank_of(wrsq) != RANK_6)))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
// The defending side saves a draw by checking from behind in case the pawn
|
||||
// has advanced to the 6th rank with the king behind.
|
||||
if ( r == RANK_6
|
||||
&& square_distance(bksq, queeningSq) <= 1
|
||||
&& square_rank(wksq) + tempo <= RANK_6
|
||||
&& (square_rank(brsq) == RANK_1 || (!tempo && abs(square_file(brsq) - f) >= 3)))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
&& rank_of(wksq) + tempo <= RANK_6
|
||||
&& (rank_of(brsq) == RANK_1 || (!tempo && abs(file_of(brsq) - f) >= 3)))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
if ( r >= RANK_6
|
||||
&& bksq == queeningSq
|
||||
&& square_rank(brsq) == RANK_1
|
||||
&& rank_of(brsq) == RANK_1
|
||||
&& (!tempo || square_distance(wksq, wpsq) >= 2))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
// White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7
|
||||
// and the black rook is behind the pawn.
|
||||
if ( wpsq == SQ_A7
|
||||
&& wrsq == SQ_A8
|
||||
&& (bksq == SQ_H7 || bksq == SQ_G7)
|
||||
&& square_file(brsq) == FILE_A
|
||||
&& (square_rank(brsq) <= RANK_3 || square_file(wksq) >= FILE_D || square_rank(wksq) <= RANK_5))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
&& file_of(brsq) == FILE_A
|
||||
&& (rank_of(brsq) <= RANK_3 || file_of(wksq) >= FILE_D || rank_of(wksq) <= RANK_5))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
// If the defending king blocks the pawn and the attacking king is too far
|
||||
// away, it's a draw.
|
||||
|
@ -586,14 +548,14 @@ ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
|
|||
&& bksq == wpsq + DELTA_N
|
||||
&& square_distance(wksq, wpsq) - tempo >= 2
|
||||
&& square_distance(wksq, brsq) - tempo >= 2)
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
// Pawn on the 7th rank supported by the rook from behind usually wins if the
|
||||
// attacking king is closer to the queening square than the defending king,
|
||||
// and the defending king cannot gain tempi by threatening the attacking rook.
|
||||
if ( r == RANK_7
|
||||
&& f != FILE_A
|
||||
&& square_file(wrsq) == f
|
||||
&& file_of(wrsq) == f
|
||||
&& wrsq != queeningSq
|
||||
&& (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo)
|
||||
&& (square_distance(wksq, queeningSq) < square_distance(bksq, wrsq) + tempo))
|
||||
|
@ -601,7 +563,7 @@ ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
|
|||
|
||||
// Similar to the above, but with the pawn further back
|
||||
if ( f != FILE_A
|
||||
&& square_file(wrsq) == f
|
||||
&& file_of(wrsq) == f
|
||||
&& wrsq < wpsq
|
||||
&& (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo)
|
||||
&& (square_distance(wksq, wpsq + DELTA_N) < square_distance(bksq, wpsq + DELTA_N) - 2 + tempo)
|
||||
|
@ -616,9 +578,9 @@ ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
|
|||
// the pawn's path, it's probably a draw.
|
||||
if (r <= RANK_4 && bksq > wpsq)
|
||||
{
|
||||
if (square_file(bksq) == square_file(wpsq))
|
||||
if (file_of(bksq) == file_of(wpsq))
|
||||
return ScaleFactor(10);
|
||||
if ( abs(square_file(bksq) - square_file(wpsq)) == 1
|
||||
if ( abs(file_of(bksq) - file_of(wpsq)) == 1
|
||||
&& square_distance(wksq, bksq) > 2)
|
||||
return ScaleFactor(24 - 2 * square_distance(wksq, bksq));
|
||||
}
|
||||
|
@ -626,19 +588,19 @@ ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
|
|||
}
|
||||
|
||||
|
||||
/// KRPPKRPScalingFunction scales KRPP vs KRP endgames. There is only a
|
||||
/// single pattern: If the stronger side has no pawns and the defending king
|
||||
/// K, rook and two pawns vs K, rook and one pawn. There is only a single
|
||||
/// pattern: If the stronger side has no passed pawns and the defending king
|
||||
/// is actively placed, the position is drawish.
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KRPPKRP>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KRPPKRP>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 2);
|
||||
assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(weakerSide, PAWN) == 1);
|
||||
|
||||
Square wpsq1 = pos.piece_list(strongerSide, PAWN, 0);
|
||||
Square wpsq2 = pos.piece_list(strongerSide, PAWN, 1);
|
||||
Square wpsq1 = pos.piece_list(strongerSide, PAWN)[0];
|
||||
Square wpsq2 = pos.piece_list(strongerSide, PAWN)[1];
|
||||
Square bksq = pos.king_square(weakerSide);
|
||||
|
||||
// Does the stronger side have a passed pawn?
|
||||
|
@ -646,7 +608,7 @@ ScaleFactor Endgame<ScaleFactor, KRPPKRP>::apply(const Position& pos) const {
|
|||
|| pos.pawn_is_passed(strongerSide, wpsq2))
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
||||
Rank r = Max(relative_rank(strongerSide, wpsq1), relative_rank(strongerSide, wpsq2));
|
||||
Rank r = std::max(relative_rank(strongerSide, wpsq1), relative_rank(strongerSide, wpsq2));
|
||||
|
||||
if ( file_distance(bksq, wpsq1) <= 1
|
||||
&& file_distance(bksq, wpsq2) <= 1
|
||||
|
@ -665,11 +627,10 @@ ScaleFactor Endgame<ScaleFactor, KRPPKRP>::apply(const Position& pos) const {
|
|||
}
|
||||
|
||||
|
||||
/// KPsKScalingFunction scales endgames with king and two or more pawns
|
||||
/// against king. There is just a single rule here: If all pawns are on
|
||||
/// the same rook file and are blocked by the defending king, it's a draw.
|
||||
/// K and two or more pawns vs K. There is just a single rule here: If all pawns
|
||||
/// are on the same rook file and are blocked by the defending king, it's a draw.
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KPsK>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KPsK>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
|
||||
assert(pos.piece_count(strongerSide, PAWN) >= 2);
|
||||
|
@ -680,34 +641,33 @@ ScaleFactor Endgame<ScaleFactor, KPsK>::apply(const Position& pos) const {
|
|||
Bitboard pawns = pos.pieces(PAWN, strongerSide);
|
||||
|
||||
// Are all pawns on the 'a' file?
|
||||
if ((pawns & ~FileABB) == EmptyBoardBB)
|
||||
if (!(pawns & ~FileABB))
|
||||
{
|
||||
// Does the defending king block the pawns?
|
||||
if ( square_distance(ksq, relative_square(strongerSide, SQ_A8)) <= 1
|
||||
|| ( square_file(ksq) == FILE_A
|
||||
&& (in_front_bb(strongerSide, ksq) & pawns) == EmptyBoardBB))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
|| ( file_of(ksq) == FILE_A
|
||||
&& !in_front_bb(strongerSide, ksq) & pawns))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
}
|
||||
// Are all pawns on the 'h' file?
|
||||
else if ((pawns & ~FileHBB) == EmptyBoardBB)
|
||||
else if (!(pawns & ~FileHBB))
|
||||
{
|
||||
// Does the defending king block the pawns?
|
||||
if ( square_distance(ksq, relative_square(strongerSide, SQ_H8)) <= 1
|
||||
|| ( square_file(ksq) == FILE_H
|
||||
&& (in_front_bb(strongerSide, ksq) & pawns) == EmptyBoardBB))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
|| ( file_of(ksq) == FILE_H
|
||||
&& !in_front_bb(strongerSide, ksq) & pawns))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
}
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KBPKBScalingFunction scales KBP vs KB endgames. There are two rules:
|
||||
/// If the defending king is somewhere along the path of the pawn, and the
|
||||
/// square of the king is not of the same color as the stronger side's bishop,
|
||||
/// it's a draw. If the two bishops have opposite color, it's almost always
|
||||
/// a draw.
|
||||
/// K, bishop and a pawn vs K and a bishop. There are two rules: If the defending
|
||||
/// king is somewhere along the path of the pawn, and the square of the king is
|
||||
/// not of the same color as the stronger side's bishop, it's a draw. If the two
|
||||
/// bishops have opposite color, it's almost always a draw.
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KBPKB>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KBPKB>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 1);
|
||||
|
@ -716,20 +676,20 @@ ScaleFactor Endgame<ScaleFactor, KBPKB>::apply(const Position& pos) const {
|
|||
assert(pos.piece_count(weakerSide, BISHOP) == 1);
|
||||
assert(pos.piece_count(weakerSide, PAWN) == 0);
|
||||
|
||||
Square pawnSq = pos.piece_list(strongerSide, PAWN, 0);
|
||||
Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP, 0);
|
||||
Square weakerBishopSq = pos.piece_list(weakerSide, BISHOP, 0);
|
||||
Square pawnSq = pos.piece_list(strongerSide, PAWN)[0];
|
||||
Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP)[0];
|
||||
Square weakerBishopSq = pos.piece_list(weakerSide, BISHOP)[0];
|
||||
Square weakerKingSq = pos.king_square(weakerSide);
|
||||
|
||||
// Case 1: Defending king blocks the pawn, and cannot be driven away
|
||||
if ( square_file(weakerKingSq) == square_file(pawnSq)
|
||||
if ( file_of(weakerKingSq) == file_of(pawnSq)
|
||||
&& relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq)
|
||||
&& ( opposite_color_squares(weakerKingSq, strongerBishopSq)
|
||||
&& ( opposite_colors(weakerKingSq, strongerBishopSq)
|
||||
|| relative_rank(strongerSide, weakerKingSq) <= RANK_6))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
// Case 2: Opposite colored bishops
|
||||
if (opposite_color_squares(strongerBishopSq, weakerBishopSq))
|
||||
if (opposite_colors(strongerBishopSq, weakerBishopSq))
|
||||
{
|
||||
// We assume that the position is drawn in the following three situations:
|
||||
//
|
||||
|
@ -742,27 +702,27 @@ ScaleFactor Endgame<ScaleFactor, KBPKB>::apply(const Position& pos) const {
|
|||
// reasonably well.
|
||||
|
||||
if (relative_rank(strongerSide, pawnSq) <= RANK_5)
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
else
|
||||
{
|
||||
Bitboard path = squares_in_front_of(strongerSide, pawnSq);
|
||||
|
||||
if (path & pos.pieces(KING, weakerSide))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
if ( (pos.attacks_from<BISHOP>(weakerBishopSq) & path)
|
||||
&& square_distance(weakerBishopSq, pawnSq) >= 3)
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
}
|
||||
}
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KBPPKBScalingFunction scales KBPP vs KB endgames. It detects a few basic
|
||||
/// draws with opposite-colored bishops.
|
||||
/// K, bishop and two pawns vs K and bishop. It detects a few basic draws with
|
||||
/// opposite-colored bishops.
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KBPPKB>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KBPPKB>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 1);
|
||||
|
@ -771,28 +731,28 @@ ScaleFactor Endgame<ScaleFactor, KBPPKB>::apply(const Position& pos) const {
|
|||
assert(pos.piece_count(weakerSide, BISHOP) == 1);
|
||||
assert(pos.piece_count(weakerSide, PAWN) == 0);
|
||||
|
||||
Square wbsq = pos.piece_list(strongerSide, BISHOP, 0);
|
||||
Square bbsq = pos.piece_list(weakerSide, BISHOP, 0);
|
||||
Square wbsq = pos.piece_list(strongerSide, BISHOP)[0];
|
||||
Square bbsq = pos.piece_list(weakerSide, BISHOP)[0];
|
||||
|
||||
if (!opposite_color_squares(wbsq, bbsq))
|
||||
if (!opposite_colors(wbsq, bbsq))
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
||||
Square ksq = pos.king_square(weakerSide);
|
||||
Square psq1 = pos.piece_list(strongerSide, PAWN, 0);
|
||||
Square psq2 = pos.piece_list(strongerSide, PAWN, 1);
|
||||
Rank r1 = square_rank(psq1);
|
||||
Rank r2 = square_rank(psq2);
|
||||
Square psq1 = pos.piece_list(strongerSide, PAWN)[0];
|
||||
Square psq2 = pos.piece_list(strongerSide, PAWN)[1];
|
||||
Rank r1 = rank_of(psq1);
|
||||
Rank r2 = rank_of(psq2);
|
||||
Square blockSq1, blockSq2;
|
||||
|
||||
if (relative_rank(strongerSide, psq1) > relative_rank(strongerSide, psq2))
|
||||
{
|
||||
blockSq1 = psq1 + pawn_push(strongerSide);
|
||||
blockSq2 = make_square(square_file(psq2), square_rank(psq1));
|
||||
blockSq2 = make_square(file_of(psq2), rank_of(psq1));
|
||||
}
|
||||
else
|
||||
{
|
||||
blockSq1 = psq2 + pawn_push(strongerSide);
|
||||
blockSq2 = make_square(square_file(psq1), square_rank(psq2));
|
||||
blockSq2 = make_square(file_of(psq1), rank_of(psq2));
|
||||
}
|
||||
|
||||
switch (file_distance(psq1, psq2))
|
||||
|
@ -800,10 +760,10 @@ ScaleFactor Endgame<ScaleFactor, KBPPKB>::apply(const Position& pos) const {
|
|||
case 0:
|
||||
// Both pawns are on the same file. Easy draw if defender firmly controls
|
||||
// some square in the frontmost pawn's path.
|
||||
if ( square_file(ksq) == square_file(blockSq1)
|
||||
if ( file_of(ksq) == file_of(blockSq1)
|
||||
&& relative_rank(strongerSide, ksq) >= relative_rank(strongerSide, blockSq1)
|
||||
&& opposite_color_squares(ksq, wbsq))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
&& opposite_colors(ksq, wbsq))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
else
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
||||
|
@ -812,17 +772,17 @@ ScaleFactor Endgame<ScaleFactor, KBPPKB>::apply(const Position& pos) const {
|
|||
// in front of the frontmost pawn's path, and the square diagonally behind
|
||||
// this square on the file of the other pawn.
|
||||
if ( ksq == blockSq1
|
||||
&& opposite_color_squares(ksq, wbsq)
|
||||
&& opposite_colors(ksq, wbsq)
|
||||
&& ( bbsq == blockSq2
|
||||
|| (pos.attacks_from<BISHOP>(blockSq2) & pos.pieces(BISHOP, weakerSide))
|
||||
|| abs(r1 - r2) >= 2))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
else if ( ksq == blockSq2
|
||||
&& opposite_color_squares(ksq, wbsq)
|
||||
&& opposite_colors(ksq, wbsq)
|
||||
&& ( bbsq == blockSq1
|
||||
|| (pos.attacks_from<BISHOP>(blockSq1) & pos.pieces(BISHOP, weakerSide))))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
else
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
||||
|
@ -833,12 +793,11 @@ ScaleFactor Endgame<ScaleFactor, KBPPKB>::apply(const Position& pos) const {
|
|||
}
|
||||
|
||||
|
||||
/// KBPKNScalingFunction scales KBP vs KN endgames. There is a single rule:
|
||||
/// If the defending king is somewhere along the path of the pawn, and the
|
||||
/// square of the king is not of the same color as the stronger side's bishop,
|
||||
/// it's a draw.
|
||||
/// K, bisop and a pawn vs K and knight. There is a single rule: If the defending
|
||||
/// king is somewhere along the path of the pawn, and the square of the king is
|
||||
/// not of the same color as the stronger side's bishop, it's a draw.
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KBPKN>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KBPKN>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 1);
|
||||
|
@ -847,25 +806,25 @@ ScaleFactor Endgame<ScaleFactor, KBPKN>::apply(const Position& pos) const {
|
|||
assert(pos.piece_count(weakerSide, KNIGHT) == 1);
|
||||
assert(pos.piece_count(weakerSide, PAWN) == 0);
|
||||
|
||||
Square pawnSq = pos.piece_list(strongerSide, PAWN, 0);
|
||||
Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP, 0);
|
||||
Square pawnSq = pos.piece_list(strongerSide, PAWN)[0];
|
||||
Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP)[0];
|
||||
Square weakerKingSq = pos.king_square(weakerSide);
|
||||
|
||||
if ( square_file(weakerKingSq) == square_file(pawnSq)
|
||||
if ( file_of(weakerKingSq) == file_of(pawnSq)
|
||||
&& relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq)
|
||||
&& ( opposite_color_squares(weakerKingSq, strongerBishopSq)
|
||||
&& ( opposite_colors(weakerKingSq, strongerBishopSq)
|
||||
|| relative_rank(strongerSide, weakerKingSq) <= RANK_6))
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KNPKScalingFunction scales KNP vs K endgames. There is a single rule:
|
||||
/// If the pawn is a rook pawn on the 7th rank and the defending king prevents
|
||||
/// the pawn from advancing, the position is drawn.
|
||||
/// K, knight and a pawn vs K. There is a single rule: If the pawn is a rook pawn
|
||||
/// on the 7th rank and the defending king prevents the pawn from advancing, the
|
||||
/// position is drawn.
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KNPK>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KNPK>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, KNIGHT) == 1);
|
||||
|
@ -873,67 +832,61 @@ ScaleFactor Endgame<ScaleFactor, KNPK>::apply(const Position& pos) const {
|
|||
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
|
||||
assert(pos.piece_count(weakerSide, PAWN) == 0);
|
||||
|
||||
Square pawnSq = pos.piece_list(strongerSide, PAWN, 0);
|
||||
Square pawnSq = pos.piece_list(strongerSide, PAWN)[0];
|
||||
Square weakerKingSq = pos.king_square(weakerSide);
|
||||
|
||||
if ( pawnSq == relative_square(strongerSide, SQ_A7)
|
||||
&& square_distance(weakerKingSq, relative_square(strongerSide, SQ_A8)) <= 1)
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
if ( pawnSq == relative_square(strongerSide, SQ_H7)
|
||||
&& square_distance(weakerKingSq, relative_square(strongerSide, SQ_H8)) <= 1)
|
||||
return SCALE_FACTOR_ZERO;
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KPKPScalingFunction scales KP vs KP endgames. This is done by removing
|
||||
/// the weakest side's pawn and probing the KP vs K bitbase: If the weakest
|
||||
/// side has a draw without the pawn, she probably has at least a draw with
|
||||
/// the pawn as well. The exception is when the stronger side's pawn is far
|
||||
/// advanced and not on a rook file; in this case it is often possible to win
|
||||
/// (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
|
||||
/// K and a pawn vs K and a pawn. This is done by removing the weakest side's
|
||||
/// pawn and probing the KP vs K bitbase: If the weakest side has a draw without
|
||||
/// the pawn, she probably has at least a draw with the pawn as well. The exception
|
||||
/// is when the stronger side's pawn is far advanced and not on a rook file; in
|
||||
/// this case it is often possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
|
||||
template<>
|
||||
ScaleFactor Endgame<ScaleFactor, KPKP>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
|
||||
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
|
||||
assert(pos.piece_count(WHITE, PAWN) == 1);
|
||||
assert(pos.piece_count(BLACK, PAWN) == 1);
|
||||
|
||||
Square wksq, bksq, wpsq;
|
||||
Color stm;
|
||||
Square wksq = pos.king_square(strongerSide);
|
||||
Square bksq = pos.king_square(weakerSide);
|
||||
Square wpsq = pos.piece_list(strongerSide, PAWN)[0];
|
||||
Color stm = pos.side_to_move();
|
||||
|
||||
if (strongerSide == WHITE)
|
||||
if (strongerSide == BLACK)
|
||||
{
|
||||
wksq = pos.king_square(WHITE);
|
||||
bksq = pos.king_square(BLACK);
|
||||
wpsq = pos.piece_list(WHITE, PAWN, 0);
|
||||
stm = pos.side_to_move();
|
||||
}
|
||||
else
|
||||
{
|
||||
wksq = flip_square(pos.king_square(BLACK));
|
||||
bksq = flip_square(pos.king_square(WHITE));
|
||||
wpsq = flip_square(pos.piece_list(BLACK, PAWN, 0));
|
||||
stm = opposite_color(pos.side_to_move());
|
||||
wksq = flip(wksq);
|
||||
bksq = flip(bksq);
|
||||
wpsq = flip(wpsq);
|
||||
stm = flip(stm);
|
||||
}
|
||||
|
||||
if (square_file(wpsq) >= FILE_E)
|
||||
if (file_of(wpsq) >= FILE_E)
|
||||
{
|
||||
wksq = flop_square(wksq);
|
||||
bksq = flop_square(bksq);
|
||||
wpsq = flop_square(wpsq);
|
||||
wksq = mirror(wksq);
|
||||
bksq = mirror(bksq);
|
||||
wpsq = mirror(wpsq);
|
||||
}
|
||||
|
||||
// If the pawn has advanced to the fifth rank or further, and is not a
|
||||
// rook pawn, it's too dangerous to assume that it's at least a draw.
|
||||
if ( square_rank(wpsq) >= RANK_5
|
||||
&& square_file(wpsq) != FILE_A)
|
||||
if ( rank_of(wpsq) >= RANK_5
|
||||
&& file_of(wpsq) != FILE_A)
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
||||
// Probe the KPK bitbase with the weakest side's pawn removed. If it's a
|
||||
// draw, it's probably at least a draw even with the pawn.
|
||||
return probe_kpk_bitbase(wksq, wpsq, bksq, stm) ? SCALE_FACTOR_NONE : SCALE_FACTOR_ZERO;
|
||||
// Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw,
|
||||
// it's probably at least a draw even with the pawn.
|
||||
return probe_kpk_bitbase(wksq, wpsq, bksq, stm) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW;
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -20,8 +20,8 @@
|
|||
#if !defined(ENDGAME_H_INCLUDED)
|
||||
#define ENDGAME_H_INCLUDED
|
||||
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
#include "position.h"
|
||||
#include "types.h"
|
||||
|
@ -46,6 +46,7 @@ enum EndgameType {
|
|||
|
||||
|
||||
// Scaling functions
|
||||
SCALE_FUNS,
|
||||
|
||||
KBPsK, // KB+pawns vs K
|
||||
KQKRPs, // KQ vs KR+pawns
|
||||
|
@ -60,25 +61,30 @@ enum EndgameType {
|
|||
};
|
||||
|
||||
|
||||
/// Some magic to detect family type of endgame from its enum value
|
||||
|
||||
template<bool> struct bool_to_type { typedef Value type; };
|
||||
template<> struct bool_to_type<true> { typedef ScaleFactor type; };
|
||||
template<EndgameType E> struct eg_family : public bool_to_type<(E > SCALE_FUNS)> {};
|
||||
|
||||
|
||||
/// Base and derived templates for endgame evaluation and scaling functions
|
||||
|
||||
template<typename T>
|
||||
struct EndgameBase {
|
||||
|
||||
typedef EndgameBase<T> Base;
|
||||
|
||||
virtual ~EndgameBase() {}
|
||||
virtual Color color() const = 0;
|
||||
virtual T apply(const Position&) const = 0;
|
||||
virtual T operator()(const Position&) const = 0;
|
||||
};
|
||||
|
||||
|
||||
template<typename T, EndgameType>
|
||||
template<EndgameType E, typename T = typename eg_family<E>::type>
|
||||
struct Endgame : public EndgameBase<T> {
|
||||
|
||||
explicit Endgame(Color c) : strongerSide(c), weakerSide(opposite_color(c)) {}
|
||||
explicit Endgame(Color c) : strongerSide(c), weakerSide(flip(c)) {}
|
||||
Color color() const { return strongerSide; }
|
||||
T apply(const Position&) const;
|
||||
T operator()(const Position&) const;
|
||||
|
||||
private:
|
||||
Color strongerSide, weakerSide;
|
||||
|
@ -87,26 +93,28 @@ private:
|
|||
|
||||
/// Endgames class stores in two std::map the pointers to endgame evaluation
|
||||
/// and scaling base objects. Then we use polymorphism to invoke the actual
|
||||
/// endgame function calling its apply() method that is virtual.
|
||||
/// endgame function calling its operator() method that is virtual.
|
||||
|
||||
class Endgames {
|
||||
|
||||
typedef std::map<Key, EndgameBase<Value>* > EFMap;
|
||||
typedef std::map<Key, EndgameBase<ScaleFactor>* > SFMap;
|
||||
typedef std::map<Key, EndgameBase<Value>*> M1;
|
||||
typedef std::map<Key, EndgameBase<ScaleFactor>*> M2;
|
||||
|
||||
M1 m1;
|
||||
M2 m2;
|
||||
|
||||
M1& map(Value*) { return m1; }
|
||||
M2& map(ScaleFactor*) { return m2; }
|
||||
|
||||
template<EndgameType E> void add(const std::string& code);
|
||||
|
||||
public:
|
||||
Endgames();
|
||||
~Endgames();
|
||||
template<class T> T* get(Key key) const;
|
||||
|
||||
private:
|
||||
template<class T> void add(const std::string& keyCode);
|
||||
|
||||
// Here we store two maps, for evaluate and scaling functions...
|
||||
std::pair<EFMap, SFMap> maps;
|
||||
|
||||
// ...and here is the accessing template function
|
||||
template<typename T> const std::map<Key, T*>& get() const;
|
||||
template<typename T> EndgameBase<T>* get(Key key) {
|
||||
return map((T*)0).count(key) ? map((T*)0)[key] : NULL;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // !defined(ENDGAME_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -21,6 +21,7 @@
|
|||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
|
||||
#include "bitcount.h"
|
||||
#include "evaluate.h"
|
||||
|
@ -44,20 +45,20 @@ namespace {
|
|||
// all squares attacked by the given color.
|
||||
Bitboard attackedBy[2][8];
|
||||
|
||||
// kingZone[color] is the zone around the enemy king which is considered
|
||||
// kingRing[color] is the zone around the king which is considered
|
||||
// by the king safety evaluation. This consists of the squares directly
|
||||
// adjacent to the king, and the three (or two, for a king on an edge file)
|
||||
// squares two ranks in front of the king. For instance, if black's king
|
||||
// is on g8, kingZone[WHITE] is a bitboard containing the squares f8, h8,
|
||||
// is on g8, kingRing[BLACK] is a bitboard containing the squares f8, h8,
|
||||
// f7, g7, h7, f6, g6 and h6.
|
||||
Bitboard kingZone[2];
|
||||
Bitboard kingRing[2];
|
||||
|
||||
// kingAttackersCount[color] is the number of pieces of the given color
|
||||
// which attack a square in the kingZone of the enemy king.
|
||||
// which attack a square in the kingRing of the enemy king.
|
||||
int kingAttackersCount[2];
|
||||
|
||||
// kingAttackersWeight[color] is the sum of the "weight" of the pieces of the
|
||||
// given color which attack a square in the kingZone of the enemy king. The
|
||||
// given color which attack a square in the kingRing of the enemy king. The
|
||||
// weights of the individual piece types are given by the variables
|
||||
// QueenAttackWeight, RookAttackWeight, BishopAttackWeight and
|
||||
// KnightAttackWeight in evaluate.cpp
|
||||
|
@ -88,7 +89,7 @@ namespace {
|
|||
//
|
||||
// Values modified by Joona Kiiski
|
||||
const Score WeightsInternal[] = {
|
||||
S(248, 271), S(252, 259), S(46, 0), S(247, 0), S(259, 0)
|
||||
S(252, 344), S(216, 266), S(46, 0), S(247, 0), S(259, 0)
|
||||
};
|
||||
|
||||
// MobilityBonus[PieceType][attacked] contains mobility bonuses for middle and
|
||||
|
@ -224,28 +225,27 @@ namespace {
|
|||
};
|
||||
|
||||
// Function prototypes
|
||||
template<bool HasPopCnt, bool Trace>
|
||||
template<bool Trace>
|
||||
Value do_evaluate(const Position& pos, Value& margin);
|
||||
|
||||
template<Color Us, bool HasPopCnt>
|
||||
template<Color Us>
|
||||
void init_eval_info(const Position& pos, EvalInfo& ei);
|
||||
|
||||
template<Color Us, bool HasPopCnt, bool Trace>
|
||||
template<Color Us, bool Trace>
|
||||
Score evaluate_pieces_of_color(const Position& pos, EvalInfo& ei, Score& mobility);
|
||||
|
||||
template<Color Us, bool HasPopCnt, bool Trace>
|
||||
template<Color Us, bool Trace>
|
||||
Score evaluate_king(const Position& pos, EvalInfo& ei, Value margins[]);
|
||||
|
||||
template<Color Us>
|
||||
Score evaluate_threats(const Position& pos, EvalInfo& ei);
|
||||
|
||||
template<Color Us, bool HasPopCnt>
|
||||
template<Color Us>
|
||||
int evaluate_space(const Position& pos, EvalInfo& ei);
|
||||
|
||||
template<Color Us>
|
||||
Score evaluate_passed_pawns(const Position& pos, EvalInfo& ei);
|
||||
|
||||
template<bool HasPopCnt>
|
||||
Score evaluate_unstoppable_pawns(const Position& pos, EvalInfo& ei);
|
||||
|
||||
inline Score apply_weight(Score v, Score weight);
|
||||
|
@ -260,22 +260,17 @@ namespace {
|
|||
/// evaluate() is the main evaluation function. It always computes two
|
||||
/// values, an endgame score and a middle game score, and interpolates
|
||||
/// between them based on the remaining material.
|
||||
Value evaluate(const Position& pos, Value& margin) {
|
||||
|
||||
return CpuHasPOPCNT ? do_evaluate<true, false>(pos, margin)
|
||||
: do_evaluate<false, false>(pos, margin);
|
||||
}
|
||||
Value evaluate(const Position& pos, Value& margin) { return do_evaluate<false>(pos, margin); }
|
||||
|
||||
namespace {
|
||||
|
||||
template<bool HasPopCnt, bool Trace>
|
||||
template<bool Trace>
|
||||
Value do_evaluate(const Position& pos, Value& margin) {
|
||||
|
||||
EvalInfo ei;
|
||||
Value margins[2];
|
||||
Score score, mobilityWhite, mobilityBlack;
|
||||
|
||||
assert(pos.is_ok());
|
||||
assert(pos.thread() >= 0 && pos.thread() < MAX_THREADS);
|
||||
assert(!pos.in_check());
|
||||
|
||||
|
@ -288,7 +283,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
|
|||
margins[WHITE] = margins[BLACK] = VALUE_ZERO;
|
||||
|
||||
// Probe the material hash table
|
||||
ei.mi = Threads[pos.thread()].materialTable.get_material_info(pos);
|
||||
ei.mi = Threads[pos.thread()].materialTable.material_info(pos);
|
||||
score += ei.mi->material_value();
|
||||
|
||||
// If we have a specialized evaluation function for the current material
|
||||
|
@ -300,23 +295,23 @@ Value do_evaluate(const Position& pos, Value& margin) {
|
|||
}
|
||||
|
||||
// Probe the pawn hash table
|
||||
ei.pi = Threads[pos.thread()].pawnTable.get_pawn_info(pos);
|
||||
ei.pi = Threads[pos.thread()].pawnTable.pawn_info(pos);
|
||||
score += ei.pi->pawns_value();
|
||||
|
||||
// Initialize attack and king safety bitboards
|
||||
init_eval_info<WHITE, HasPopCnt>(pos, ei);
|
||||
init_eval_info<BLACK, HasPopCnt>(pos, ei);
|
||||
init_eval_info<WHITE>(pos, ei);
|
||||
init_eval_info<BLACK>(pos, ei);
|
||||
|
||||
// Evaluate pieces and mobility
|
||||
score += evaluate_pieces_of_color<WHITE, HasPopCnt, Trace>(pos, ei, mobilityWhite)
|
||||
- evaluate_pieces_of_color<BLACK, HasPopCnt, Trace>(pos, ei, mobilityBlack);
|
||||
score += evaluate_pieces_of_color<WHITE, Trace>(pos, ei, mobilityWhite)
|
||||
- evaluate_pieces_of_color<BLACK, Trace>(pos, ei, mobilityBlack);
|
||||
|
||||
score += apply_weight(mobilityWhite - mobilityBlack, Weights[Mobility]);
|
||||
|
||||
// Evaluate kings after all other pieces because we need complete attack
|
||||
// information when computing the king safety evaluation.
|
||||
score += evaluate_king<WHITE, HasPopCnt, Trace>(pos, ei, margins)
|
||||
- evaluate_king<BLACK, HasPopCnt, Trace>(pos, ei, margins);
|
||||
score += evaluate_king<WHITE, Trace>(pos, ei, margins)
|
||||
- evaluate_king<BLACK, Trace>(pos, ei, margins);
|
||||
|
||||
// Evaluate tactical threats, we need full attack information including king
|
||||
score += evaluate_threats<WHITE>(pos, ei)
|
||||
|
@ -328,12 +323,12 @@ Value do_evaluate(const Position& pos, Value& margin) {
|
|||
|
||||
// If one side has only a king, check whether exists any unstoppable passed pawn
|
||||
if (!pos.non_pawn_material(WHITE) || !pos.non_pawn_material(BLACK))
|
||||
score += evaluate_unstoppable_pawns<HasPopCnt>(pos, ei);
|
||||
score += evaluate_unstoppable_pawns(pos, ei);
|
||||
|
||||
// Evaluate space for both sides, only in middle-game.
|
||||
if (ei.mi->space_weight())
|
||||
{
|
||||
int s = evaluate_space<WHITE, HasPopCnt>(pos, ei) - evaluate_space<BLACK, HasPopCnt>(pos, ei);
|
||||
int s = evaluate_space<WHITE>(pos, ei) - evaluate_space<BLACK>(pos, ei);
|
||||
score += apply_weight(make_score(s * ei.mi->space_weight(), 0), Weights[Space]);
|
||||
}
|
||||
|
||||
|
@ -375,9 +370,9 @@ Value do_evaluate(const Position& pos, Value& margin) {
|
|||
trace_add(MOBILITY, apply_weight(mobilityWhite, Weights[Mobility]), apply_weight(mobilityBlack, Weights[Mobility]));
|
||||
trace_add(THREAT, evaluate_threats<WHITE>(pos, ei), evaluate_threats<BLACK>(pos, ei));
|
||||
trace_add(PASSED, evaluate_passed_pawns<WHITE>(pos, ei), evaluate_passed_pawns<BLACK>(pos, ei));
|
||||
trace_add(UNSTOPPABLE, evaluate_unstoppable_pawns<false>(pos, ei));
|
||||
Score w = make_score(ei.mi->space_weight() * evaluate_space<WHITE, false>(pos, ei), 0);
|
||||
Score b = make_score(ei.mi->space_weight() * evaluate_space<BLACK, false>(pos, ei), 0);
|
||||
trace_add(UNSTOPPABLE, evaluate_unstoppable_pawns(pos, ei));
|
||||
Score w = make_score(ei.mi->space_weight() * evaluate_space<WHITE>(pos, ei), 0);
|
||||
Score b = make_score(ei.mi->space_weight() * evaluate_space<BLACK>(pos, ei), 0);
|
||||
trace_add(SPACE, apply_weight(w, Weights[Space]), apply_weight(b, Weights[Space]));
|
||||
trace_add(TOTAL, score);
|
||||
TraceStream << "\nUncertainty margin: White: " << to_cp(margins[WHITE])
|
||||
|
@ -412,7 +407,7 @@ void read_evaluation_uci_options(Color us) {
|
|||
|
||||
// If running in analysis mode, make sure we use symmetrical king safety. We do this
|
||||
// by replacing both Weights[kingDangerUs] and Weights[kingDangerThem] by their average.
|
||||
if (Options["UCI_AnalyseMode"].value<bool>())
|
||||
if (Options["UCI_AnalyseMode"])
|
||||
Weights[kingDangerUs] = Weights[kingDangerThem] = (Weights[kingDangerUs] + Weights[kingDangerThem]) / 2;
|
||||
|
||||
init_safety();
|
||||
|
@ -424,10 +419,9 @@ namespace {
|
|||
// init_eval_info() initializes king bitboards for given color adding
|
||||
// pawn attacks. To be done at the beginning of the evaluation.
|
||||
|
||||
template<Color Us, bool HasPopCnt>
|
||||
template<Color Us>
|
||||
void init_eval_info(const Position& pos, EvalInfo& ei) {
|
||||
|
||||
const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
Bitboard b = ei.attackedBy[Them][KING] = pos.attacks_from<KING>(pos.king_square(Them));
|
||||
|
@ -437,12 +431,12 @@ namespace {
|
|||
if ( pos.piece_count(Us, QUEEN)
|
||||
&& pos.non_pawn_material(Us) >= QueenValueMidgame + RookValueMidgame)
|
||||
{
|
||||
ei.kingZone[Us] = (b | (Us == WHITE ? b >> 8 : b << 8));
|
||||
ei.kingRing[Them] = (b | (Us == WHITE ? b >> 8 : b << 8));
|
||||
b &= ei.attackedBy[Us][PAWN];
|
||||
ei.kingAttackersCount[Us] = b ? count_1s<Max15>(b) / 2 : 0;
|
||||
ei.kingAttackersCount[Us] = b ? popcount<Max15>(b) / 2 : 0;
|
||||
ei.kingAdjacentZoneAttacksCount[Us] = ei.kingAttackersWeight[Us] = 0;
|
||||
} else
|
||||
ei.kingZone[Us] = ei.kingAttackersCount[Us] = 0;
|
||||
ei.kingRing[Them] = ei.kingAttackersCount[Us] = 0;
|
||||
}
|
||||
|
||||
|
||||
|
@ -462,8 +456,8 @@ namespace {
|
|||
// no minor piece which can exchange the outpost piece.
|
||||
if (bonus && bit_is_set(ei.attackedBy[Us][PAWN], s))
|
||||
{
|
||||
if ( pos.pieces(KNIGHT, Them) == EmptyBoardBB
|
||||
&& (SquaresByColorBB[square_color(s)] & pos.pieces(BISHOP, Them)) == EmptyBoardBB)
|
||||
if ( !pos.pieces(KNIGHT, Them)
|
||||
&& !(same_color_squares(s) & pos.pieces(BISHOP, Them)))
|
||||
bonus += bonus + bonus / 2;
|
||||
else
|
||||
bonus += bonus / 2;
|
||||
|
@ -474,7 +468,7 @@ namespace {
|
|||
|
||||
// evaluate_pieces<>() assigns bonuses and penalties to the pieces of a given color
|
||||
|
||||
template<PieceType Piece, Color Us, bool HasPopCnt, bool Trace>
|
||||
template<PieceType Piece, Color Us, bool Trace>
|
||||
Score evaluate_pieces(const Position& pos, EvalInfo& ei, Score& mobility, Bitboard mobilityArea) {
|
||||
|
||||
Bitboard b;
|
||||
|
@ -483,14 +477,12 @@ namespace {
|
|||
File f;
|
||||
Score score = SCORE_ZERO;
|
||||
|
||||
const BitCountType Full = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64 : CNT32;
|
||||
const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
const Square* ptr = pos.piece_list_begin(Us, Piece);
|
||||
const Square* pl = pos.piece_list(Us, Piece);
|
||||
|
||||
ei.attackedBy[Us][Piece] = EmptyBoardBB;
|
||||
ei.attackedBy[Us][Piece] = 0;
|
||||
|
||||
while ((s = *ptr++) != SQ_NONE)
|
||||
while ((s = *pl++) != SQ_NONE)
|
||||
{
|
||||
// Find attacked squares, including x-ray attacks for bishops and rooks
|
||||
if (Piece == KNIGHT || Piece == QUEEN)
|
||||
|
@ -506,18 +498,18 @@ namespace {
|
|||
ei.attackedBy[Us][Piece] |= b;
|
||||
|
||||
// King attacks
|
||||
if (b & ei.kingZone[Us])
|
||||
if (b & ei.kingRing[Them])
|
||||
{
|
||||
ei.kingAttackersCount[Us]++;
|
||||
ei.kingAttackersWeight[Us] += KingAttackWeights[Piece];
|
||||
Bitboard bb = (b & ei.attackedBy[Them][KING]);
|
||||
if (bb)
|
||||
ei.kingAdjacentZoneAttacksCount[Us] += count_1s<Max15>(bb);
|
||||
ei.kingAdjacentZoneAttacksCount[Us] += popcount<Max15>(bb);
|
||||
}
|
||||
|
||||
// Mobility
|
||||
mob = (Piece != QUEEN ? count_1s<Max15>(b & mobilityArea)
|
||||
: count_1s<Full >(b & mobilityArea));
|
||||
mob = (Piece != QUEEN ? popcount<Max15>(b & mobilityArea)
|
||||
: popcount<Full >(b & mobilityArea));
|
||||
|
||||
mobility += MobilityBonus[Piece][mob];
|
||||
|
||||
|
@ -527,7 +519,8 @@ namespace {
|
|||
score -= ThreatenedByPawnPenalty[Piece];
|
||||
|
||||
// Bishop and knight outposts squares
|
||||
if ((Piece == BISHOP || Piece == KNIGHT) && pos.square_is_weak(s, Us))
|
||||
if ( (Piece == BISHOP || Piece == KNIGHT)
|
||||
&& !(pos.pieces(PAWN, Them) & attack_span_mask(Us, s)))
|
||||
score += evaluate_outposts<Piece, Us>(pos, ei, s);
|
||||
|
||||
// Queen or rook on 7th rank
|
||||
|
@ -546,7 +539,7 @@ namespace {
|
|||
// problem, especially when that pawn is also blocked.
|
||||
if (s == relative_square(Us, SQ_A1) || s == relative_square(Us, SQ_H1))
|
||||
{
|
||||
Square d = pawn_push(Us) + (square_file(s) == FILE_A ? DELTA_E : DELTA_W);
|
||||
Square d = pawn_push(Us) + (file_of(s) == FILE_A ? DELTA_E : DELTA_W);
|
||||
if (pos.piece_on(s + d) == make_piece(Us, PAWN))
|
||||
{
|
||||
if (!pos.square_is_empty(s + d + pawn_push(Us)))
|
||||
|
@ -563,7 +556,7 @@ namespace {
|
|||
if (Piece == ROOK)
|
||||
{
|
||||
// Open and half-open files
|
||||
f = square_file(s);
|
||||
f = file_of(s);
|
||||
if (ei.pi->file_is_half_open(Us, f))
|
||||
{
|
||||
if (ei.pi->file_is_half_open(Them, f))
|
||||
|
@ -579,21 +572,21 @@ namespace {
|
|||
|
||||
ksq = pos.king_square(Us);
|
||||
|
||||
if ( square_file(ksq) >= FILE_E
|
||||
&& square_file(s) > square_file(ksq)
|
||||
&& (relative_rank(Us, ksq) == RANK_1 || square_rank(ksq) == square_rank(s)))
|
||||
if ( file_of(ksq) >= FILE_E
|
||||
&& file_of(s) > file_of(ksq)
|
||||
&& (relative_rank(Us, ksq) == RANK_1 || rank_of(ksq) == rank_of(s)))
|
||||
{
|
||||
// Is there a half-open file between the king and the edge of the board?
|
||||
if (!ei.pi->has_open_file_to_right(Us, square_file(ksq)))
|
||||
if (!ei.pi->has_open_file_to_right(Us, file_of(ksq)))
|
||||
score -= make_score(pos.can_castle(Us) ? (TrappedRookPenalty - mob * 16) / 2
|
||||
: (TrappedRookPenalty - mob * 16), 0);
|
||||
}
|
||||
else if ( square_file(ksq) <= FILE_D
|
||||
&& square_file(s) < square_file(ksq)
|
||||
&& (relative_rank(Us, ksq) == RANK_1 || square_rank(ksq) == square_rank(s)))
|
||||
else if ( file_of(ksq) <= FILE_D
|
||||
&& file_of(s) < file_of(ksq)
|
||||
&& (relative_rank(Us, ksq) == RANK_1 || rank_of(ksq) == rank_of(s)))
|
||||
{
|
||||
// Is there a half-open file between the king and the edge of the board?
|
||||
if (!ei.pi->has_open_file_to_left(Us, square_file(ksq)))
|
||||
if (!ei.pi->has_open_file_to_left(Us, file_of(ksq)))
|
||||
score -= make_score(pos.can_castle(Us) ? (TrappedRookPenalty - mob * 16) / 2
|
||||
: (TrappedRookPenalty - mob * 16), 0);
|
||||
}
|
||||
|
@ -619,7 +612,7 @@ namespace {
|
|||
Score score = SCORE_ZERO;
|
||||
|
||||
// Enemy pieces not defended by a pawn and under our attack
|
||||
Bitboard weakEnemies = pos.pieces_of_color(Them)
|
||||
Bitboard weakEnemies = pos.pieces(Them)
|
||||
& ~ei.attackedBy[Them][PAWN]
|
||||
& ei.attackedBy[Us][0];
|
||||
if (!weakEnemies)
|
||||
|
@ -643,7 +636,7 @@ namespace {
|
|||
// evaluate_pieces_of_color<>() assigns bonuses and penalties to all the
|
||||
// pieces of a given color.
|
||||
|
||||
template<Color Us, bool HasPopCnt, bool Trace>
|
||||
template<Color Us, bool Trace>
|
||||
Score evaluate_pieces_of_color(const Position& pos, EvalInfo& ei, Score& mobility) {
|
||||
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
@ -651,12 +644,12 @@ namespace {
|
|||
Score score = mobility = SCORE_ZERO;
|
||||
|
||||
// Do not include in mobility squares protected by enemy pawns or occupied by our pieces
|
||||
const Bitboard mobilityArea = ~(ei.attackedBy[Them][PAWN] | pos.pieces_of_color(Us));
|
||||
const Bitboard mobilityArea = ~(ei.attackedBy[Them][PAWN] | pos.pieces(Us));
|
||||
|
||||
score += evaluate_pieces<KNIGHT, Us, HasPopCnt, Trace>(pos, ei, mobility, mobilityArea);
|
||||
score += evaluate_pieces<BISHOP, Us, HasPopCnt, Trace>(pos, ei, mobility, mobilityArea);
|
||||
score += evaluate_pieces<ROOK, Us, HasPopCnt, Trace>(pos, ei, mobility, mobilityArea);
|
||||
score += evaluate_pieces<QUEEN, Us, HasPopCnt, Trace>(pos, ei, mobility, mobilityArea);
|
||||
score += evaluate_pieces<KNIGHT, Us, Trace>(pos, ei, mobility, mobilityArea);
|
||||
score += evaluate_pieces<BISHOP, Us, Trace>(pos, ei, mobility, mobilityArea);
|
||||
score += evaluate_pieces<ROOK, Us, Trace>(pos, ei, mobility, mobilityArea);
|
||||
score += evaluate_pieces<QUEEN, Us, Trace>(pos, ei, mobility, mobilityArea);
|
||||
|
||||
// Sum up all attacked squares
|
||||
ei.attackedBy[Us][0] = ei.attackedBy[Us][PAWN] | ei.attackedBy[Us][KNIGHT]
|
||||
|
@ -668,10 +661,9 @@ namespace {
|
|||
|
||||
// evaluate_king<>() assigns bonuses and penalties to a king of a given color
|
||||
|
||||
template<Color Us, bool HasPopCnt, bool Trace>
|
||||
template<Color Us, bool Trace>
|
||||
Score evaluate_king(const Position& pos, EvalInfo& ei, Value margins[]) {
|
||||
|
||||
const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
Bitboard undefended, b, b1, b2, safe;
|
||||
|
@ -698,14 +690,14 @@ namespace {
|
|||
// the number and types of the enemy's attacking pieces, the number of
|
||||
// attacked and undefended squares around our king, the square of the
|
||||
// king, and the quality of the pawn shelter.
|
||||
attackUnits = Min(25, (ei.kingAttackersCount[Them] * ei.kingAttackersWeight[Them]) / 2)
|
||||
+ 3 * (ei.kingAdjacentZoneAttacksCount[Them] + count_1s<Max15>(undefended))
|
||||
attackUnits = std::min(25, (ei.kingAttackersCount[Them] * ei.kingAttackersWeight[Them]) / 2)
|
||||
+ 3 * (ei.kingAdjacentZoneAttacksCount[Them] + popcount<Max15>(undefended))
|
||||
+ InitKingDanger[relative_square(Us, ksq)]
|
||||
- mg_value(ei.pi->king_shelter<Us>(pos, ksq)) / 32;
|
||||
|
||||
// Analyse enemy's safe queen contact checks. First find undefended
|
||||
// squares around the king attacked by enemy queen...
|
||||
b = undefended & ei.attackedBy[Them][QUEEN] & ~pos.pieces_of_color(Them);
|
||||
b = undefended & ei.attackedBy[Them][QUEEN] & ~pos.pieces(Them);
|
||||
if (b)
|
||||
{
|
||||
// ...then remove squares not supported by another enemy piece
|
||||
|
@ -713,13 +705,13 @@ namespace {
|
|||
| ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][ROOK]);
|
||||
if (b)
|
||||
attackUnits += QueenContactCheckBonus
|
||||
* count_1s<Max15>(b)
|
||||
* popcount<Max15>(b)
|
||||
* (Them == pos.side_to_move() ? 2 : 1);
|
||||
}
|
||||
|
||||
// Analyse enemy's safe rook contact checks. First find undefended
|
||||
// squares around the king attacked by enemy rooks...
|
||||
b = undefended & ei.attackedBy[Them][ROOK] & ~pos.pieces_of_color(Them);
|
||||
b = undefended & ei.attackedBy[Them][ROOK] & ~pos.pieces(Them);
|
||||
|
||||
// Consider only squares where the enemy rook gives check
|
||||
b &= RookPseudoAttacks[ksq];
|
||||
|
@ -731,12 +723,12 @@ namespace {
|
|||
| ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][QUEEN]);
|
||||
if (b)
|
||||
attackUnits += RookContactCheckBonus
|
||||
* count_1s<Max15>(b)
|
||||
* popcount<Max15>(b)
|
||||
* (Them == pos.side_to_move() ? 2 : 1);
|
||||
}
|
||||
|
||||
// Analyse enemy's safe distance checks for sliders and knights
|
||||
safe = ~(pos.pieces_of_color(Them) | ei.attackedBy[Us][0]);
|
||||
safe = ~(pos.pieces(Them) | ei.attackedBy[Us][0]);
|
||||
|
||||
b1 = pos.attacks_from<ROOK>(ksq) & safe;
|
||||
b2 = pos.attacks_from<BISHOP>(ksq) & safe;
|
||||
|
@ -744,25 +736,25 @@ namespace {
|
|||
// Enemy queen safe checks
|
||||
b = (b1 | b2) & ei.attackedBy[Them][QUEEN];
|
||||
if (b)
|
||||
attackUnits += QueenCheckBonus * count_1s<Max15>(b);
|
||||
attackUnits += QueenCheckBonus * popcount<Max15>(b);
|
||||
|
||||
// Enemy rooks safe checks
|
||||
b = b1 & ei.attackedBy[Them][ROOK];
|
||||
if (b)
|
||||
attackUnits += RookCheckBonus * count_1s<Max15>(b);
|
||||
attackUnits += RookCheckBonus * popcount<Max15>(b);
|
||||
|
||||
// Enemy bishops safe checks
|
||||
b = b2 & ei.attackedBy[Them][BISHOP];
|
||||
if (b)
|
||||
attackUnits += BishopCheckBonus * count_1s<Max15>(b);
|
||||
attackUnits += BishopCheckBonus * popcount<Max15>(b);
|
||||
|
||||
// Enemy knights safe checks
|
||||
b = pos.attacks_from<KNIGHT>(ksq) & ei.attackedBy[Them][KNIGHT] & safe;
|
||||
if (b)
|
||||
attackUnits += KnightCheckBonus * count_1s<Max15>(b);
|
||||
attackUnits += KnightCheckBonus * popcount<Max15>(b);
|
||||
|
||||
// To index KingDangerTable[] attackUnits must be in [0, 99] range
|
||||
attackUnits = Min(99, Max(0, attackUnits));
|
||||
attackUnits = std::min(99, std::max(0, attackUnits));
|
||||
|
||||
// Finally, extract the king danger score from the KingDangerTable[]
|
||||
// array and subtract the score from evaluation. Set also margins[]
|
||||
|
@ -812,11 +804,11 @@ namespace {
|
|||
Square blockSq = s + pawn_push(Us);
|
||||
|
||||
// Adjust bonus based on kings proximity
|
||||
ebonus += Value(square_distance(pos.king_square(Them), blockSq) * 6 * rr);
|
||||
ebonus -= Value(square_distance(pos.king_square(Us), blockSq) * 3 * rr);
|
||||
ebonus += Value(square_distance(pos.king_square(Them), blockSq) * 5 * rr);
|
||||
ebonus -= Value(square_distance(pos.king_square(Us), blockSq) * 2 * rr);
|
||||
|
||||
// If blockSq is not the queening square then consider also a second push
|
||||
if (square_rank(blockSq) != (Us == WHITE ? RANK_8 : RANK_1))
|
||||
if (rank_of(blockSq) != (Us == WHITE ? RANK_8 : RANK_1))
|
||||
ebonus -= Value(square_distance(pos.king_square(Us), blockSq + pawn_push(Us)) * rr);
|
||||
|
||||
// If the pawn is free to advance, increase bonus
|
||||
|
@ -832,7 +824,7 @@ namespace {
|
|||
&& (squares_in_front_of(Them, s) & pos.pieces(ROOK, QUEEN, Them) & pos.attacks_from<ROOK>(s)))
|
||||
unsafeSquares = squaresToQueen;
|
||||
else
|
||||
unsafeSquares = squaresToQueen & (ei.attackedBy[Them][0] | pos.pieces_of_color(Them));
|
||||
unsafeSquares = squaresToQueen & (ei.attackedBy[Them][0] | pos.pieces(Them));
|
||||
|
||||
// If there aren't enemy attacks or pieces along the path to queen give
|
||||
// huge bonus. Even bigger if we protect the pawn's path.
|
||||
|
@ -844,19 +836,15 @@ namespace {
|
|||
// If yes, big bonus (but smaller than when there are no enemy attacks),
|
||||
// if no, somewhat smaller bonus.
|
||||
ebonus += Value(rr * ((unsafeSquares & defendedSquares) == unsafeSquares ? 13 : 8));
|
||||
|
||||
// At last, add a small bonus when there are no *friendly* pieces
|
||||
// in the pawn's path.
|
||||
if (!(squaresToQueen & pos.pieces_of_color(Us)))
|
||||
ebonus += Value(rr);
|
||||
}
|
||||
} // rr != 0
|
||||
|
||||
// Increase the bonus if the passed pawn is supported by a friendly pawn
|
||||
// on the same rank and a bit smaller if it's on the previous rank.
|
||||
supportingPawns = pos.pieces(PAWN, Us) & neighboring_files_bb(s);
|
||||
supportingPawns = pos.pieces(PAWN, Us) & neighboring_files_bb(file_of(s));
|
||||
if (supportingPawns & rank_bb(s))
|
||||
ebonus += Value(r * 20);
|
||||
|
||||
else if (supportingPawns & rank_bb(s - pawn_push(Us)))
|
||||
ebonus += Value(r * 12);
|
||||
|
||||
|
@ -866,7 +854,7 @@ namespace {
|
|||
// we try the following: Increase the value for rook pawns if the
|
||||
// other side has no pieces apart from a knight, and decrease the
|
||||
// value if the other side has a rook or queen.
|
||||
if (square_file(s) == FILE_A || square_file(s) == FILE_H)
|
||||
if (file_of(s) == FILE_A || file_of(s) == FILE_H)
|
||||
{
|
||||
if (pos.non_pawn_material(Them) <= KnightValueMidgame)
|
||||
ebonus += ebonus / 4;
|
||||
|
@ -885,11 +873,8 @@ namespace {
|
|||
// evaluate_unstoppable_pawns() evaluates the unstoppable passed pawns for both sides, this is quite
|
||||
// conservative and returns a winning score only when we are very sure that the pawn is winning.
|
||||
|
||||
template<bool HasPopCnt>
|
||||
Score evaluate_unstoppable_pawns(const Position& pos, EvalInfo& ei) {
|
||||
|
||||
const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
|
||||
|
||||
Bitboard b, b2, blockers, supporters, queeningPath, candidates;
|
||||
Square s, blockSq, queeningSquare;
|
||||
Color c, winnerSide, loserSide;
|
||||
|
@ -902,7 +887,7 @@ namespace {
|
|||
for (c = WHITE; c <= BLACK; c++)
|
||||
{
|
||||
// Skip if other side has non-pawn pieces
|
||||
if (pos.non_pawn_material(opposite_color(c)))
|
||||
if (pos.non_pawn_material(flip(c)))
|
||||
continue;
|
||||
|
||||
b = ei.pi->passed_pawns(c);
|
||||
|
@ -910,12 +895,12 @@ namespace {
|
|||
while (b)
|
||||
{
|
||||
s = pop_1st_bit(&b);
|
||||
queeningSquare = relative_square(c, make_square(square_file(s), RANK_8));
|
||||
queeningSquare = relative_square(c, make_square(file_of(s), RANK_8));
|
||||
queeningPath = squares_in_front_of(c, s);
|
||||
|
||||
// Compute plies to queening and check direct advancement
|
||||
movesToGo = rank_distance(s, queeningSquare) - int(relative_rank(c, s) == RANK_2);
|
||||
oppMovesToGo = square_distance(pos.king_square(opposite_color(c)), queeningSquare) - int(c != pos.side_to_move());
|
||||
oppMovesToGo = square_distance(pos.king_square(flip(c)), queeningSquare) - int(c != pos.side_to_move());
|
||||
pathDefended = ((ei.attackedBy[c][0] & queeningPath) == queeningPath);
|
||||
|
||||
if (movesToGo >= oppMovesToGo && !pathDefended)
|
||||
|
@ -924,16 +909,16 @@ namespace {
|
|||
// Opponent king cannot block because path is defended and position
|
||||
// is not in check. So only friendly pieces can be blockers.
|
||||
assert(!pos.in_check());
|
||||
assert((queeningPath & pos.occupied_squares()) == (queeningPath & pos.pieces_of_color(c)));
|
||||
assert((queeningPath & pos.occupied_squares()) == (queeningPath & pos.pieces(c)));
|
||||
|
||||
// Add moves needed to free the path from friendly pieces and retest condition
|
||||
movesToGo += count_1s<Max15>(queeningPath & pos.pieces_of_color(c));
|
||||
movesToGo += popcount<Max15>(queeningPath & pos.pieces(c));
|
||||
|
||||
if (movesToGo >= oppMovesToGo && !pathDefended)
|
||||
continue;
|
||||
|
||||
pliesToGo = 2 * movesToGo - int(c == pos.side_to_move());
|
||||
pliesToQueen[c] = Min(pliesToQueen[c], pliesToGo);
|
||||
pliesToQueen[c] = std::min(pliesToQueen[c], pliesToGo);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -943,7 +928,7 @@ namespace {
|
|||
return SCORE_ZERO;
|
||||
|
||||
winnerSide = (pliesToQueen[WHITE] < pliesToQueen[BLACK] ? WHITE : BLACK);
|
||||
loserSide = opposite_color(winnerSide);
|
||||
loserSide = flip(winnerSide);
|
||||
|
||||
// Step 3. Can the losing side possibly create a new passed pawn and thus prevent the loss?
|
||||
b = candidates = pos.pieces(PAWN, loserSide);
|
||||
|
@ -953,7 +938,7 @@ namespace {
|
|||
s = pop_1st_bit(&b);
|
||||
|
||||
// Compute plies from queening
|
||||
queeningSquare = relative_square(loserSide, make_square(square_file(s), RANK_8));
|
||||
queeningSquare = relative_square(loserSide, make_square(file_of(s), RANK_8));
|
||||
movesToGo = rank_distance(s, queeningSquare) - int(relative_rank(loserSide, s) == RANK_2);
|
||||
pliesToGo = 2 * movesToGo - int(loserSide == pos.side_to_move());
|
||||
|
||||
|
@ -977,12 +962,12 @@ namespace {
|
|||
minKingDist = kingptg = 256;
|
||||
|
||||
// Compute plies from queening
|
||||
queeningSquare = relative_square(loserSide, make_square(square_file(s), RANK_8));
|
||||
queeningSquare = relative_square(loserSide, make_square(file_of(s), RANK_8));
|
||||
movesToGo = rank_distance(s, queeningSquare) - int(relative_rank(loserSide, s) == RANK_2);
|
||||
pliesToGo = 2 * movesToGo - int(loserSide == pos.side_to_move());
|
||||
|
||||
// Generate list of blocking pawns and supporters
|
||||
supporters = neighboring_files_bb(s) & candidates;
|
||||
supporters = neighboring_files_bb(file_of(s)) & candidates;
|
||||
opposed = squares_in_front_of(loserSide, s) & pos.pieces(PAWN, winnerSide);
|
||||
blockers = passed_pawn_mask(loserSide, s) & pos.pieces(PAWN, winnerSide);
|
||||
|
||||
|
@ -1003,7 +988,7 @@ namespace {
|
|||
while (b2) // This while-loop could be replaced with LSB/MSB (depending on color)
|
||||
{
|
||||
d = square_distance(blockSq, pop_1st_bit(&b2)) - 2;
|
||||
movesToGo = Min(movesToGo, d);
|
||||
movesToGo = std::min(movesToGo, d);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1013,7 +998,7 @@ namespace {
|
|||
while (b2) // This while-loop could be replaced with LSB/MSB (depending on color)
|
||||
{
|
||||
d = square_distance(blockSq, pop_1st_bit(&b2)) - 2;
|
||||
movesToGo = Min(movesToGo, d);
|
||||
movesToGo = std::min(movesToGo, d);
|
||||
}
|
||||
|
||||
// If obstacle can be destroyed with an immediate pawn exchange / sacrifice,
|
||||
|
@ -1027,7 +1012,7 @@ namespace {
|
|||
|
||||
// Plies needed for the king to capture all the blocking pawns
|
||||
d = square_distance(pos.king_square(loserSide), blockSq);
|
||||
minKingDist = Min(minKingDist, d);
|
||||
minKingDist = std::min(minKingDist, d);
|
||||
kingptg = (minKingDist + blockersCount) * 2;
|
||||
}
|
||||
|
||||
|
@ -1052,10 +1037,9 @@ namespace {
|
|||
// squares one, two or three squares behind a friendly pawn are counted
|
||||
// twice. Finally, the space bonus is scaled by a weight taken from the
|
||||
// material hash table. The aim is to improve play on game opening.
|
||||
template<Color Us, bool HasPopCnt>
|
||||
template<Color Us>
|
||||
int evaluate_space(const Position& pos, EvalInfo& ei) {
|
||||
|
||||
const BitCountType Max15 = HasPopCnt ? CNT_POPCNT : CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
// Find the safe squares for our pieces inside the area defined by
|
||||
|
@ -1071,7 +1055,7 @@ namespace {
|
|||
behind |= (Us == WHITE ? behind >> 8 : behind << 8);
|
||||
behind |= (Us == WHITE ? behind >> 16 : behind << 16);
|
||||
|
||||
return count_1s<Max15>(safe) + count_1s<Max15>(behind & safe);
|
||||
return popcount<Max15>(safe) + popcount<Max15>(behind & safe);
|
||||
}
|
||||
|
||||
|
||||
|
@ -1104,8 +1088,8 @@ namespace {
|
|||
Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight) {
|
||||
|
||||
// Scale option value from 100 to 256
|
||||
int mg = Options[mgOpt].value<int>() * 256 / 100;
|
||||
int eg = Options[egOpt].value<int>() * 256 / 100;
|
||||
int mg = Options[mgOpt] * 256 / 100;
|
||||
int eg = Options[egOpt] * 256 / 100;
|
||||
|
||||
return apply_weight(make_score(mg, eg), internalWeight);
|
||||
}
|
||||
|
@ -1126,9 +1110,9 @@ namespace {
|
|||
t[i] = Value(int(0.4 * i * i));
|
||||
|
||||
if (i > 0)
|
||||
t[i] = Min(t[i], t[i - 1] + MaxSlope);
|
||||
t[i] = std::min(t[i], t[i - 1] + MaxSlope);
|
||||
|
||||
t[i] = Min(t[i], Peak);
|
||||
t[i] = std::min(t[i], Peak);
|
||||
}
|
||||
|
||||
// Then apply the weights and get the final KingDangerTable[] array
|
||||
|
@ -1190,7 +1174,7 @@ std::string trace_evaluate(const Position& pos) {
|
|||
TraceStream << std::showpoint << std::showpos << std::fixed << std::setprecision(2);
|
||||
memset(TracedScores, 0, 2 * 16 * sizeof(Score));
|
||||
|
||||
do_evaluate<false, true>(pos, margin);
|
||||
do_evaluate<true>(pos, margin);
|
||||
|
||||
totals = TraceStream.str();
|
||||
TraceStream.str("");
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -20,8 +20,9 @@
|
|||
#if !defined(HISTORY_H_INCLUDED)
|
||||
#define HISTORY_H_INCLUDED
|
||||
|
||||
#include <cstring>
|
||||
#include "types.h"
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
/// The History class stores statistics about how often different moves
|
||||
/// have been successful or unsuccessful during the current search. These
|
||||
|
@ -35,7 +36,7 @@ class History {
|
|||
public:
|
||||
void clear();
|
||||
Value value(Piece p, Square to) const;
|
||||
void update(Piece p, Square to, Value bonus);
|
||||
void add(Piece p, Square to, Value bonus);
|
||||
Value gain(Piece p, Square to) const;
|
||||
void update_gain(Piece p, Square to, Value g);
|
||||
|
||||
|
@ -55,7 +56,7 @@ inline Value History::value(Piece p, Square to) const {
|
|||
return history[p][to];
|
||||
}
|
||||
|
||||
inline void History::update(Piece p, Square to, Value bonus) {
|
||||
inline void History::add(Piece p, Square to, Value bonus) {
|
||||
if (abs(history[p][to] + bonus) < MaxValue) history[p][to] += bonus;
|
||||
}
|
||||
|
||||
|
@ -64,7 +65,7 @@ inline Value History::gain(Piece p, Square to) const {
|
|||
}
|
||||
|
||||
inline void History::update_gain(Piece p, Square to, Value g) {
|
||||
maxGains[p][to] = Max(g, maxGains[p][to] - 1);
|
||||
maxGains[p][to] = std::max(g, maxGains[p][to] - 1);
|
||||
}
|
||||
|
||||
#endif // !defined(HISTORY_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -35,12 +35,15 @@ typedef pthread_cond_t WaitCondition;
|
|||
# define cond_init(x) pthread_cond_init(x, NULL)
|
||||
# define cond_signal(x) pthread_cond_signal(x)
|
||||
# define cond_wait(x,y) pthread_cond_wait(x,y)
|
||||
# define cond_timedwait(x,y,z) pthread_cond_timedwait(x,y,z)
|
||||
|
||||
#else
|
||||
|
||||
#define NOMINMAX // disable macros min() and max()
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#include <windows.h>
|
||||
#undef WIN32_LEAN_AND_MEAN
|
||||
#undef NOMINMAX
|
||||
|
||||
// Default fast and race free locks and condition variables
|
||||
#if !defined(OLD_LOCKS)
|
||||
|
@ -55,7 +58,8 @@ typedef CONDITION_VARIABLE WaitCondition;
|
|||
# define cond_destroy(x) (x)
|
||||
# define cond_init(x) InitializeConditionVariable(x)
|
||||
# define cond_signal(x) WakeConditionVariable(x)
|
||||
# define cond_wait(x,y) SleepConditionVariableSRW(x, y, INFINITE,0)
|
||||
# define cond_wait(x,y) SleepConditionVariableSRW(x,y,INFINITE,0)
|
||||
# define cond_timedwait(x,y,z) SleepConditionVariableSRW(x,y,z,0)
|
||||
|
||||
// Fallback solution to build for Windows XP and older versions, note that
|
||||
// cond_wait() is racy between lock_release() and WaitForSingleObject().
|
||||
|
@ -71,7 +75,9 @@ typedef HANDLE WaitCondition;
|
|||
# define cond_init(x) { *x = CreateEvent(0, FALSE, FALSE, 0); }
|
||||
# define cond_destroy(x) CloseHandle(*x)
|
||||
# define cond_signal(x) SetEvent(*x)
|
||||
# define cond_wait(x,y) { lock_release(y); WaitForSingleObject(*x, INFINITE); lock_grab(y); }
|
||||
# define cond_wait(x,y) { ResetEvent(*x); lock_release(y); WaitForSingleObject(*x, INFINITE); lock_grab(y); }
|
||||
# define cond_timedwait(x,y,z) { ResetEvent(*x); lock_release(y); WaitForSingleObject(*x,z); lock_grab(y); }
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -17,71 +17,41 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
// To profile with callgrind uncomment following line
|
||||
//#define USE_CALLGRIND
|
||||
|
||||
#include <cstdio>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "bitboard.h"
|
||||
#include "evaluate.h"
|
||||
#include "misc.h"
|
||||
#include "position.h"
|
||||
#include "thread.h"
|
||||
#include "search.h"
|
||||
#include "ucioption.h"
|
||||
|
||||
#ifdef USE_CALLGRIND
|
||||
#include <valgrind/callgrind.h>
|
||||
#endif
|
||||
#include "thread.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
extern bool execute_uci_command(const string& cmd);
|
||||
extern void uci_loop();
|
||||
extern void benchmark(int argc, char* argv[]);
|
||||
extern void init_kpk_bitbase();
|
||||
extern void kpk_bitbase_init();
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
|
||||
// Disable IO buffering for C and C++ standard libraries
|
||||
setvbuf(stdin, NULL, _IONBF, 0);
|
||||
setvbuf(stdout, NULL, _IONBF, 0);
|
||||
cout.rdbuf()->pubsetbuf(NULL, 0);
|
||||
cin.rdbuf()->pubsetbuf(NULL, 0);
|
||||
|
||||
// Startup initializations
|
||||
init_bitboards();
|
||||
Position::init_zobrist();
|
||||
Position::init_piece_square_tables();
|
||||
init_kpk_bitbase();
|
||||
init_search();
|
||||
bitboards_init();
|
||||
Position::init();
|
||||
kpk_bitbase_init();
|
||||
Search::init();
|
||||
Threads.init();
|
||||
|
||||
#ifdef USE_CALLGRIND
|
||||
CALLGRIND_START_INSTRUMENTATION;
|
||||
#endif
|
||||
cout << engine_info() << endl;
|
||||
|
||||
if (argc < 2)
|
||||
{
|
||||
// Print copyright notice
|
||||
cout << engine_name() << " by " << engine_authors() << endl;
|
||||
if (argc == 1)
|
||||
uci_loop();
|
||||
|
||||
if (CpuHasPOPCNT)
|
||||
cout << "Good! CPU has hardware POPCNT." << endl;
|
||||
|
||||
// Wait for a command from the user, and passes this command to
|
||||
// execute_uci_command() and also intercepts EOF from stdin to
|
||||
// ensure that we exit gracefully if the GUI dies unexpectedly.
|
||||
string cmd;
|
||||
while (getline(cin, cmd) && execute_uci_command(cmd)) {}
|
||||
}
|
||||
else if (string(argv[1]) == "bench" && argc < 8)
|
||||
else if (string(argv[1]) == "bench")
|
||||
benchmark(argc, argv);
|
||||
|
||||
else
|
||||
cout << "Usage: stockfish bench [hash size = 128] [threads = 1] "
|
||||
cerr << "\nUsage: stockfish bench [hash size = 128] [threads = 1] "
|
||||
<< "[limit = 12] [fen positions file = default] "
|
||||
<< "[limited by depth, time, nodes or perft = depth]" << endl;
|
||||
|
||||
Threads.exit();
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -19,6 +19,7 @@
|
|||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
#include "material.h"
|
||||
|
||||
|
@ -49,13 +50,13 @@ namespace {
|
|||
|
||||
// Endgame evaluation and scaling functions accessed direcly and not through
|
||||
// the function maps because correspond to more then one material hash key.
|
||||
Endgame<Value, KmmKm> EvaluateKmmKm[] = { Endgame<Value, KmmKm>(WHITE), Endgame<Value, KmmKm>(BLACK) };
|
||||
Endgame<Value, KXK> EvaluateKXK[] = { Endgame<Value, KXK>(WHITE), Endgame<Value, KXK>(BLACK) };
|
||||
Endgame<KmmKm> EvaluateKmmKm[] = { Endgame<KmmKm>(WHITE), Endgame<KmmKm>(BLACK) };
|
||||
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
|
||||
|
||||
Endgame<ScaleFactor, KBPsK> ScaleKBPsK[] = { Endgame<ScaleFactor, KBPsK>(WHITE), Endgame<ScaleFactor, KBPsK>(BLACK) };
|
||||
Endgame<ScaleFactor, KQKRPs> ScaleKQKRPs[] = { Endgame<ScaleFactor, KQKRPs>(WHITE), Endgame<ScaleFactor, KQKRPs>(BLACK) };
|
||||
Endgame<ScaleFactor, KPsK> ScaleKPsK[] = { Endgame<ScaleFactor, KPsK>(WHITE), Endgame<ScaleFactor, KPsK>(BLACK) };
|
||||
Endgame<ScaleFactor, KPKP> ScaleKPKP[] = { Endgame<ScaleFactor, KPKP>(WHITE), Endgame<ScaleFactor, KPKP>(BLACK) };
|
||||
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
|
||||
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
|
||||
Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
|
||||
Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
|
||||
|
||||
// Helper templates used to detect a given material distribution
|
||||
template<Color Us> bool is_KXK(const Position& pos) {
|
||||
|
@ -89,15 +90,15 @@ void MaterialInfoTable::init() { Base::init(); if (!funcs) funcs = new Endgames(
|
|||
MaterialInfoTable::~MaterialInfoTable() { delete funcs; }
|
||||
|
||||
|
||||
/// MaterialInfoTable::get_material_info() takes a position object as input,
|
||||
/// MaterialInfoTable::material_info() takes a position object as input,
|
||||
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
|
||||
/// If the material configuration is not already present in the table, it
|
||||
/// is stored there, so we don't have to recompute everything when the
|
||||
/// same material configuration occurs again.
|
||||
|
||||
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
||||
MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
|
||||
|
||||
Key key = pos.get_material_key();
|
||||
Key key = pos.material_key();
|
||||
MaterialInfo* mi = probe(key);
|
||||
|
||||
// If mi->key matches the position's material hash key, it means that we
|
||||
|
@ -117,7 +118,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
|||
// Let's look if we have a specialized evaluation function for this
|
||||
// particular material configuration. First we look for a fixed
|
||||
// configuration one, then a generic one if previous search failed.
|
||||
if ((mi->evaluationFunction = funcs->get<EndgameBase<Value> >(key)) != NULL)
|
||||
if ((mi->evaluationFunction = funcs->get<Value>(key)) != NULL)
|
||||
return mi;
|
||||
|
||||
if (is_KXK<WHITE>(pos))
|
||||
|
@ -142,7 +143,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
|||
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
|
||||
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKmmKm[WHITE];
|
||||
mi->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
|
||||
return mi;
|
||||
}
|
||||
}
|
||||
|
@ -154,7 +155,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
|||
// scaling functions and we need to decide which one to use.
|
||||
EndgameBase<ScaleFactor>* sf;
|
||||
|
||||
if ((sf = funcs->get<EndgameBase<ScaleFactor> >(key)) != NULL)
|
||||
if ((sf = funcs->get<ScaleFactor>(key)) != NULL)
|
||||
{
|
||||
mi->scalingFunction[sf->color()] = sf;
|
||||
return mi;
|
||||
|
@ -203,13 +204,13 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
|||
if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[WHITE] = uint8_t
|
||||
(npm_w == npm_b || npm_w < RookValueMidgame ? 0 : NoPawnsSF[Min(pos.piece_count(WHITE, BISHOP), 2)]);
|
||||
(npm_w == npm_b || npm_w < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[BLACK] = uint8_t
|
||||
(npm_w == npm_b || npm_b < RookValueMidgame ? 0 : NoPawnsSF[Min(pos.piece_count(BLACK, BISHOP), 2)]);
|
||||
(npm_w == npm_b || npm_b < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
// Compute the space weight
|
||||
|
@ -253,7 +254,7 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
|
|||
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
for (pt1 = PIECE_TYPE_NONE; pt1 <= QUEEN; pt1++)
|
||||
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
pc = pieceCount[Us][pt1];
|
||||
if (!pc)
|
||||
|
@ -261,7 +262,7 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
|
|||
|
||||
v = LinearCoefficients[pt1];
|
||||
|
||||
for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++)
|
||||
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
||||
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -27,6 +27,13 @@
|
|||
|
||||
const int MaterialTableSize = 8192;
|
||||
|
||||
/// Game phase
|
||||
enum Phase {
|
||||
PHASE_ENDGAME = 0,
|
||||
PHASE_MIDGAME = 128
|
||||
};
|
||||
|
||||
|
||||
/// MaterialInfo is a class which contains various information about a
|
||||
/// material configuration. It contains a material balance evaluation,
|
||||
/// a function pointer to a special endgame evaluation function (which in
|
||||
|
@ -61,13 +68,13 @@ private:
|
|||
|
||||
|
||||
/// The MaterialInfoTable class represents a pawn hash table. The most important
|
||||
/// method is get_material_info, which returns a pointer to a MaterialInfo object.
|
||||
/// method is material_info(), which returns a pointer to a MaterialInfo object.
|
||||
|
||||
class MaterialInfoTable : public SimpleHash<MaterialInfo, MaterialTableSize> {
|
||||
public:
|
||||
~MaterialInfoTable();
|
||||
void init();
|
||||
MaterialInfo* get_material_info(const Position& pos) const;
|
||||
MaterialInfo* material_info(const Position& pos) const;
|
||||
static Phase game_phase(const Position& pos);
|
||||
|
||||
private:
|
||||
|
@ -90,12 +97,12 @@ inline ScaleFactor MaterialInfo::scale_factor(const Position& pos, Color c) cons
|
|||
if (!scalingFunction[c])
|
||||
return ScaleFactor(factor[c]);
|
||||
|
||||
ScaleFactor sf = scalingFunction[c]->apply(pos);
|
||||
ScaleFactor sf = (*scalingFunction[c])(pos);
|
||||
return sf == SCALE_FACTOR_NONE ? ScaleFactor(factor[c]) : sf;
|
||||
}
|
||||
|
||||
inline Value MaterialInfo::evaluate(const Position& pos) const {
|
||||
return evaluationFunction->apply(pos);
|
||||
return (*evaluationFunction)(pos);
|
||||
}
|
||||
|
||||
inline Score MaterialInfo::material_value() const {
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -17,7 +17,14 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#if !defined(_MSC_VER)
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define _CRT_SECURE_NO_DEPRECATE
|
||||
#define NOMINMAX // disable macros min() and max()
|
||||
#include <windows.h>
|
||||
#include <sys/timeb.h>
|
||||
|
||||
#else
|
||||
|
||||
# include <sys/time.h>
|
||||
# include <sys/types.h>
|
||||
|
@ -26,18 +33,13 @@
|
|||
# include <sys/pstat.h>
|
||||
# endif
|
||||
|
||||
#else
|
||||
|
||||
#define _CRT_SECURE_NO_DEPRECATE
|
||||
#include <windows.h>
|
||||
#include <sys/timeb.h>
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(NO_PREFETCH)
|
||||
# include <xmmintrin.h>
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <iomanip>
|
||||
|
@ -50,91 +52,69 @@
|
|||
|
||||
using namespace std;
|
||||
|
||||
/// Version number. If EngineVersion is left empty, then AppTag plus
|
||||
/// current date (in the format YYMMDD) is used as a version number.
|
||||
/// Version number. If Version is left empty, then Tag plus current
|
||||
/// date (in the format YYMMDD) is used as a version number.
|
||||
|
||||
static const string AppName = "Stockfish";
|
||||
static const string EngineVersion = "2.1.1";
|
||||
static const string AppTag = "";
|
||||
static const string Version = "2.2";
|
||||
static const string Tag = "";
|
||||
|
||||
|
||||
/// engine_name() returns the full name of the current Stockfish version.
|
||||
/// engine_info() returns the full name of the current Stockfish version.
|
||||
/// This will be either "Stockfish YYMMDD" (where YYMMDD is the date when
|
||||
/// the program was compiled) or "Stockfish <version number>", depending
|
||||
/// on whether the constant EngineVersion is empty.
|
||||
/// on whether Version is empty.
|
||||
|
||||
const string engine_name() {
|
||||
const string engine_info(bool to_uci) {
|
||||
|
||||
const string months("Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec");
|
||||
const string cpu64(CpuIs64Bit ? " 64bit" : "");
|
||||
const string cpu64(Is64Bit ? " 64bit" : "");
|
||||
const string popcnt(HasPopCnt ? " SSE4.2" : "");
|
||||
|
||||
if (!EngineVersion.empty())
|
||||
return AppName + " " + EngineVersion + cpu64;
|
||||
|
||||
stringstream s, date(__DATE__); // From compiler, format is "Sep 21 2008"
|
||||
string month, day, year;
|
||||
stringstream s, date(__DATE__); // From compiler, format is "Sep 21 2008"
|
||||
|
||||
date >> month >> day >> year;
|
||||
if (Version.empty())
|
||||
{
|
||||
date >> month >> day >> year;
|
||||
|
||||
s << setfill('0') << AppName + " " + AppTag + " "
|
||||
<< year.substr(2, 2) << setw(2)
|
||||
<< (1 + months.find(month) / 4) << setw(2)
|
||||
<< day << cpu64;
|
||||
s << "Stockfish " << Tag
|
||||
<< setfill('0') << " " << year.substr(2)
|
||||
<< setw(2) << (1 + months.find(month) / 4)
|
||||
<< setw(2) << day << cpu64 << popcnt;
|
||||
}
|
||||
else
|
||||
s << "Stockfish " << Version << cpu64 << popcnt;
|
||||
|
||||
s << (to_uci ? "\nid author ": " by ")
|
||||
<< "Tord Romstad, Marco Costalba and Joona Kiiski";
|
||||
|
||||
return s.str();
|
||||
}
|
||||
|
||||
|
||||
/// Our brave developers! Required by UCI
|
||||
/// Debug functions used mainly to collect run-time statistics
|
||||
|
||||
const string engine_authors() {
|
||||
|
||||
return "Tord Romstad, Marco Costalba and Joona Kiiski";
|
||||
}
|
||||
|
||||
|
||||
/// Debug stuff. Helper functions used mainly for debugging purposes
|
||||
|
||||
static uint64_t dbg_hit_cnt0;
|
||||
static uint64_t dbg_hit_cnt1;
|
||||
static uint64_t dbg_mean_cnt0;
|
||||
static uint64_t dbg_mean_cnt1;
|
||||
|
||||
void dbg_print_hit_rate() {
|
||||
|
||||
if (dbg_hit_cnt0)
|
||||
cout << "Total " << dbg_hit_cnt0 << " Hit " << dbg_hit_cnt1
|
||||
<< " hit rate (%) " << 100 * dbg_hit_cnt1 / dbg_hit_cnt0 << endl;
|
||||
}
|
||||
|
||||
void dbg_print_mean() {
|
||||
|
||||
if (dbg_mean_cnt0)
|
||||
cout << "Total " << dbg_mean_cnt0 << " Mean "
|
||||
<< (float)dbg_mean_cnt1 / dbg_mean_cnt0 << endl;
|
||||
}
|
||||
|
||||
void dbg_mean_of(int v) {
|
||||
|
||||
dbg_mean_cnt0++;
|
||||
dbg_mean_cnt1 += v;
|
||||
}
|
||||
|
||||
void dbg_hit_on(bool b) {
|
||||
|
||||
dbg_hit_cnt0++;
|
||||
if (b)
|
||||
dbg_hit_cnt1++;
|
||||
}
|
||||
static uint64_t hits[2], means[2];
|
||||
|
||||
void dbg_hit_on(bool b) { hits[0]++; if (b) hits[1]++; }
|
||||
void dbg_hit_on_c(bool c, bool b) { if (c) dbg_hit_on(b); }
|
||||
void dbg_before() { dbg_hit_on(false); }
|
||||
void dbg_after() { dbg_hit_on(true); dbg_hit_cnt0--; }
|
||||
void dbg_mean_of(int v) { means[0]++; means[1] += v; }
|
||||
|
||||
void dbg_print() {
|
||||
|
||||
if (hits[0])
|
||||
cerr << "Total " << hits[0] << " Hits " << hits[1]
|
||||
<< " hit rate (%) " << 100 * hits[1] / hits[0] << endl;
|
||||
|
||||
if (means[0])
|
||||
cerr << "Total " << means[0] << " Mean "
|
||||
<< (float)means[1] / means[0] << endl;
|
||||
}
|
||||
|
||||
|
||||
/// get_system_time() returns the current system time, measured in milliseconds
|
||||
/// system_time() returns the current system time, measured in milliseconds
|
||||
|
||||
int get_system_time() {
|
||||
int system_time() {
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
struct _timeb t;
|
||||
|
@ -155,16 +135,16 @@ int cpu_count() {
|
|||
#if defined(_MSC_VER)
|
||||
SYSTEM_INFO s;
|
||||
GetSystemInfo(&s);
|
||||
return Min(s.dwNumberOfProcessors, MAX_THREADS);
|
||||
return std::min(int(s.dwNumberOfProcessors), MAX_THREADS);
|
||||
#else
|
||||
|
||||
# if defined(_SC_NPROCESSORS_ONLN)
|
||||
return Min(sysconf(_SC_NPROCESSORS_ONLN), MAX_THREADS);
|
||||
return std::min((int)sysconf(_SC_NPROCESSORS_ONLN), MAX_THREADS);
|
||||
# elif defined(__hpux)
|
||||
struct pst_dynamic psd;
|
||||
if (pstat_getdynamic(&psd, sizeof(psd), (size_t)1, 0) == -1)
|
||||
return 1;
|
||||
return Min(psd.psd_proc_cnt, MAX_THREADS);
|
||||
return std::min((int)psd.psd_proc_cnt, MAX_THREADS);
|
||||
# else
|
||||
return 1;
|
||||
# endif
|
||||
|
@ -173,78 +153,32 @@ int cpu_count() {
|
|||
}
|
||||
|
||||
|
||||
/// Check for console input. Original code from Beowulf, Olithink and Greko
|
||||
/// timed_wait() waits for msec milliseconds. It is mainly an helper to wrap
|
||||
/// conversion from milliseconds to struct timespec, as used by pthreads.
|
||||
|
||||
#ifndef _WIN32
|
||||
|
||||
int input_available() {
|
||||
|
||||
fd_set readfds;
|
||||
struct timeval timeout;
|
||||
|
||||
FD_ZERO(&readfds);
|
||||
FD_SET(fileno(stdin), &readfds);
|
||||
timeout.tv_sec = 0; // Set to timeout immediately
|
||||
timeout.tv_usec = 0;
|
||||
select(16, &readfds, 0, 0, &timeout);
|
||||
|
||||
return (FD_ISSET(fileno(stdin), &readfds));
|
||||
}
|
||||
void timed_wait(WaitCondition* sleepCond, Lock* sleepLock, int msec) {
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
int tm = msec;
|
||||
#else
|
||||
struct timeval t;
|
||||
struct timespec abstime, *tm = &abstime;
|
||||
|
||||
int input_available() {
|
||||
gettimeofday(&t, NULL);
|
||||
|
||||
static HANDLE inh = NULL;
|
||||
static bool usePipe = false;
|
||||
INPUT_RECORD rec[256];
|
||||
DWORD nchars, recCnt;
|
||||
abstime.tv_sec = t.tv_sec + (msec / 1000);
|
||||
abstime.tv_nsec = (t.tv_usec + (msec % 1000) * 1000) * 1000;
|
||||
|
||||
if (!inh)
|
||||
if (abstime.tv_nsec > 1000000000LL)
|
||||
{
|
||||
inh = GetStdHandle(STD_INPUT_HANDLE);
|
||||
if (GetConsoleMode(inh, &nchars))
|
||||
{
|
||||
SetConsoleMode(inh, nchars & ~(ENABLE_MOUSE_INPUT | ENABLE_WINDOW_INPUT));
|
||||
FlushConsoleInputBuffer(inh);
|
||||
} else
|
||||
usePipe = true;
|
||||
abstime.tv_sec += 1;
|
||||
abstime.tv_nsec -= 1000000000LL;
|
||||
}
|
||||
|
||||
// When using Standard C input functions, also check if there
|
||||
// is anything in the buffer. After a call to such functions,
|
||||
// the input waiting in the pipe will be copied to the buffer,
|
||||
// and the call to PeekNamedPipe can indicate no input available.
|
||||
// Setting stdin to unbuffered was not enough. [from Greko]
|
||||
if (stdin->_cnt > 0)
|
||||
return 1;
|
||||
|
||||
// When running under a GUI the input commands are sent to us
|
||||
// directly over the internal pipe. If PeekNamedPipe() returns 0
|
||||
// then something went wrong. Probably the parent program exited.
|
||||
// Returning 1 will make the next call to the input function
|
||||
// return EOF, where this should be catched then.
|
||||
if (usePipe)
|
||||
return PeekNamedPipe(inh, NULL, 0, NULL, &nchars, NULL) ? nchars : 1;
|
||||
|
||||
// Count the number of unread input records, including keyboard,
|
||||
// mouse, and window-resizing input records.
|
||||
GetNumberOfConsoleInputEvents(inh, &nchars);
|
||||
|
||||
// Read data from console without removing it from the buffer
|
||||
if (nchars <= 0 || !PeekConsoleInput(inh, rec, Min(nchars, 256), &recCnt))
|
||||
return 0;
|
||||
|
||||
// Search for at least one keyboard event
|
||||
for (DWORD i = 0; i < recCnt; i++)
|
||||
if (rec[i].EventType == KEY_EVENT)
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
cond_timedwait(sleepCond, sleepLock, tm);
|
||||
}
|
||||
|
||||
|
||||
/// prefetch() preloads the given address in L1/L2 cache. This is a non
|
||||
/// blocking function and do not stalls the CPU waiting for data to be
|
||||
|
@ -257,11 +191,11 @@ void prefetch(char*) {}
|
|||
|
||||
void prefetch(char* addr) {
|
||||
|
||||
#if defined(__INTEL_COMPILER) || defined(__ICL)
|
||||
# if defined(__INTEL_COMPILER) || defined(__ICL)
|
||||
// This hack prevents prefetches to be optimized away by
|
||||
// Intel compiler. Both MSVC and gcc seems not affected.
|
||||
__asm__ ("");
|
||||
#endif
|
||||
# endif
|
||||
|
||||
_mm_prefetch(addr, _MM_HINT_T2);
|
||||
_mm_prefetch(addr+64, _MM_HINT_T2); // 64 bytes ahead
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -20,22 +20,31 @@
|
|||
#if !defined(MISC_H_INCLUDED)
|
||||
#define MISC_H_INCLUDED
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
|
||||
#include "lock.h"
|
||||
#include "types.h"
|
||||
|
||||
extern const std::string engine_name();
|
||||
extern const std::string engine_authors();
|
||||
extern int get_system_time();
|
||||
extern const std::string engine_info(bool to_uci = false);
|
||||
extern int system_time();
|
||||
extern int cpu_count();
|
||||
extern int input_available();
|
||||
extern void timed_wait(WaitCondition*, Lock*, int);
|
||||
extern void prefetch(char* addr);
|
||||
|
||||
extern void dbg_hit_on(bool b);
|
||||
extern void dbg_hit_on_c(bool c, bool b);
|
||||
extern void dbg_before();
|
||||
extern void dbg_after();
|
||||
extern void dbg_mean_of(int v);
|
||||
extern void dbg_print_hit_rate();
|
||||
extern void dbg_print_mean();
|
||||
extern void dbg_print();
|
||||
|
||||
class Position;
|
||||
extern Move move_from_uci(const Position& pos, const std::string& str);
|
||||
extern const std::string move_to_uci(Move m, bool chess960);
|
||||
extern const std::string move_to_san(Position& pos, Move m);
|
||||
|
||||
struct Log : public std::ofstream {
|
||||
Log(const std::string& f = "log.txt") : std::ofstream(f.c_str(), std::ios::out | std::ios::app) {}
|
||||
~Log() { if (is_open()) close(); }
|
||||
};
|
||||
|
||||
#endif // !defined(MISC_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -19,26 +19,17 @@
|
|||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <iomanip>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
|
||||
#include "move.h"
|
||||
#include "movegen.h"
|
||||
#include "search.h"
|
||||
#include "position.h"
|
||||
|
||||
using std::string;
|
||||
|
||||
namespace {
|
||||
const string time_string(int milliseconds);
|
||||
const string score_string(Value v);
|
||||
}
|
||||
|
||||
|
||||
/// move_to_uci() converts a move to a string in coordinate notation
|
||||
/// (g1f3, a7a8q, etc.). The only special case is castling moves, where we
|
||||
/// print in the e1g1 notation in normal chess mode, and in e1h1 notation in
|
||||
/// Chess960 mode.
|
||||
/// Chess960 mode. Instead internally Move is coded as "king captures rook".
|
||||
|
||||
const string move_to_uci(Move m, bool chess960) {
|
||||
|
||||
|
@ -52,14 +43,11 @@ const string move_to_uci(Move m, bool chess960) {
|
|||
if (m == MOVE_NULL)
|
||||
return "0000";
|
||||
|
||||
if (move_is_short_castle(m) && !chess960)
|
||||
return from == SQ_E1 ? "e1g1" : "e8g8";
|
||||
if (is_castle(m) && !chess960)
|
||||
to = from + (file_of(to) == FILE_H ? Square(2) : -Square(2));
|
||||
|
||||
if (move_is_long_castle(m) && !chess960)
|
||||
return from == SQ_E1 ? "e1c1" : "e8c8";
|
||||
|
||||
if (move_is_promotion(m))
|
||||
promotion = char(tolower(piece_type_to_char(move_promotion_piece(m))));
|
||||
if (is_promotion(m))
|
||||
promotion = char(tolower(piece_type_to_char(promotion_piece_type(m))));
|
||||
|
||||
return square_to_string(from) + square_to_string(to) + promotion;
|
||||
}
|
||||
|
@ -71,88 +59,91 @@ const string move_to_uci(Move m, bool chess960) {
|
|||
|
||||
Move move_from_uci(const Position& pos, const string& str) {
|
||||
|
||||
MoveStack mlist[MAX_MOVES];
|
||||
MoveStack* last = generate<MV_LEGAL>(pos, mlist);
|
||||
|
||||
for (MoveStack* cur = mlist; cur != last; cur++)
|
||||
if (str == move_to_uci(cur->move, pos.is_chess960()))
|
||||
return cur->move;
|
||||
for (MoveList<MV_LEGAL> ml(pos); !ml.end(); ++ml)
|
||||
if (str == move_to_uci(ml.move(), pos.is_chess960()))
|
||||
return ml.move();
|
||||
|
||||
return MOVE_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// move_to_san() takes a position and a move as input, where it is assumed
|
||||
/// that the move is a legal move from the position. The return value is
|
||||
/// that the move is a legal move for the position. The return value is
|
||||
/// a string containing the move in short algebraic notation.
|
||||
|
||||
const string move_to_san(Position& pos, Move m) {
|
||||
|
||||
assert(pos.is_ok());
|
||||
assert(move_is_ok(m));
|
||||
|
||||
MoveStack mlist[MAX_MOVES];
|
||||
Square from = move_from(m);
|
||||
Square to = move_to(m);
|
||||
PieceType pt = pos.type_of_piece_on(from);
|
||||
string san;
|
||||
|
||||
if (m == MOVE_NONE)
|
||||
return "(none)";
|
||||
|
||||
if (m == MOVE_NULL)
|
||||
return "(null)";
|
||||
|
||||
if (move_is_long_castle(m))
|
||||
san = "O-O-O";
|
||||
else if (move_is_short_castle(m))
|
||||
san = "O-O";
|
||||
assert(is_ok(m));
|
||||
|
||||
Bitboard attackers;
|
||||
bool ambiguousMove, ambiguousFile, ambiguousRank;
|
||||
Square sq, from = move_from(m);
|
||||
Square to = move_to(m);
|
||||
PieceType pt = type_of(pos.piece_on(from));
|
||||
string san;
|
||||
|
||||
if (is_castle(m))
|
||||
san = (move_to(m) < move_from(m) ? "O-O-O" : "O-O");
|
||||
else
|
||||
{
|
||||
if (pt != PAWN)
|
||||
{
|
||||
san = piece_type_to_char(pt);
|
||||
|
||||
// Collect all legal moves of piece type 'pt' with destination 'to'
|
||||
MoveStack* last = generate<MV_LEGAL>(pos, mlist);
|
||||
int f = 0, r = 0;
|
||||
|
||||
for (MoveStack* cur = mlist; cur != last; cur++)
|
||||
if ( move_to(cur->move) == to
|
||||
&& pos.type_of_piece_on(move_from(cur->move)) == pt)
|
||||
{
|
||||
if (square_file(move_from(cur->move)) == square_file(from))
|
||||
f++;
|
||||
|
||||
if (square_rank(move_from(cur->move)) == square_rank(from))
|
||||
r++;
|
||||
}
|
||||
|
||||
assert(f > 0 && r > 0);
|
||||
|
||||
// Disambiguation if we have more then one piece with destination 'to'
|
||||
if (f == 1 && r > 1)
|
||||
san += file_to_char(square_file(from));
|
||||
else if (f > 1 && r == 1)
|
||||
san += rank_to_char(square_rank(from));
|
||||
else if (f > 1 && r > 1)
|
||||
san += square_to_string(from);
|
||||
// note that for pawns is not needed because starting file is explicit.
|
||||
attackers = pos.attackers_to(to) & pos.pieces(pt, pos.side_to_move());
|
||||
clear_bit(&attackers, from);
|
||||
ambiguousMove = ambiguousFile = ambiguousRank = false;
|
||||
|
||||
while (attackers)
|
||||
{
|
||||
sq = pop_1st_bit(&attackers);
|
||||
|
||||
// Pinned pieces are not included in the possible sub-set
|
||||
if (!pos.pl_move_is_legal(make_move(sq, to), pos.pinned_pieces()))
|
||||
continue;
|
||||
|
||||
if (file_of(sq) == file_of(from))
|
||||
ambiguousFile = true;
|
||||
|
||||
if (rank_of(sq) == rank_of(from))
|
||||
ambiguousRank = true;
|
||||
|
||||
ambiguousMove = true;
|
||||
}
|
||||
|
||||
if (ambiguousMove)
|
||||
{
|
||||
if (!ambiguousFile)
|
||||
san += file_to_char(file_of(from));
|
||||
else if (!ambiguousRank)
|
||||
san += rank_to_char(rank_of(from));
|
||||
else
|
||||
san += square_to_string(from);
|
||||
}
|
||||
}
|
||||
|
||||
if (pos.move_is_capture(m))
|
||||
if (pos.is_capture(m))
|
||||
{
|
||||
if (pt == PAWN)
|
||||
san += file_to_char(square_file(from));
|
||||
san += file_to_char(file_of(from));
|
||||
|
||||
san += 'x';
|
||||
}
|
||||
|
||||
san += square_to_string(to);
|
||||
|
||||
if (move_is_promotion(m))
|
||||
if (is_promotion(m))
|
||||
{
|
||||
san += '=';
|
||||
san += piece_type_to_char(move_promotion_piece(m));
|
||||
san += piece_type_to_char(promotion_piece_type(m));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -166,93 +157,3 @@ const string move_to_san(Position& pos, Move m) {
|
|||
|
||||
return san;
|
||||
}
|
||||
|
||||
|
||||
/// pretty_pv() creates a human-readable string from a position and a PV.
|
||||
/// It is used to write search information to the log file (which is created
|
||||
/// when the UCI parameter "Use Search Log" is "true").
|
||||
|
||||
const string pretty_pv(Position& pos, int depth, Value score, int time, Move pv[]) {
|
||||
|
||||
const int64_t K = 1000;
|
||||
const int64_t M = 1000000;
|
||||
const int startColumn = 28;
|
||||
const size_t maxLength = 80 - startColumn;
|
||||
const string lf = string("\n") + string(startColumn, ' ');
|
||||
|
||||
StateInfo state[PLY_MAX_PLUS_2], *st = state;
|
||||
Move* m = pv;
|
||||
string san;
|
||||
std::stringstream s;
|
||||
size_t length = 0;
|
||||
|
||||
// First print depth, score, time and searched nodes...
|
||||
s << std::setw(2) << depth
|
||||
<< std::setw(8) << score_string(score)
|
||||
<< std::setw(8) << time_string(time);
|
||||
|
||||
if (pos.nodes_searched() < M)
|
||||
s << std::setw(8) << pos.nodes_searched() / 1 << " ";
|
||||
else if (pos.nodes_searched() < K * M)
|
||||
s << std::setw(7) << pos.nodes_searched() / K << "K ";
|
||||
else
|
||||
s << std::setw(7) << pos.nodes_searched() / M << "M ";
|
||||
|
||||
// ...then print the full PV line in short algebraic notation
|
||||
while (*m != MOVE_NONE)
|
||||
{
|
||||
san = move_to_san(pos, *m);
|
||||
length += san.length() + 1;
|
||||
|
||||
if (length > maxLength)
|
||||
{
|
||||
length = san.length() + 1;
|
||||
s << lf;
|
||||
}
|
||||
s << san << ' ';
|
||||
|
||||
pos.do_move(*m++, *st++);
|
||||
}
|
||||
|
||||
// Restore original position before to leave
|
||||
while (m != pv) pos.undo_move(*--m);
|
||||
|
||||
return s.str();
|
||||
}
|
||||
|
||||
|
||||
namespace {
|
||||
|
||||
const string time_string(int millisecs) {
|
||||
|
||||
const int MSecMinute = 1000 * 60;
|
||||
const int MSecHour = 1000 * 60 * 60;
|
||||
|
||||
int hours = millisecs / MSecHour;
|
||||
int minutes = (millisecs % MSecHour) / MSecMinute;
|
||||
int seconds = ((millisecs % MSecHour) % MSecMinute) / 1000;
|
||||
|
||||
std::stringstream s;
|
||||
|
||||
if (hours)
|
||||
s << hours << ':';
|
||||
|
||||
s << std::setfill('0') << std::setw(2) << minutes << ':' << std::setw(2) << seconds;
|
||||
return s.str();
|
||||
}
|
||||
|
||||
|
||||
const string score_string(Value v) {
|
||||
|
||||
std::stringstream s;
|
||||
|
||||
if (v >= VALUE_MATE - 200)
|
||||
s << "#" << (VALUE_MATE - v + 1) / 2;
|
||||
else if (v <= -VALUE_MATE + 200)
|
||||
s << "-#" << (VALUE_MATE + v) / 2;
|
||||
else
|
||||
s << std::setprecision(2) << std::fixed << std::showpos << float(v) / PawnValueMidgame;
|
||||
|
||||
return s.str();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,195 +0,0 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Stockfish is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#if !defined(MOVE_H_INCLUDED)
|
||||
#define MOVE_H_INCLUDED
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "misc.h"
|
||||
#include "types.h"
|
||||
|
||||
// Maximum number of allowed moves per position
|
||||
const int MAX_MOVES = 256;
|
||||
|
||||
/// A move needs 16 bits to be stored
|
||||
///
|
||||
/// bit 0- 5: destination square (from 0 to 63)
|
||||
/// bit 6-11: origin square (from 0 to 63)
|
||||
/// bit 12-13: promotion piece type - 2 (from KNIGHT-2 to QUEEN-2)
|
||||
/// bit 14-15: special move flag: promotion (1), en passant (2), castle (3)
|
||||
///
|
||||
/// Special cases are MOVE_NONE and MOVE_NULL. We can sneak these in
|
||||
/// because in any normal move destination square is always different
|
||||
/// from origin square while MOVE_NONE and MOVE_NULL have the same
|
||||
/// origin and destination square, 0 and 1 respectively.
|
||||
|
||||
enum Move {
|
||||
MOVE_NONE = 0,
|
||||
MOVE_NULL = 65
|
||||
};
|
||||
|
||||
|
||||
struct MoveStack {
|
||||
Move move;
|
||||
int score;
|
||||
};
|
||||
|
||||
inline bool operator<(const MoveStack& f, const MoveStack& s) { return f.score < s.score; }
|
||||
|
||||
// An helper insertion sort implementation, works with pointers and iterators
|
||||
template<typename T, typename K>
|
||||
inline void insertion_sort(K firstMove, K lastMove)
|
||||
{
|
||||
T value;
|
||||
K cur, p, d;
|
||||
|
||||
if (firstMove != lastMove)
|
||||
for (cur = firstMove + 1; cur != lastMove; cur++)
|
||||
{
|
||||
p = d = cur;
|
||||
value = *p--;
|
||||
if (*p < value)
|
||||
{
|
||||
do *d = *p;
|
||||
while (--d != firstMove && *--p < value);
|
||||
*d = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Our dedicated sort in range [firstMove, lastMove), first splits
|
||||
// positive scores from ramining then order seaprately the two sets.
|
||||
template<typename T>
|
||||
inline void sort_moves(T* firstMove, T* lastMove, T** lastPositive)
|
||||
{
|
||||
T tmp;
|
||||
T *p, *d;
|
||||
|
||||
d = lastMove;
|
||||
p = firstMove - 1;
|
||||
|
||||
d->score = -1; // right guard
|
||||
|
||||
// Split positives vs non-positives
|
||||
do {
|
||||
while ((++p)->score > 0) {}
|
||||
|
||||
if (p != d)
|
||||
{
|
||||
while (--d != p && d->score <= 0) {}
|
||||
|
||||
tmp = *p;
|
||||
*p = *d;
|
||||
*d = tmp;
|
||||
}
|
||||
|
||||
} while (p != d);
|
||||
|
||||
// Sort just positive scored moves, remaining only when we get there
|
||||
insertion_sort<T, T*>(firstMove, p);
|
||||
*lastPositive = p;
|
||||
}
|
||||
|
||||
// Picks up the best move in range [curMove, lastMove), one per cycle.
|
||||
// It is faster then sorting all the moves in advance when moves are few,
|
||||
// as normally are the possible captures. Note that is not a stable alghoritm.
|
||||
template<typename T>
|
||||
inline T pick_best(T* curMove, T* lastMove)
|
||||
{
|
||||
T bestMove, tmp;
|
||||
|
||||
bestMove = *curMove;
|
||||
while (++curMove != lastMove)
|
||||
{
|
||||
if (bestMove < *curMove)
|
||||
{
|
||||
tmp = *curMove;
|
||||
*curMove = bestMove;
|
||||
bestMove = tmp;
|
||||
}
|
||||
}
|
||||
return bestMove;
|
||||
}
|
||||
|
||||
|
||||
inline Square move_from(Move m) {
|
||||
return Square((int(m) >> 6) & 0x3F);
|
||||
}
|
||||
|
||||
inline Square move_to(Move m) {
|
||||
return Square(m & 0x3F);
|
||||
}
|
||||
|
||||
inline bool move_is_special(Move m) {
|
||||
return m & (3 << 14);
|
||||
}
|
||||
|
||||
inline bool move_is_promotion(Move m) {
|
||||
return (m & (3 << 14)) == (1 << 14);
|
||||
}
|
||||
|
||||
inline int move_is_ep(Move m) {
|
||||
return (m & (3 << 14)) == (2 << 14);
|
||||
}
|
||||
|
||||
inline int move_is_castle(Move m) {
|
||||
return (m & (3 << 14)) == (3 << 14);
|
||||
}
|
||||
|
||||
inline bool move_is_short_castle(Move m) {
|
||||
return move_is_castle(m) && (move_to(m) > move_from(m));
|
||||
}
|
||||
|
||||
inline bool move_is_long_castle(Move m) {
|
||||
return move_is_castle(m) && (move_to(m) < move_from(m));
|
||||
}
|
||||
|
||||
inline PieceType move_promotion_piece(Move m) {
|
||||
return move_is_promotion(m) ? PieceType(((int(m) >> 12) & 3) + 2) : PIECE_TYPE_NONE;
|
||||
}
|
||||
|
||||
inline Move make_move(Square from, Square to) {
|
||||
return Move(int(to) | (int(from) << 6));
|
||||
}
|
||||
|
||||
inline Move make_promotion_move(Square from, Square to, PieceType promotion) {
|
||||
return Move(int(to) | (int(from) << 6) | ((int(promotion) - 2) << 12) | (1 << 14));
|
||||
}
|
||||
|
||||
inline Move make_ep_move(Square from, Square to) {
|
||||
return Move(int(to) | (int(from) << 6) | (2 << 14));
|
||||
}
|
||||
|
||||
inline Move make_castle_move(Square from, Square to) {
|
||||
return Move(int(to) | (int(from) << 6) | (3 << 14));
|
||||
}
|
||||
|
||||
inline bool move_is_ok(Move m) {
|
||||
return move_from(m) != move_to(m); // Catches also MOVE_NONE
|
||||
}
|
||||
|
||||
class Position;
|
||||
|
||||
extern const std::string move_to_uci(Move m, bool chess960);
|
||||
extern Move move_from_uci(const Position& pos, const std::string& str);
|
||||
extern const std::string move_to_san(Position& pos, Move m);
|
||||
extern const std::string pretty_pv(Position& pos, int depth, Value score, int time, Move pv[]);
|
||||
|
||||
#endif // !defined(MOVE_H_INCLUDED)
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -18,9 +18,11 @@
|
|||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <algorithm>
|
||||
|
||||
#include "bitcount.h"
|
||||
#include "movegen.h"
|
||||
#include "position.h"
|
||||
|
||||
// Simple macro to wrap a very common while loop, no facny, no flexibility,
|
||||
// hardcoded list name 'mlist' and from square 'from'.
|
||||
|
@ -45,14 +47,13 @@ namespace {
|
|||
template<PieceType Pt>
|
||||
inline MoveStack* generate_discovered_checks(const Position& pos, MoveStack* mlist, Square from) {
|
||||
|
||||
assert(Pt != QUEEN);
|
||||
assert(Pt != QUEEN && Pt != PAWN);
|
||||
|
||||
Bitboard b = pos.attacks_from<Pt>(from) & pos.empty_squares();
|
||||
|
||||
if (Pt == KING)
|
||||
{
|
||||
Square ksq = pos.king_square(opposite_color(pos.side_to_move()));
|
||||
b &= ~QueenPseudoAttacks[ksq];
|
||||
}
|
||||
b &= ~QueenPseudoAttacks[pos.king_square(flip(pos.side_to_move()))];
|
||||
|
||||
SERIALIZE_MOVES(b);
|
||||
return mlist;
|
||||
}
|
||||
|
@ -60,13 +61,13 @@ namespace {
|
|||
template<PieceType Pt>
|
||||
inline MoveStack* generate_direct_checks(const Position& pos, MoveStack* mlist, Color us,
|
||||
Bitboard dc, Square ksq) {
|
||||
assert(Pt != KING);
|
||||
assert(Pt != KING && Pt != PAWN);
|
||||
|
||||
Bitboard checkSqs, b;
|
||||
Square from;
|
||||
const Square* ptr = pos.piece_list_begin(us, Pt);
|
||||
const Square* pl = pos.piece_list(us, Pt);
|
||||
|
||||
if ((from = *ptr++) == SQ_NONE)
|
||||
if ((from = *pl++) == SQ_NONE)
|
||||
return mlist;
|
||||
|
||||
checkSqs = pos.attacks_from<Pt>(ksq) & pos.empty_squares();
|
||||
|
@ -84,7 +85,7 @@ namespace {
|
|||
b = pos.attacks_from<Pt>(from) & checkSqs;
|
||||
SERIALIZE_MOVES(b);
|
||||
|
||||
} while ((from = *ptr++) != SQ_NONE);
|
||||
} while ((from = *pl++) != SQ_NONE);
|
||||
|
||||
return mlist;
|
||||
}
|
||||
|
@ -111,15 +112,15 @@ namespace {
|
|||
|
||||
Bitboard b;
|
||||
Square from;
|
||||
const Square* ptr = pos.piece_list_begin(us, Pt);
|
||||
const Square* pl = pos.piece_list(us, Pt);
|
||||
|
||||
if (*ptr != SQ_NONE)
|
||||
if (*pl != SQ_NONE)
|
||||
{
|
||||
do {
|
||||
from = *ptr;
|
||||
from = *pl;
|
||||
b = pos.attacks_from<Pt>(from) & target;
|
||||
SERIALIZE_MOVES(b);
|
||||
} while (*++ptr != SQ_NONE);
|
||||
} while (*++pl != SQ_NONE);
|
||||
}
|
||||
return mlist;
|
||||
}
|
||||
|
@ -150,14 +151,13 @@ namespace {
|
|||
template<MoveType Type>
|
||||
MoveStack* generate(const Position& pos, MoveStack* mlist) {
|
||||
|
||||
assert(pos.is_ok());
|
||||
assert(!pos.in_check());
|
||||
|
||||
Color us = pos.side_to_move();
|
||||
Bitboard target;
|
||||
|
||||
if (Type == MV_CAPTURE || Type == MV_NON_EVASION)
|
||||
target = pos.pieces_of_color(opposite_color(us));
|
||||
target = pos.pieces(flip(us));
|
||||
else if (Type == MV_NON_CAPTURE)
|
||||
target = pos.empty_squares();
|
||||
else
|
||||
|
@ -178,12 +178,12 @@ MoveStack* generate(const Position& pos, MoveStack* mlist) {
|
|||
mlist = generate_piece_moves<QUEEN>(pos, mlist, us, target);
|
||||
mlist = generate_piece_moves<KING>(pos, mlist, us, target);
|
||||
|
||||
if (Type != MV_CAPTURE)
|
||||
if (Type != MV_CAPTURE && pos.can_castle(us))
|
||||
{
|
||||
if (pos.can_castle_kingside(us))
|
||||
if (pos.can_castle(us == WHITE ? WHITE_OO : BLACK_OO))
|
||||
mlist = generate_castle_moves<KING_SIDE>(pos, mlist, us);
|
||||
|
||||
if (pos.can_castle_queenside(us))
|
||||
if (pos.can_castle(us == WHITE ? WHITE_OOO : BLACK_OOO))
|
||||
mlist = generate_castle_moves<QUEEN_SIDE>(pos, mlist, us);
|
||||
}
|
||||
|
||||
|
@ -196,28 +196,27 @@ template MoveStack* generate<MV_NON_CAPTURE>(const Position& pos, MoveStack* mli
|
|||
template MoveStack* generate<MV_NON_EVASION>(const Position& pos, MoveStack* mlist);
|
||||
|
||||
|
||||
/// generate_non_capture_checks() generates all pseudo-legal non-captures and knight
|
||||
/// generate<MV_NON_CAPTURE_CHECK> generates all pseudo-legal non-captures and knight
|
||||
/// underpromotions that give check. Returns a pointer to the end of the move list.
|
||||
template<>
|
||||
MoveStack* generate<MV_NON_CAPTURE_CHECK>(const Position& pos, MoveStack* mlist) {
|
||||
|
||||
assert(pos.is_ok());
|
||||
assert(!pos.in_check());
|
||||
|
||||
Bitboard b, dc;
|
||||
Square from;
|
||||
Color us = pos.side_to_move();
|
||||
Square ksq = pos.king_square(opposite_color(us));
|
||||
Square ksq = pos.king_square(flip(us));
|
||||
|
||||
assert(pos.piece_on(ksq) == make_piece(opposite_color(us), KING));
|
||||
assert(pos.piece_on(ksq) == make_piece(flip(us), KING));
|
||||
|
||||
// Discovered non-capture checks
|
||||
b = dc = pos.discovered_check_candidates(us);
|
||||
b = dc = pos.discovered_check_candidates();
|
||||
|
||||
while (b)
|
||||
{
|
||||
from = pop_1st_bit(&b);
|
||||
switch (pos.type_of_piece_on(from))
|
||||
switch (type_of(pos.piece_on(from)))
|
||||
{
|
||||
case PAWN: /* Will be generated togheter with pawns direct checks */ break;
|
||||
case KNIGHT: mlist = generate_discovered_checks<KNIGHT>(pos, mlist, from); break;
|
||||
|
@ -237,12 +236,11 @@ MoveStack* generate<MV_NON_CAPTURE_CHECK>(const Position& pos, MoveStack* mlist)
|
|||
}
|
||||
|
||||
|
||||
/// generate_evasions() generates all pseudo-legal check evasions when
|
||||
/// the side to move is in check. Returns a pointer to the end of the move list.
|
||||
/// generate<MV_EVASION> generates all pseudo-legal check evasions when the side
|
||||
/// to move is in check. Returns a pointer to the end of the move list.
|
||||
template<>
|
||||
MoveStack* generate<MV_EVASION>(const Position& pos, MoveStack* mlist) {
|
||||
|
||||
assert(pos.is_ok());
|
||||
assert(pos.in_check());
|
||||
|
||||
Bitboard b, target;
|
||||
|
@ -251,7 +249,7 @@ MoveStack* generate<MV_EVASION>(const Position& pos, MoveStack* mlist) {
|
|||
Color us = pos.side_to_move();
|
||||
Square ksq = pos.king_square(us);
|
||||
Bitboard checkers = pos.checkers();
|
||||
Bitboard sliderAttacks = EmptyBoardBB;
|
||||
Bitboard sliderAttacks = 0;
|
||||
|
||||
assert(pos.piece_on(ksq) == make_piece(us, KING));
|
||||
assert(checkers);
|
||||
|
@ -265,26 +263,31 @@ MoveStack* generate<MV_EVASION>(const Position& pos, MoveStack* mlist) {
|
|||
checkersCnt++;
|
||||
checksq = pop_1st_bit(&b);
|
||||
|
||||
assert(pos.color_of_piece_on(checksq) == opposite_color(us));
|
||||
assert(color_of(pos.piece_on(checksq)) == flip(us));
|
||||
|
||||
switch (pos.type_of_piece_on(checksq))
|
||||
switch (type_of(pos.piece_on(checksq)))
|
||||
{
|
||||
case BISHOP: sliderAttacks |= BishopPseudoAttacks[checksq]; break;
|
||||
case ROOK: sliderAttacks |= RookPseudoAttacks[checksq]; break;
|
||||
case QUEEN:
|
||||
// In case of a queen remove also squares attacked in the other direction to
|
||||
// avoid possible illegal moves when queen and king are on adjacent squares.
|
||||
if (RookPseudoAttacks[checksq] & (1ULL << ksq))
|
||||
sliderAttacks |= RookPseudoAttacks[checksq] | pos.attacks_from<BISHOP>(checksq);
|
||||
// If queen and king are far we can safely remove all the squares attacked
|
||||
// in the other direction becuase are not reachable by the king anyway.
|
||||
if (squares_between(ksq, checksq) || (RookPseudoAttacks[checksq] & (1ULL << ksq)))
|
||||
sliderAttacks |= QueenPseudoAttacks[checksq];
|
||||
|
||||
// Otherwise, if king and queen are adjacent and on a diagonal line, we need to
|
||||
// use real rook attacks to check if king is safe to move in the other direction.
|
||||
// For example: king in B2, queen in A1 a knight in B1, and we can safely move to C1.
|
||||
else
|
||||
sliderAttacks |= BishopPseudoAttacks[checksq] | pos.attacks_from<ROOK>(checksq);
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} while (b);
|
||||
|
||||
// Generate evasions for king, capture and non capture moves
|
||||
b = pos.attacks_from<KING>(ksq) & ~pos.pieces_of_color(us) & ~sliderAttacks;
|
||||
b = pos.attacks_from<KING>(ksq) & ~pos.pieces(us) & ~sliderAttacks;
|
||||
from = ksq;
|
||||
SERIALIZE_MOVES(b);
|
||||
|
||||
|
@ -304,26 +307,16 @@ MoveStack* generate<MV_EVASION>(const Position& pos, MoveStack* mlist) {
|
|||
}
|
||||
|
||||
|
||||
/// generate<MV_LEGAL / MV_PSEUDO_LEGAL> computes a complete list of legal
|
||||
/// or pseudo-legal moves in the current position.
|
||||
template<>
|
||||
MoveStack* generate<MV_PSEUDO_LEGAL>(const Position& pos, MoveStack* mlist) {
|
||||
|
||||
assert(pos.is_ok());
|
||||
|
||||
return pos.in_check() ? generate<MV_EVASION>(pos, mlist)
|
||||
: generate<MV_NON_EVASION>(pos, mlist);
|
||||
}
|
||||
/// generate<MV_LEGAL> computes a complete list of legal moves in the current position
|
||||
|
||||
template<>
|
||||
MoveStack* generate<MV_LEGAL>(const Position& pos, MoveStack* mlist) {
|
||||
|
||||
assert(pos.is_ok());
|
||||
|
||||
MoveStack *last, *cur = mlist;
|
||||
Bitboard pinned = pos.pinned_pieces(pos.side_to_move());
|
||||
Bitboard pinned = pos.pinned_pieces();
|
||||
|
||||
last = generate<MV_PSEUDO_LEGAL>(pos, mlist);
|
||||
last = pos.in_check() ? generate<MV_EVASION>(pos, mlist)
|
||||
: generate<MV_NON_EVASION>(pos, mlist);
|
||||
|
||||
// Remove illegal moves from the list
|
||||
while (cur != last)
|
||||
|
@ -360,7 +353,7 @@ namespace {
|
|||
return mlist;
|
||||
}
|
||||
|
||||
template<Color Us, MoveType Type, Square Delta>
|
||||
template<MoveType Type, Square Delta>
|
||||
inline MoveStack* generate_promotions(const Position& pos, MoveStack* mlist, Bitboard pawnsOn7, Bitboard target) {
|
||||
|
||||
const Bitboard TFileABB = (Delta == DELTA_NE || Delta == DELTA_SE ? FileABB : FileHBB);
|
||||
|
@ -391,7 +384,7 @@ namespace {
|
|||
// This is the only possible under promotion that can give a check
|
||||
// not already included in the queen-promotion.
|
||||
if ( Type == MV_CHECK
|
||||
&& bit_is_set(pos.attacks_from<KNIGHT>(to), pos.king_square(opposite_color(Us))))
|
||||
&& bit_is_set(pos.attacks_from<KNIGHT>(to), pos.king_square(Delta > 0 ? BLACK : WHITE)))
|
||||
(*mlist++).move = make_promotion_move(to - Delta, to, KNIGHT);
|
||||
else (void)pos; // Silence a warning under MSVC
|
||||
}
|
||||
|
@ -406,21 +399,21 @@ namespace {
|
|||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
const Bitboard TRank7BB = (Us == WHITE ? Rank7BB : Rank2BB);
|
||||
const Bitboard TRank3BB = (Us == WHITE ? Rank3BB : Rank6BB);
|
||||
const Square TDELTA_N = (Us == WHITE ? DELTA_N : DELTA_S);
|
||||
const Square TDELTA_NE = (Us == WHITE ? DELTA_NE : DELTA_SE);
|
||||
const Square TDELTA_NW = (Us == WHITE ? DELTA_NW : DELTA_SW);
|
||||
const Square UP = (Us == WHITE ? DELTA_N : DELTA_S);
|
||||
const Square RIGHT_UP = (Us == WHITE ? DELTA_NE : DELTA_SW);
|
||||
const Square LEFT_UP = (Us == WHITE ? DELTA_NW : DELTA_SE);
|
||||
|
||||
Square to;
|
||||
Bitboard b1, b2, dc1, dc2, pawnPushes, emptySquares;
|
||||
Bitboard pawns = pos.pieces(PAWN, Us);
|
||||
Bitboard pawnsOn7 = pawns & TRank7BB;
|
||||
Bitboard enemyPieces = (Type == MV_CAPTURE ? target : pos.pieces_of_color(Them));
|
||||
Bitboard enemyPieces = (Type == MV_CAPTURE ? target : pos.pieces(Them));
|
||||
|
||||
// Pre-calculate pawn pushes before changing emptySquares definition
|
||||
if (Type != MV_CAPTURE)
|
||||
{
|
||||
emptySquares = (Type == MV_NON_CAPTURE ? target : pos.empty_squares());
|
||||
pawnPushes = move_pawns<TDELTA_N>(pawns & ~TRank7BB) & emptySquares;
|
||||
pawnPushes = move_pawns<UP>(pawns & ~TRank7BB) & emptySquares;
|
||||
}
|
||||
|
||||
if (Type == MV_EVASION)
|
||||
|
@ -436,23 +429,23 @@ namespace {
|
|||
emptySquares = pos.empty_squares();
|
||||
|
||||
pawns &= ~TRank7BB;
|
||||
mlist = generate_promotions<Us, Type, TDELTA_NE>(pos, mlist, pawnsOn7, enemyPieces);
|
||||
mlist = generate_promotions<Us, Type, TDELTA_NW>(pos, mlist, pawnsOn7, enemyPieces);
|
||||
mlist = generate_promotions<Us, Type, TDELTA_N >(pos, mlist, pawnsOn7, emptySquares);
|
||||
mlist = generate_promotions<Type, RIGHT_UP>(pos, mlist, pawnsOn7, enemyPieces);
|
||||
mlist = generate_promotions<Type, LEFT_UP>(pos, mlist, pawnsOn7, enemyPieces);
|
||||
mlist = generate_promotions<Type, UP>(pos, mlist, pawnsOn7, emptySquares);
|
||||
}
|
||||
|
||||
// Standard captures
|
||||
if (Type == MV_CAPTURE || Type == MV_EVASION)
|
||||
{
|
||||
mlist = generate_pawn_captures<Type, TDELTA_NE>(mlist, pawns, enemyPieces);
|
||||
mlist = generate_pawn_captures<Type, TDELTA_NW>(mlist, pawns, enemyPieces);
|
||||
mlist = generate_pawn_captures<Type, RIGHT_UP>(mlist, pawns, enemyPieces);
|
||||
mlist = generate_pawn_captures<Type, LEFT_UP>(mlist, pawns, enemyPieces);
|
||||
}
|
||||
|
||||
// Single and double pawn pushes
|
||||
if (Type != MV_CAPTURE)
|
||||
{
|
||||
b1 = pawnPushes & emptySquares;
|
||||
b2 = move_pawns<TDELTA_N>(pawnPushes & TRank3BB) & emptySquares;
|
||||
b1 = (Type != MV_EVASION ? pawnPushes : pawnPushes & emptySquares);
|
||||
b2 = move_pawns<UP>(pawnPushes & TRank3BB) & emptySquares;
|
||||
|
||||
if (Type == MV_CHECK)
|
||||
{
|
||||
|
@ -465,37 +458,37 @@ namespace {
|
|||
// don't generate captures.
|
||||
if (pawns & target) // For CHECK type target is dc bitboard
|
||||
{
|
||||
dc1 = move_pawns<TDELTA_N>(pawns & target & ~file_bb(ksq)) & emptySquares;
|
||||
dc2 = move_pawns<TDELTA_N>(dc1 & TRank3BB) & emptySquares;
|
||||
dc1 = move_pawns<UP>(pawns & target & ~file_bb(ksq)) & emptySquares;
|
||||
dc2 = move_pawns<UP>(dc1 & TRank3BB) & emptySquares;
|
||||
|
||||
b1 |= dc1;
|
||||
b2 |= dc2;
|
||||
}
|
||||
}
|
||||
SERIALIZE_MOVES_D(b1, -TDELTA_N);
|
||||
SERIALIZE_MOVES_D(b2, -TDELTA_N -TDELTA_N);
|
||||
SERIALIZE_MOVES_D(b1, -UP);
|
||||
SERIALIZE_MOVES_D(b2, -UP -UP);
|
||||
}
|
||||
|
||||
// En passant captures
|
||||
if ((Type == MV_CAPTURE || Type == MV_EVASION) && pos.ep_square() != SQ_NONE)
|
||||
{
|
||||
assert(Us != WHITE || square_rank(pos.ep_square()) == RANK_6);
|
||||
assert(Us != BLACK || square_rank(pos.ep_square()) == RANK_3);
|
||||
assert(Us != WHITE || rank_of(pos.ep_square()) == RANK_6);
|
||||
assert(Us != BLACK || rank_of(pos.ep_square()) == RANK_3);
|
||||
|
||||
// An en passant capture can be an evasion only if the checking piece
|
||||
// is the double pushed pawn and so is in the target. Otherwise this
|
||||
// is a discovery check and we are forced to do otherwise.
|
||||
if (Type == MV_EVASION && !bit_is_set(target, pos.ep_square() - TDELTA_N))
|
||||
if (Type == MV_EVASION && !bit_is_set(target, pos.ep_square() - UP))
|
||||
return mlist;
|
||||
|
||||
b1 = pawns & pos.attacks_from<PAWN>(pos.ep_square(), Them);
|
||||
|
||||
assert(b1 != EmptyBoardBB);
|
||||
assert(b1);
|
||||
|
||||
while (b1)
|
||||
{
|
||||
to = pop_1st_bit(&b1);
|
||||
(*mlist++).move = make_ep_move(to, pos.ep_square());
|
||||
(*mlist++).move = make_enpassant_move(to, pos.ep_square());
|
||||
}
|
||||
}
|
||||
return mlist;
|
||||
|
@ -504,37 +497,45 @@ namespace {
|
|||
template<CastlingSide Side>
|
||||
MoveStack* generate_castle_moves(const Position& pos, MoveStack* mlist, Color us) {
|
||||
|
||||
Color them = opposite_color(us);
|
||||
Square ksq = pos.king_square(us);
|
||||
CastleRight f = CastleRight((Side == KING_SIDE ? WHITE_OO : WHITE_OOO) << us);
|
||||
Color them = flip(us);
|
||||
|
||||
assert(pos.piece_on(ksq) == make_piece(us, KING));
|
||||
// After castling, the rook and king's final positions are exactly the same
|
||||
// in Chess960 as they would be in standard chess.
|
||||
Square kfrom = pos.king_square(us);
|
||||
Square rfrom = pos.castle_rook_square(f);
|
||||
Square kto = relative_square(us, Side == KING_SIDE ? SQ_G1 : SQ_C1);
|
||||
Square rto = relative_square(us, Side == KING_SIDE ? SQ_F1 : SQ_D1);
|
||||
|
||||
Square rsq = (Side == KING_SIDE ? pos.initial_kr_square(us) : pos.initial_qr_square(us));
|
||||
Square s1 = relative_square(us, Side == KING_SIDE ? SQ_G1 : SQ_C1);
|
||||
Square s2 = relative_square(us, Side == KING_SIDE ? SQ_F1 : SQ_D1);
|
||||
Square s;
|
||||
bool illegal = false;
|
||||
assert(!pos.in_check());
|
||||
assert(pos.piece_on(kfrom) == make_piece(us, KING));
|
||||
assert(pos.piece_on(rfrom) == make_piece(us, ROOK));
|
||||
|
||||
assert(pos.piece_on(rsq) == make_piece(us, ROOK));
|
||||
// Unimpeded rule: All the squares between the king's initial and final squares
|
||||
// (including the final square), and all the squares between the rook's initial
|
||||
// and final squares (including the final square), must be vacant except for
|
||||
// the king and castling rook.
|
||||
for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); s++)
|
||||
if ( (s != kfrom && s != rfrom && !pos.square_is_empty(s))
|
||||
||(pos.attackers_to(s) & pos.pieces(them)))
|
||||
return mlist;
|
||||
|
||||
// It is a bit complicated to correctly handle Chess960
|
||||
for (s = Min(ksq, s1); s <= Max(ksq, s1); s++)
|
||||
if ( (s != ksq && s != rsq && pos.square_is_occupied(s))
|
||||
||(pos.attackers_to(s) & pos.pieces_of_color(them)))
|
||||
illegal = true;
|
||||
for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); s++)
|
||||
if (s != kfrom && s != rfrom && !pos.square_is_empty(s))
|
||||
return mlist;
|
||||
|
||||
for (s = Min(rsq, s2); s <= Max(rsq, s2); s++)
|
||||
if (s != ksq && s != rsq && pos.square_is_occupied(s))
|
||||
illegal = true;
|
||||
// Because we generate only legal castling moves we need to verify that
|
||||
// when moving the castling rook we do not discover some hidden checker.
|
||||
// For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1.
|
||||
if (pos.is_chess960())
|
||||
{
|
||||
Bitboard occ = pos.occupied_squares();
|
||||
clear_bit(&occ, rfrom);
|
||||
if (pos.attackers_to(kto, occ) & pos.pieces(them))
|
||||
return mlist;
|
||||
}
|
||||
|
||||
if ( Side == QUEEN_SIDE
|
||||
&& square_file(rsq) == FILE_B
|
||||
&& ( pos.piece_on(relative_square(us, SQ_A1)) == make_piece(them, ROOK)
|
||||
|| pos.piece_on(relative_square(us, SQ_A1)) == make_piece(them, QUEEN)))
|
||||
illegal = true;
|
||||
|
||||
if (!illegal)
|
||||
(*mlist++).move = make_castle_move(ksq, rsq);
|
||||
(*mlist++).move = make_castle_move(kfrom, rfrom);
|
||||
|
||||
return mlist;
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -20,8 +20,7 @@
|
|||
#if !defined(MOVEGEN_H_INCLUDED)
|
||||
#define MOVEGEN_H_INCLUDED
|
||||
|
||||
#include "move.h"
|
||||
#include "position.h"
|
||||
#include "types.h"
|
||||
|
||||
enum MoveType {
|
||||
MV_CAPTURE,
|
||||
|
@ -30,11 +29,28 @@ enum MoveType {
|
|||
MV_NON_CAPTURE_CHECK,
|
||||
MV_EVASION,
|
||||
MV_NON_EVASION,
|
||||
MV_LEGAL,
|
||||
MV_PSEUDO_LEGAL
|
||||
MV_LEGAL
|
||||
};
|
||||
|
||||
class Position;
|
||||
|
||||
template<MoveType>
|
||||
MoveStack* generate(const Position& pos, MoveStack* mlist);
|
||||
|
||||
/// The MoveList struct is a simple wrapper around generate(), sometimes comes
|
||||
/// handy to use this class instead of the low level generate() function.
|
||||
template<MoveType T>
|
||||
struct MoveList {
|
||||
|
||||
explicit MoveList(const Position& pos) : cur(mlist), last(generate<T>(pos, mlist)) {}
|
||||
void operator++() { cur++; }
|
||||
bool end() const { return cur == last; }
|
||||
Move move() const { return cur->move; }
|
||||
int size() const { return int(last - mlist); }
|
||||
|
||||
private:
|
||||
MoveStack mlist[MAX_MOVES];
|
||||
MoveStack *cur, *last;
|
||||
};
|
||||
|
||||
#endif // !defined(MOVEGEN_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -18,6 +18,7 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
|
||||
#include "movegen.h"
|
||||
|
@ -28,93 +29,127 @@
|
|||
namespace {
|
||||
|
||||
enum MovegenPhase {
|
||||
PH_TT_MOVES, // Transposition table move and mate killer
|
||||
PH_GOOD_CAPTURES, // Queen promotions and captures with SEE values >= 0
|
||||
PH_TT_MOVE, // Transposition table move
|
||||
PH_GOOD_CAPTURES, // Queen promotions and captures with SEE values >= captureThreshold (captureThreshold <= 0)
|
||||
PH_GOOD_PROBCUT, // Queen promotions and captures with SEE values > captureThreshold (captureThreshold >= 0)
|
||||
PH_KILLERS, // Killer moves from the current ply
|
||||
PH_NONCAPTURES, // Non-captures and underpromotions
|
||||
PH_BAD_CAPTURES, // Queen promotions and captures with SEE values < 0
|
||||
PH_NONCAPTURES_1, // Non-captures and underpromotions with positive score
|
||||
PH_NONCAPTURES_2, // Non-captures and underpromotions with non-positive score
|
||||
PH_BAD_CAPTURES, // Queen promotions and captures with SEE values < captureThreshold (captureThreshold <= 0)
|
||||
PH_EVASIONS, // Check evasions
|
||||
PH_QCAPTURES, // Captures in quiescence search
|
||||
PH_QRECAPTURES, // Recaptures in quiescence search
|
||||
PH_QCHECKS, // Non-capture checks in quiescence search
|
||||
PH_STOP
|
||||
};
|
||||
|
||||
CACHE_LINE_ALIGNMENT
|
||||
const uint8_t MainSearchTable[] = { PH_TT_MOVES, PH_GOOD_CAPTURES, PH_KILLERS, PH_NONCAPTURES, PH_BAD_CAPTURES, PH_STOP };
|
||||
const uint8_t EvasionTable[] = { PH_TT_MOVES, PH_EVASIONS, PH_STOP };
|
||||
const uint8_t QsearchWithChecksTable[] = { PH_TT_MOVES, PH_QCAPTURES, PH_QCHECKS, PH_STOP };
|
||||
const uint8_t QsearchWithoutChecksTable[] = { PH_TT_MOVES, PH_QCAPTURES, PH_STOP };
|
||||
const uint8_t MainSearchTable[] = { PH_TT_MOVE, PH_GOOD_CAPTURES, PH_KILLERS, PH_NONCAPTURES_1, PH_NONCAPTURES_2, PH_BAD_CAPTURES, PH_STOP };
|
||||
const uint8_t EvasionTable[] = { PH_TT_MOVE, PH_EVASIONS, PH_STOP };
|
||||
const uint8_t QsearchWithChecksTable[] = { PH_TT_MOVE, PH_QCAPTURES, PH_QCHECKS, PH_STOP };
|
||||
const uint8_t QsearchWithoutChecksTable[] = { PH_TT_MOVE, PH_QCAPTURES, PH_STOP };
|
||||
const uint8_t QsearchRecapturesTable[] = { PH_TT_MOVE, PH_QRECAPTURES, PH_STOP };
|
||||
const uint8_t ProbCutTable[] = { PH_TT_MOVE, PH_GOOD_PROBCUT, PH_STOP };
|
||||
|
||||
// Unary predicate used by std::partition to split positive scores from remaining
|
||||
// ones so to sort separately the two sets, and with the second sort delayed.
|
||||
inline bool has_positive_score(const MoveStack& move) { return move.score > 0; }
|
||||
|
||||
// Picks and pushes to the front the best move in range [firstMove, lastMove),
|
||||
// it is faster than sorting all the moves in advance when moves are few, as
|
||||
// normally are the possible captures.
|
||||
inline MoveStack* pick_best(MoveStack* firstMove, MoveStack* lastMove)
|
||||
{
|
||||
std::swap(*firstMove, *std::max_element(firstMove, lastMove));
|
||||
return firstMove;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Constructor for the MovePicker class. Apart from the position for which
|
||||
/// it is asked to pick legal moves, MovePicker also wants some information
|
||||
/// Constructors for the MovePicker class. As arguments we pass information
|
||||
/// to help it to return the presumably good moves first, to decide which
|
||||
/// moves to return (in the quiescence search, for instance, we only want to
|
||||
/// search captures, promotions and some checks) and about how important good
|
||||
/// move ordering is at the current node.
|
||||
|
||||
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const History& h,
|
||||
SearchStack* ss, Value beta) : pos(p), H(h) {
|
||||
int searchTT = ttm;
|
||||
ttMoves[0].move = ttm;
|
||||
badCaptureThreshold = 0;
|
||||
Search::Stack* ss, Value beta) : pos(p), H(h), depth(d) {
|
||||
captureThreshold = 0;
|
||||
badCaptures = moves + MAX_MOVES;
|
||||
|
||||
assert(d > DEPTH_ZERO);
|
||||
|
||||
pinned = p.pinned_pieces(pos.side_to_move());
|
||||
|
||||
if (p.in_check())
|
||||
{
|
||||
ttMoves[1].move = killers[0].move = killers[1].move = MOVE_NONE;
|
||||
killers[0].move = killers[1].move = MOVE_NONE;
|
||||
phasePtr = EvasionTable;
|
||||
}
|
||||
else
|
||||
{
|
||||
ttMoves[1].move = (ss->mateKiller == ttm) ? MOVE_NONE : ss->mateKiller;
|
||||
searchTT |= ttMoves[1].move;
|
||||
killers[0].move = ss->killers[0];
|
||||
killers[1].move = ss->killers[1];
|
||||
|
||||
// Consider sligtly negative captures as good if at low
|
||||
// depth and far from beta.
|
||||
// Consider sligtly negative captures as good if at low depth and far from beta
|
||||
if (ss && ss->eval < beta - PawnValueMidgame && d < 3 * ONE_PLY)
|
||||
badCaptureThreshold = -PawnValueMidgame;
|
||||
captureThreshold = -PawnValueMidgame;
|
||||
|
||||
// Consider negative captures as good if still enough to reach beta
|
||||
else if (ss && ss->eval > beta)
|
||||
captureThreshold = beta - ss->eval;
|
||||
|
||||
phasePtr = MainSearchTable;
|
||||
}
|
||||
|
||||
phasePtr += int(!searchTT) - 1;
|
||||
ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE);
|
||||
phasePtr += int(ttMove == MOVE_NONE) - 1;
|
||||
go_next_phase();
|
||||
}
|
||||
|
||||
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const History& h)
|
||||
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const History& h, Square recaptureSq)
|
||||
: pos(p), H(h) {
|
||||
int searchTT = ttm;
|
||||
ttMoves[0].move = ttm;
|
||||
ttMoves[1].move = MOVE_NONE;
|
||||
|
||||
assert(d <= DEPTH_ZERO);
|
||||
|
||||
pinned = p.pinned_pieces(pos.side_to_move());
|
||||
|
||||
if (p.in_check())
|
||||
phasePtr = EvasionTable;
|
||||
else if (d >= DEPTH_QS_CHECKS)
|
||||
phasePtr = QsearchWithChecksTable;
|
||||
else
|
||||
else if (d >= DEPTH_QS_RECAPTURES)
|
||||
{
|
||||
phasePtr = QsearchWithoutChecksTable;
|
||||
|
||||
// Skip TT move if is not a capture or a promotion, this avoids
|
||||
// qsearch tree explosion due to a possible perpetual check or
|
||||
// similar rare cases when TT table is full.
|
||||
if (ttm != MOVE_NONE && !pos.move_is_capture_or_promotion(ttm))
|
||||
searchTT = ttMoves[0].move = MOVE_NONE;
|
||||
if (ttm != MOVE_NONE && !pos.is_capture_or_promotion(ttm))
|
||||
ttm = MOVE_NONE;
|
||||
}
|
||||
else
|
||||
{
|
||||
phasePtr = QsearchRecapturesTable;
|
||||
recaptureSquare = recaptureSq;
|
||||
ttm = MOVE_NONE;
|
||||
}
|
||||
|
||||
phasePtr += int(!searchTT) - 1;
|
||||
ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE);
|
||||
phasePtr += int(ttMove == MOVE_NONE) - 1;
|
||||
go_next_phase();
|
||||
}
|
||||
|
||||
MovePicker::MovePicker(const Position& p, Move ttm, const History& h, PieceType parentCapture)
|
||||
: pos(p), H(h) {
|
||||
|
||||
assert (!pos.in_check());
|
||||
|
||||
// In ProbCut we consider only captures better than parent's move
|
||||
captureThreshold = PieceValueMidgame[Piece(parentCapture)];
|
||||
phasePtr = ProbCutTable;
|
||||
|
||||
if ( ttm != MOVE_NONE
|
||||
&& (!pos.is_capture(ttm) || pos.see(ttm) <= captureThreshold))
|
||||
ttm = MOVE_NONE;
|
||||
|
||||
ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE);
|
||||
phasePtr += int(ttMove == MOVE_NONE) - 1;
|
||||
go_next_phase();
|
||||
}
|
||||
|
||||
|
@ -128,12 +163,12 @@ void MovePicker::go_next_phase() {
|
|||
phase = *(++phasePtr);
|
||||
switch (phase) {
|
||||
|
||||
case PH_TT_MOVES:
|
||||
curMove = ttMoves;
|
||||
lastMove = curMove + 2;
|
||||
case PH_TT_MOVE:
|
||||
lastMove = curMove + 1;
|
||||
return;
|
||||
|
||||
case PH_GOOD_CAPTURES:
|
||||
case PH_GOOD_PROBCUT:
|
||||
lastMove = generate<MV_CAPTURE>(pos, moves);
|
||||
score_captures();
|
||||
return;
|
||||
|
@ -143,10 +178,18 @@ void MovePicker::go_next_phase() {
|
|||
lastMove = curMove + 2;
|
||||
return;
|
||||
|
||||
case PH_NONCAPTURES:
|
||||
lastMove = generate<MV_NON_CAPTURE>(pos, moves);
|
||||
case PH_NONCAPTURES_1:
|
||||
lastNonCapture = lastMove = generate<MV_NON_CAPTURE>(pos, moves);
|
||||
score_noncaptures();
|
||||
sort_moves(moves, lastMove, &lastGoodNonCapture);
|
||||
lastMove = std::partition(curMove, lastMove, has_positive_score);
|
||||
sort<MoveStack>(curMove, lastMove);
|
||||
return;
|
||||
|
||||
case PH_NONCAPTURES_2:
|
||||
curMove = lastMove;
|
||||
lastMove = lastNonCapture;
|
||||
if (depth >= 3 * ONE_PLY)
|
||||
sort<MoveStack>(curMove, lastMove);
|
||||
return;
|
||||
|
||||
case PH_BAD_CAPTURES:
|
||||
|
@ -167,6 +210,10 @@ void MovePicker::go_next_phase() {
|
|||
score_captures();
|
||||
return;
|
||||
|
||||
case PH_QRECAPTURES:
|
||||
lastMove = generate<MV_CAPTURE>(pos, moves);
|
||||
return;
|
||||
|
||||
case PH_QCHECKS:
|
||||
lastMove = generate<MV_NON_CAPTURE_CHECK>(pos, moves);
|
||||
return;
|
||||
|
@ -185,7 +232,7 @@ void MovePicker::go_next_phase() {
|
|||
/// MovePicker::score_captures(), MovePicker::score_noncaptures() and
|
||||
/// MovePicker::score_evasions() assign a numerical move ordering score
|
||||
/// to each move in a move list. The moves with highest scores will be
|
||||
/// picked first by get_next_move().
|
||||
/// picked first by next_move().
|
||||
|
||||
void MovePicker::score_captures() {
|
||||
// Winning and equal captures in the main search are ordered by MVV/LVA.
|
||||
|
@ -207,11 +254,11 @@ void MovePicker::score_captures() {
|
|||
for (MoveStack* cur = moves; cur != lastMove; cur++)
|
||||
{
|
||||
m = cur->move;
|
||||
if (move_is_promotion(m))
|
||||
cur->score = QueenValueMidgame;
|
||||
else
|
||||
cur->score = pos.midgame_value_of_piece_on(move_to(m))
|
||||
- pos.type_of_piece_on(move_from(m));
|
||||
cur->score = PieceValueMidgame[pos.piece_on(move_to(m))]
|
||||
- type_of(pos.piece_on(move_from(m)));
|
||||
|
||||
if (is_promotion(m))
|
||||
cur->score += PieceValueMidgame[Piece(promotion_piece_type(m))];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -245,22 +292,22 @@ void MovePicker::score_evasions() {
|
|||
m = cur->move;
|
||||
if ((seeScore = pos.see_sign(m)) < 0)
|
||||
cur->score = seeScore - History::MaxValue; // Be sure we are at the bottom
|
||||
else if (pos.move_is_capture(m))
|
||||
cur->score = pos.midgame_value_of_piece_on(move_to(m))
|
||||
- pos.type_of_piece_on(move_from(m)) + History::MaxValue;
|
||||
else if (pos.is_capture(m))
|
||||
cur->score = PieceValueMidgame[pos.piece_on(move_to(m))]
|
||||
- type_of(pos.piece_on(move_from(m))) + History::MaxValue;
|
||||
else
|
||||
cur->score = H.value(pos.piece_on(move_from(m)), move_to(m));
|
||||
}
|
||||
}
|
||||
|
||||
/// MovePicker::get_next_move() is the most important method of the MovePicker
|
||||
/// class. It returns a new legal move every time it is called, until there
|
||||
/// MovePicker::next_move() is the most important method of the MovePicker class.
|
||||
/// It returns a new pseudo legal move every time it is called, until there
|
||||
/// are no more moves left. It picks the move with the biggest score from a list
|
||||
/// of generated moves taking care not to return the tt move if has already been
|
||||
/// searched previously. Note that this function is not thread safe so should be
|
||||
/// lock protected by caller when accessed through a shared MovePicker object.
|
||||
|
||||
Move MovePicker::get_next_move() {
|
||||
Move MovePicker::next_move() {
|
||||
|
||||
Move move;
|
||||
|
||||
|
@ -271,71 +318,73 @@ Move MovePicker::get_next_move() {
|
|||
|
||||
switch (phase) {
|
||||
|
||||
case PH_TT_MOVES:
|
||||
move = (curMove++)->move;
|
||||
if ( move != MOVE_NONE
|
||||
&& pos.move_is_legal(move, pinned))
|
||||
return move;
|
||||
case PH_TT_MOVE:
|
||||
curMove++;
|
||||
return ttMove;
|
||||
break;
|
||||
|
||||
case PH_GOOD_CAPTURES:
|
||||
move = pick_best(curMove++, lastMove).move;
|
||||
if ( move != ttMoves[0].move
|
||||
&& move != ttMoves[1].move
|
||||
&& pos.pl_move_is_legal(move, pinned))
|
||||
move = pick_best(curMove++, lastMove)->move;
|
||||
if (move != ttMove)
|
||||
{
|
||||
assert(captureThreshold <= 0); // Otherwise we must use see instead of see_sign
|
||||
|
||||
// Check for a non negative SEE now
|
||||
int seeValue = pos.see_sign(move);
|
||||
if (seeValue >= badCaptureThreshold)
|
||||
if (seeValue >= captureThreshold)
|
||||
return move;
|
||||
|
||||
// Losing capture, move it to the tail of the array, note
|
||||
// that move has now been already checked for legality.
|
||||
// Losing capture, move it to the tail of the array
|
||||
(--badCaptures)->move = move;
|
||||
badCaptures->score = seeValue;
|
||||
}
|
||||
break;
|
||||
|
||||
case PH_KILLERS:
|
||||
move = (curMove++)->move;
|
||||
if ( move != MOVE_NONE
|
||||
&& pos.move_is_legal(move, pinned)
|
||||
&& move != ttMoves[0].move
|
||||
&& move != ttMoves[1].move
|
||||
&& !pos.move_is_capture(move))
|
||||
case PH_GOOD_PROBCUT:
|
||||
move = pick_best(curMove++, lastMove)->move;
|
||||
if ( move != ttMove
|
||||
&& pos.see(move) > captureThreshold)
|
||||
return move;
|
||||
break;
|
||||
|
||||
case PH_NONCAPTURES:
|
||||
// Sort negative scored moves only when we get there
|
||||
if (curMove == lastGoodNonCapture)
|
||||
insertion_sort<MoveStack>(lastGoodNonCapture, lastMove);
|
||||
|
||||
case PH_KILLERS:
|
||||
move = (curMove++)->move;
|
||||
if ( move != ttMoves[0].move
|
||||
&& move != ttMoves[1].move
|
||||
if ( move != MOVE_NONE
|
||||
&& pos.is_pseudo_legal(move)
|
||||
&& move != ttMove
|
||||
&& !pos.is_capture(move))
|
||||
return move;
|
||||
break;
|
||||
|
||||
case PH_NONCAPTURES_1:
|
||||
case PH_NONCAPTURES_2:
|
||||
move = (curMove++)->move;
|
||||
if ( move != ttMove
|
||||
&& move != killers[0].move
|
||||
&& move != killers[1].move
|
||||
&& pos.pl_move_is_legal(move, pinned))
|
||||
&& move != killers[1].move)
|
||||
return move;
|
||||
break;
|
||||
|
||||
case PH_BAD_CAPTURES:
|
||||
move = pick_best(curMove++, lastMove).move;
|
||||
move = pick_best(curMove++, lastMove)->move;
|
||||
return move;
|
||||
|
||||
case PH_EVASIONS:
|
||||
case PH_QCAPTURES:
|
||||
move = pick_best(curMove++, lastMove).move;
|
||||
if ( move != ttMoves[0].move
|
||||
&& pos.pl_move_is_legal(move, pinned))
|
||||
move = pick_best(curMove++, lastMove)->move;
|
||||
if (move != ttMove)
|
||||
return move;
|
||||
break;
|
||||
|
||||
case PH_QRECAPTURES:
|
||||
move = (curMove++)->move;
|
||||
if (move_to(move) == recaptureSquare)
|
||||
return move;
|
||||
break;
|
||||
|
||||
case PH_QCHECKS:
|
||||
move = (curMove++)->move;
|
||||
if ( move != ttMoves[0].move
|
||||
&& pos.pl_move_is_legal(move, pinned))
|
||||
if (move != ttMove)
|
||||
return move;
|
||||
break;
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -21,17 +21,15 @@
|
|||
#define MOVEPICK_H_INCLUDED
|
||||
|
||||
#include "history.h"
|
||||
#include "move.h"
|
||||
#include "position.h"
|
||||
#include "search.h"
|
||||
#include "types.h"
|
||||
|
||||
struct SearchStack;
|
||||
|
||||
/// MovePicker is a class which is used to pick one legal move at a time from
|
||||
/// the current position. It is initialized with a Position object and a few
|
||||
/// MovePicker is a class which is used to pick one pseudo legal move at a time
|
||||
/// from the current position. It is initialized with a Position object and a few
|
||||
/// moves we have reason to believe are good. The most important method is
|
||||
/// MovePicker::get_next_move(), which returns a new legal move each time it
|
||||
/// is called, until there are no legal moves left, when MOVE_NONE is returned.
|
||||
/// MovePicker::next_move(), which returns a new pseudo legal move each time
|
||||
/// it is called, until there are no moves left, when MOVE_NONE is returned.
|
||||
/// In order to improve the efficiency of the alpha beta algorithm, MovePicker
|
||||
/// attempts to return the moves which are most likely to get a cut-off first.
|
||||
|
||||
|
@ -40,9 +38,10 @@ class MovePicker {
|
|||
MovePicker& operator=(const MovePicker&); // Silence a warning under MSVC
|
||||
|
||||
public:
|
||||
MovePicker(const Position&, Move, Depth, const History&, SearchStack*, Value);
|
||||
MovePicker(const Position&, Move, Depth, const History&);
|
||||
Move get_next_move();
|
||||
MovePicker(const Position&, Move, Depth, const History&, Search::Stack*, Value);
|
||||
MovePicker(const Position&, Move, Depth, const History&, Square recaptureSq);
|
||||
MovePicker(const Position&, Move, const History&, PieceType parentCapture);
|
||||
Move next_move();
|
||||
|
||||
private:
|
||||
void score_captures();
|
||||
|
@ -52,11 +51,13 @@ private:
|
|||
|
||||
const Position& pos;
|
||||
const History& H;
|
||||
Bitboard pinned;
|
||||
MoveStack ttMoves[2], killers[2];
|
||||
int badCaptureThreshold, phase;
|
||||
Depth depth;
|
||||
Move ttMove;
|
||||
MoveStack killers[2];
|
||||
Square recaptureSquare;
|
||||
int captureThreshold, phase;
|
||||
const uint8_t* phasePtr;
|
||||
MoveStack *curMove, *lastMove, *lastGoodNonCapture, *badCaptures;
|
||||
MoveStack *curMove, *lastMove, *lastNonCapture, *badCaptures;
|
||||
MoveStack moves[MAX_MOVES];
|
||||
};
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -72,16 +72,14 @@ namespace {
|
|||
}
|
||||
|
||||
|
||||
/// PawnInfoTable::get_pawn_info() takes a position object as input, computes
|
||||
/// PawnInfoTable::pawn_info() takes a position object as input, computes
|
||||
/// a PawnInfo object, and returns a pointer to it. The result is also stored
|
||||
/// in an hash table, so we don't have to recompute everything when the same
|
||||
/// pawn structure occurs again.
|
||||
|
||||
PawnInfo* PawnInfoTable::get_pawn_info(const Position& pos) const {
|
||||
PawnInfo* PawnInfoTable::pawn_info(const Position& pos) const {
|
||||
|
||||
assert(pos.is_ok());
|
||||
|
||||
Key key = pos.get_pawn_key();
|
||||
Key key = pos.pawn_key();
|
||||
PawnInfo* pi = probe(key);
|
||||
|
||||
// If pi->key matches the position's pawn hash key, it means that we
|
||||
|
@ -118,7 +116,6 @@ template<Color Us>
|
|||
Score PawnInfoTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
|
||||
Bitboard theirPawns, PawnInfo* pi) {
|
||||
|
||||
const BitCountType Max15 = CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
Bitboard b;
|
||||
|
@ -127,15 +124,15 @@ Score PawnInfoTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
|
|||
Rank r;
|
||||
bool passed, isolated, doubled, opposed, chain, backward, candidate;
|
||||
Score value = SCORE_ZERO;
|
||||
const Square* ptr = pos.piece_list_begin(Us, PAWN);
|
||||
const Square* pl = pos.piece_list(Us, PAWN);
|
||||
|
||||
// Loop through all pawns of the current color and score each pawn
|
||||
while ((s = *ptr++) != SQ_NONE)
|
||||
while ((s = *pl++) != SQ_NONE)
|
||||
{
|
||||
assert(pos.piece_on(s) == make_piece(Us, PAWN));
|
||||
|
||||
f = square_file(s);
|
||||
r = square_rank(s);
|
||||
f = file_of(s);
|
||||
r = rank_of(s);
|
||||
|
||||
// This file cannot be half open
|
||||
pi->halfOpenFiles[Us] &= ~(1 << f);
|
||||
|
@ -184,8 +181,8 @@ Score PawnInfoTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
|
|||
// pawn on neighboring files is higher or equal than the number of
|
||||
// enemy pawns in the forward direction on the neighboring files.
|
||||
candidate = !(opposed | passed | backward | isolated)
|
||||
&& (b = attack_span_mask(Them, s + pawn_push(Us)) & ourPawns) != EmptyBoardBB
|
||||
&& count_1s<Max15>(b) >= count_1s<Max15>(attack_span_mask(Us, s) & theirPawns);
|
||||
&& (b = attack_span_mask(Them, s + pawn_push(Us)) & ourPawns) != 0
|
||||
&& popcount<Max15>(b) >= popcount<Max15>(attack_span_mask(Us, s) & theirPawns);
|
||||
|
||||
// Passed pawns will be properly scored in evaluation because we need
|
||||
// full attack info to evaluate passed pawns. Only the frontmost passed
|
||||
|
@ -225,12 +222,12 @@ Score PawnInfo::updateShelter(const Position& pos, Square ksq) {
|
|||
|
||||
if (relative_rank(Us, ksq) <= RANK_4)
|
||||
{
|
||||
pawns = pos.pieces(PAWN, Us) & this_and_neighboring_files_bb(ksq);
|
||||
pawns = pos.pieces(PAWN, Us) & this_and_neighboring_files_bb(file_of(ksq));
|
||||
r = ksq & (7 << 3);
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
r += Shift;
|
||||
shelter += BitCount8Bit[(pawns >> r) & 0xFF] * (64 >> i);
|
||||
shelter += BitCount8Bit[(pawns >> r) & 0xFF] << (6 - i);
|
||||
}
|
||||
}
|
||||
kingSquares[Us] = ksq;
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -29,9 +29,9 @@ const int PawnTableSize = 16384;
|
|||
/// PawnInfo is a class which contains various information about a pawn
|
||||
/// structure. Currently, it only includes a middle game and an end game
|
||||
/// pawn structure evaluation, and a bitboard of passed pawns. We may want
|
||||
/// to add further information in the future. A lookup to the pawn hash table
|
||||
/// (performed by calling the get_pawn_info method in a PawnInfoTable object)
|
||||
/// returns a pointer to a PawnInfo object.
|
||||
/// to add further information in the future. A lookup to the pawn hash
|
||||
/// table (performed by calling the pawn_info method in a PawnInfoTable
|
||||
/// object) returns a pointer to a PawnInfo object.
|
||||
|
||||
class PawnInfo {
|
||||
|
||||
|
@ -63,11 +63,11 @@ private:
|
|||
|
||||
|
||||
/// The PawnInfoTable class represents a pawn hash table. The most important
|
||||
/// method is get_pawn_info, which returns a pointer to a PawnInfo object.
|
||||
/// method is pawn_info, which returns a pointer to a PawnInfo object.
|
||||
|
||||
class PawnInfoTable : public SimpleHash<PawnInfo, PawnTableSize> {
|
||||
public:
|
||||
PawnInfo* get_pawn_info(const Position& pos) const;
|
||||
PawnInfo* pawn_info(const Position& pos) const;
|
||||
|
||||
private:
|
||||
template<Color Us>
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -20,44 +20,23 @@
|
|||
#if !defined(POSITION_H_INCLUDED)
|
||||
#define POSITION_H_INCLUDED
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "bitboard.h"
|
||||
#include "move.h"
|
||||
#include "types.h"
|
||||
|
||||
/// Maximum number of plies per game (220 should be enough, because the
|
||||
/// maximum search depth is 100, and during position setup we reset the
|
||||
/// move counter for every non-reversible move).
|
||||
const int MaxGameLength = 220;
|
||||
|
||||
/// The checkInfo struct is initialized at c'tor time and keeps info used
|
||||
/// to detect if a move gives check.
|
||||
class Position;
|
||||
|
||||
/// struct checkInfo is initialized at c'tor time and keeps
|
||||
/// info used to detect if a move gives check.
|
||||
|
||||
struct CheckInfo {
|
||||
|
||||
explicit CheckInfo(const Position&);
|
||||
explicit CheckInfo(const Position&);
|
||||
|
||||
Bitboard dcCandidates;
|
||||
Bitboard checkSq[8];
|
||||
Square ksq;
|
||||
};
|
||||
|
||||
/// Castle rights, encoded as bit fields
|
||||
|
||||
enum CastleRights {
|
||||
CASTLES_NONE = 0,
|
||||
WHITE_OO = 1,
|
||||
BLACK_OO = 2,
|
||||
WHITE_OOO = 4,
|
||||
BLACK_OOO = 8,
|
||||
ALL_CASTLES = 15
|
||||
};
|
||||
|
||||
/// Game phase
|
||||
enum Phase {
|
||||
PHASE_ENDGAME = 0,
|
||||
PHASE_MIDGAME = 128
|
||||
Bitboard dcCandidates;
|
||||
Bitboard pinned;
|
||||
Bitboard checkSq[8];
|
||||
};
|
||||
|
||||
|
||||
|
@ -68,14 +47,14 @@ enum Phase {
|
|||
|
||||
struct StateInfo {
|
||||
Key pawnKey, materialKey;
|
||||
int castleRights, rule50, gamePly, pliesFromNull;
|
||||
Square epSquare;
|
||||
Score value;
|
||||
Value npMaterial[2];
|
||||
int castleRights, rule50, pliesFromNull;
|
||||
Score value;
|
||||
Square epSquare;
|
||||
|
||||
PieceType capturedType;
|
||||
Key key;
|
||||
Bitboard checkersBB;
|
||||
PieceType capturedType;
|
||||
StateInfo* previous;
|
||||
};
|
||||
|
||||
|
@ -104,35 +83,24 @@ struct StateInfo {
|
|||
|
||||
class Position {
|
||||
|
||||
Position(); // No default or copy c'tor allowed
|
||||
Position(const Position& pos);
|
||||
// No copy c'tor or assignment operator allowed
|
||||
Position(const Position&);
|
||||
Position& operator=(const Position&);
|
||||
|
||||
public:
|
||||
enum GamePhase {
|
||||
MidGame,
|
||||
EndGame
|
||||
};
|
||||
|
||||
// Constructors
|
||||
Position(const Position& pos, int threadID);
|
||||
Position(const std::string& fen, bool isChess960, int threadID);
|
||||
Position() {}
|
||||
Position(const Position& pos, int th) { copy(pos, th); }
|
||||
Position(const std::string& fen, bool isChess960, int th);
|
||||
|
||||
// Text input/output
|
||||
void copy(const Position& pos, int th);
|
||||
void from_fen(const std::string& fen, bool isChess960);
|
||||
const std::string to_fen() const;
|
||||
void print(Move m = MOVE_NONE) const;
|
||||
|
||||
// Copying
|
||||
void flip();
|
||||
|
||||
// The piece on a given square
|
||||
Piece piece_on(Square s) const;
|
||||
PieceType type_of_piece_on(Square s) const;
|
||||
Color color_of_piece_on(Square s) const;
|
||||
bool square_is_empty(Square s) const;
|
||||
bool square_is_occupied(Square s) const;
|
||||
Value midgame_value_of_piece_on(Square s) const;
|
||||
Value endgame_value_of_piece_on(Square s) const;
|
||||
|
||||
// Side to move
|
||||
Color side_to_move() const;
|
||||
|
@ -140,7 +108,7 @@ public:
|
|||
// Bitboard representation of the position
|
||||
Bitboard empty_squares() const;
|
||||
Bitboard occupied_squares() const;
|
||||
Bitboard pieces_of_color(Color c) const;
|
||||
Bitboard pieces(Color c) const;
|
||||
Bitboard pieces(PieceType pt) const;
|
||||
Bitboard pieces(PieceType pt, Color c) const;
|
||||
Bitboard pieces(PieceType pt1, PieceType pt2) const;
|
||||
|
@ -156,42 +124,37 @@ public:
|
|||
Square king_square(Color c) const;
|
||||
|
||||
// Castling rights
|
||||
bool can_castle_kingside(Color c) const;
|
||||
bool can_castle_queenside(Color c) const;
|
||||
bool can_castle(CastleRight f) const;
|
||||
bool can_castle(Color c) const;
|
||||
Square initial_kr_square(Color c) const;
|
||||
Square initial_qr_square(Color c) const;
|
||||
Square castle_rook_square(CastleRight f) const;
|
||||
|
||||
// Bitboards for pinned pieces and discovered check candidates
|
||||
Bitboard discovered_check_candidates(Color c) const;
|
||||
Bitboard pinned_pieces(Color c) const;
|
||||
Bitboard discovered_check_candidates() const;
|
||||
Bitboard pinned_pieces() const;
|
||||
|
||||
// Checking pieces and under check information
|
||||
Bitboard checkers() const;
|
||||
bool in_check() const;
|
||||
|
||||
// Piece lists
|
||||
Square piece_list(Color c, PieceType pt, int index) const;
|
||||
const Square* piece_list_begin(Color c, PieceType pt) const;
|
||||
const Square* piece_list(Color c, PieceType pt) const;
|
||||
|
||||
// Information about attacks to or from a given square
|
||||
Bitboard attackers_to(Square s) const;
|
||||
Bitboard attackers_to(Square s, Bitboard occ) const;
|
||||
Bitboard attacks_from(Piece p, Square s) const;
|
||||
static Bitboard attacks_from(Piece p, Square s, Bitboard occ);
|
||||
template<PieceType> Bitboard attacks_from(Square s) const;
|
||||
template<PieceType> Bitboard attacks_from(Square s, Color c) const;
|
||||
|
||||
// Properties of moves
|
||||
bool pl_move_is_legal(Move m, Bitboard pinned) const;
|
||||
bool pl_move_is_evasion(Move m, Bitboard pinned) const;
|
||||
bool move_is_legal(const Move m) const;
|
||||
bool move_is_legal(const Move m, Bitboard pinned) const;
|
||||
bool move_gives_check(Move m) const;
|
||||
bool move_gives_check(Move m, const CheckInfo& ci) const;
|
||||
bool move_is_capture(Move m) const;
|
||||
bool move_is_capture_or_promotion(Move m) const;
|
||||
bool move_is_passed_pawn_push(Move m) const;
|
||||
bool move_attacks_square(Move m, Square s) const;
|
||||
bool pl_move_is_legal(Move m, Bitboard pinned) const;
|
||||
bool is_pseudo_legal(const Move m) const;
|
||||
bool is_capture(Move m) const;
|
||||
bool is_capture_or_promotion(Move m) const;
|
||||
bool is_passed_pawn_push(Move m) const;
|
||||
|
||||
// Piece captured with previous moves
|
||||
PieceType captured_piece_type() const;
|
||||
|
@ -199,38 +162,32 @@ public:
|
|||
// Information about pawns
|
||||
bool pawn_is_passed(Color c, Square s) const;
|
||||
|
||||
// Weak squares
|
||||
bool square_is_weak(Square s, Color c) const;
|
||||
|
||||
// Doing and undoing moves
|
||||
void do_setup_move(Move m);
|
||||
void do_move(Move m, StateInfo& st);
|
||||
void do_move(Move m, StateInfo& st, const CheckInfo& ci, bool moveIsCheck);
|
||||
void undo_move(Move m);
|
||||
void do_null_move(StateInfo& st);
|
||||
void undo_null_move();
|
||||
template<bool Do> void do_null_move(StateInfo& st);
|
||||
|
||||
// Static exchange evaluation
|
||||
int see(Square from, Square to) const;
|
||||
int see(Move m) const;
|
||||
int see_sign(Move m) const;
|
||||
|
||||
// Accessing hash keys
|
||||
Key get_key() const;
|
||||
Key get_exclusion_key() const;
|
||||
Key get_pawn_key() const;
|
||||
Key get_material_key() const;
|
||||
Key key() const;
|
||||
Key exclusion_key() const;
|
||||
Key pawn_key() const;
|
||||
Key material_key() const;
|
||||
|
||||
// Incremental evaluation
|
||||
Score value() const;
|
||||
Value non_pawn_material(Color c) const;
|
||||
static Score pst_delta(Piece piece, Square from, Square to);
|
||||
Score pst_delta(Piece piece, Square from, Square to) const;
|
||||
|
||||
// Game termination checks
|
||||
bool is_mate() const;
|
||||
bool is_draw() const;
|
||||
template<bool SkipRepetition> bool is_draw() const;
|
||||
|
||||
// Number of plies from starting position
|
||||
// Plies from start position to the beginning of search
|
||||
int startpos_ply_counter() const;
|
||||
|
||||
// Other properties of the position
|
||||
|
@ -245,30 +202,23 @@ public:
|
|||
void set_nodes_searched(int64_t n);
|
||||
|
||||
// Position consistency check, for debugging
|
||||
bool is_ok(int* failedStep = NULL) const;
|
||||
bool pos_is_ok(int* failedStep = NULL) const;
|
||||
void flip_me();
|
||||
|
||||
// Static member functions
|
||||
static void init_zobrist();
|
||||
static void init_piece_square_tables();
|
||||
// Global initialization
|
||||
static void init();
|
||||
|
||||
private:
|
||||
|
||||
// Initialization helper functions (used while setting up a position)
|
||||
void clear();
|
||||
void detach();
|
||||
void put_piece(Piece p, Square s);
|
||||
void do_allow_oo(Color c);
|
||||
void do_allow_ooo(Color c);
|
||||
bool set_castling_rights(char token);
|
||||
void set_castle_right(Square ksq, Square rsq);
|
||||
bool move_is_legal(const Move m) const;
|
||||
|
||||
// Helper functions for doing and undoing moves
|
||||
void do_capture_move(Key& key, PieceType capture, Color them, Square to, bool ep);
|
||||
void do_castle_move(Move m);
|
||||
void undo_castle_move(Move m);
|
||||
void find_checkers();
|
||||
|
||||
template<bool FindPinned>
|
||||
Bitboard hidden_checkers(Color c) const;
|
||||
// Helper template functions
|
||||
template<bool Do> void do_castle_move(Move m);
|
||||
template<bool FindPinned> Bitboard hidden_checkers() const;
|
||||
|
||||
// Computing hash keys from scratch (for initialization and debugging)
|
||||
Key compute_key() const;
|
||||
|
@ -276,45 +226,43 @@ private:
|
|||
Key compute_material_key() const;
|
||||
|
||||
// Computing incremental evaluation scores and material counts
|
||||
static Score pst(Color c, PieceType pt, Square s);
|
||||
Score pst(Piece p, Square s) const;
|
||||
Score compute_value() const;
|
||||
Value compute_non_pawn_material(Color c) const;
|
||||
|
||||
// Board
|
||||
Piece board[64];
|
||||
Piece board[64]; // [square]
|
||||
|
||||
// Bitboards
|
||||
Bitboard byTypeBB[8], byColorBB[2];
|
||||
Bitboard byTypeBB[8]; // [pieceType]
|
||||
Bitboard byColorBB[2]; // [color]
|
||||
Bitboard occupied;
|
||||
|
||||
// Piece counts
|
||||
int pieceCount[2][8]; // [color][pieceType]
|
||||
int pieceCount[2][8]; // [color][pieceType]
|
||||
|
||||
// Piece lists
|
||||
Square pieceList[2][8][16]; // [color][pieceType][index]
|
||||
int index[64]; // [square]
|
||||
Square pieceList[2][8][16]; // [color][pieceType][index]
|
||||
int index[64]; // [square]
|
||||
|
||||
// Other info
|
||||
Color sideToMove;
|
||||
Key history[MaxGameLength];
|
||||
int castleRightsMask[64];
|
||||
int castleRightsMask[64]; // [square]
|
||||
Square castleRookSquare[16]; // [castleRight]
|
||||
StateInfo startState;
|
||||
File initialKFile, initialKRFile, initialQRFile;
|
||||
bool chess960;
|
||||
int startPosPlyCounter;
|
||||
int threadID;
|
||||
int64_t nodes;
|
||||
int startPosPly;
|
||||
Color sideToMove;
|
||||
int threadID;
|
||||
StateInfo* st;
|
||||
int chess960;
|
||||
|
||||
// Static variables
|
||||
static Key zobrist[2][8][64];
|
||||
static Key zobEp[64];
|
||||
static Key zobCastle[16];
|
||||
static Score pieceSquareTable[16][64]; // [piece][square]
|
||||
static Key zobrist[2][8][64]; // [color][pieceType][square]/[piece count]
|
||||
static Key zobEp[64]; // [square]
|
||||
static Key zobCastle[16]; // [castleRight]
|
||||
static Key zobSideToMove;
|
||||
static Score PieceSquareTable[16][64];
|
||||
static Key zobExclusion;
|
||||
static const Value seeValues[8];
|
||||
static const Value PieceValueMidgame[17];
|
||||
static const Value PieceValueEndgame[17];
|
||||
};
|
||||
|
||||
inline int64_t Position::nodes_searched() const {
|
||||
|
@ -329,28 +277,8 @@ inline Piece Position::piece_on(Square s) const {
|
|||
return board[s];
|
||||
}
|
||||
|
||||
inline Color Position::color_of_piece_on(Square s) const {
|
||||
return color_of_piece(piece_on(s));
|
||||
}
|
||||
|
||||
inline PieceType Position::type_of_piece_on(Square s) const {
|
||||
return type_of_piece(piece_on(s));
|
||||
}
|
||||
|
||||
inline bool Position::square_is_empty(Square s) const {
|
||||
return piece_on(s) == PIECE_NONE;
|
||||
}
|
||||
|
||||
inline bool Position::square_is_occupied(Square s) const {
|
||||
return !square_is_empty(s);
|
||||
}
|
||||
|
||||
inline Value Position::midgame_value_of_piece_on(Square s) const {
|
||||
return PieceValueMidgame[piece_on(s)];
|
||||
}
|
||||
|
||||
inline Value Position::endgame_value_of_piece_on(Square s) const {
|
||||
return PieceValueEndgame[piece_on(s)];
|
||||
return board[s] == NO_PIECE;
|
||||
}
|
||||
|
||||
inline Color Position::side_to_move() const {
|
||||
|
@ -358,14 +286,14 @@ inline Color Position::side_to_move() const {
|
|||
}
|
||||
|
||||
inline Bitboard Position::occupied_squares() const {
|
||||
return byTypeBB[0];
|
||||
return occupied;
|
||||
}
|
||||
|
||||
inline Bitboard Position::empty_squares() const {
|
||||
return ~occupied_squares();
|
||||
return ~occupied;
|
||||
}
|
||||
|
||||
inline Bitboard Position::pieces_of_color(Color c) const {
|
||||
inline Bitboard Position::pieces(Color c) const {
|
||||
return byColorBB[c];
|
||||
}
|
||||
|
||||
|
@ -389,11 +317,7 @@ inline int Position::piece_count(Color c, PieceType pt) const {
|
|||
return pieceCount[c][pt];
|
||||
}
|
||||
|
||||
inline Square Position::piece_list(Color c, PieceType pt, int idx) const {
|
||||
return pieceList[c][pt][idx];
|
||||
}
|
||||
|
||||
inline const Square* Position::piece_list_begin(Color c, PieceType pt) const {
|
||||
inline const Square* Position::piece_list(Color c, PieceType pt) const {
|
||||
return pieceList[c][pt];
|
||||
}
|
||||
|
||||
|
@ -405,24 +329,16 @@ inline Square Position::king_square(Color c) const {
|
|||
return pieceList[c][KING][0];
|
||||
}
|
||||
|
||||
inline bool Position::can_castle_kingside(Color side) const {
|
||||
return st->castleRights & (1+int(side));
|
||||
inline bool Position::can_castle(CastleRight f) const {
|
||||
return st->castleRights & f;
|
||||
}
|
||||
|
||||
inline bool Position::can_castle_queenside(Color side) const {
|
||||
return st->castleRights & (4+4*int(side));
|
||||
inline bool Position::can_castle(Color c) const {
|
||||
return st->castleRights & ((WHITE_OO | WHITE_OOO) << c);
|
||||
}
|
||||
|
||||
inline bool Position::can_castle(Color side) const {
|
||||
return can_castle_kingside(side) || can_castle_queenside(side);
|
||||
}
|
||||
|
||||
inline Square Position::initial_kr_square(Color c) const {
|
||||
return relative_square(c, make_square(initialKRFile, RANK_1));
|
||||
}
|
||||
|
||||
inline Square Position::initial_qr_square(Color c) const {
|
||||
return relative_square(c, make_square(initialQRFile, RANK_1));
|
||||
inline Square Position::castle_rook_square(CastleRight f) const {
|
||||
return castleRookSquare[f];
|
||||
}
|
||||
|
||||
template<>
|
||||
|
@ -450,44 +366,56 @@ inline Bitboard Position::attacks_from<QUEEN>(Square s) const {
|
|||
return attacks_from<ROOK>(s) | attacks_from<BISHOP>(s);
|
||||
}
|
||||
|
||||
inline Bitboard Position::attacks_from(Piece p, Square s) const {
|
||||
return attacks_from(p, s, occupied_squares());
|
||||
}
|
||||
|
||||
inline Bitboard Position::attackers_to(Square s) const {
|
||||
return attackers_to(s, occupied_squares());
|
||||
}
|
||||
|
||||
inline Bitboard Position::checkers() const {
|
||||
return st->checkersBB;
|
||||
}
|
||||
|
||||
inline bool Position::in_check() const {
|
||||
return st->checkersBB != EmptyBoardBB;
|
||||
return st->checkersBB != 0;
|
||||
}
|
||||
|
||||
inline Bitboard Position::discovered_check_candidates() const {
|
||||
return hidden_checkers<false>();
|
||||
}
|
||||
|
||||
inline Bitboard Position::pinned_pieces() const {
|
||||
return hidden_checkers<true>();
|
||||
}
|
||||
|
||||
inline bool Position::pawn_is_passed(Color c, Square s) const {
|
||||
return !(pieces(PAWN, opposite_color(c)) & passed_pawn_mask(c, s));
|
||||
return !(pieces(PAWN, flip(c)) & passed_pawn_mask(c, s));
|
||||
}
|
||||
|
||||
inline bool Position::square_is_weak(Square s, Color c) const {
|
||||
return !(pieces(PAWN, opposite_color(c)) & attack_span_mask(c, s));
|
||||
}
|
||||
|
||||
inline Key Position::get_key() const {
|
||||
inline Key Position::key() const {
|
||||
return st->key;
|
||||
}
|
||||
|
||||
inline Key Position::get_exclusion_key() const {
|
||||
inline Key Position::exclusion_key() const {
|
||||
return st->key ^ zobExclusion;
|
||||
}
|
||||
|
||||
inline Key Position::get_pawn_key() const {
|
||||
inline Key Position::pawn_key() const {
|
||||
return st->pawnKey;
|
||||
}
|
||||
|
||||
inline Key Position::get_material_key() const {
|
||||
inline Key Position::material_key() const {
|
||||
return st->materialKey;
|
||||
}
|
||||
|
||||
inline Score Position::pst(Color c, PieceType pt, Square s) {
|
||||
return PieceSquareTable[make_piece(c, pt)][s];
|
||||
inline Score Position::pst(Piece p, Square s) const {
|
||||
return pieceSquareTable[p][s];
|
||||
}
|
||||
|
||||
inline Score Position::pst_delta(Piece piece, Square from, Square to) {
|
||||
return PieceSquareTable[piece][to] - PieceSquareTable[piece][from];
|
||||
inline Score Position::pst_delta(Piece piece, Square from, Square to) const {
|
||||
return pieceSquareTable[piece][to] - pieceSquareTable[piece][from];
|
||||
}
|
||||
|
||||
inline Score Position::value() const {
|
||||
|
@ -498,21 +426,21 @@ inline Value Position::non_pawn_material(Color c) const {
|
|||
return st->npMaterial[c];
|
||||
}
|
||||
|
||||
inline bool Position::move_is_passed_pawn_push(Move m) const {
|
||||
inline bool Position::is_passed_pawn_push(Move m) const {
|
||||
|
||||
Color c = side_to_move();
|
||||
return piece_on(move_from(m)) == make_piece(c, PAWN)
|
||||
&& pawn_is_passed(c, move_to(m));
|
||||
return board[move_from(m)] == make_piece(sideToMove, PAWN)
|
||||
&& pawn_is_passed(sideToMove, move_to(m));
|
||||
}
|
||||
|
||||
inline int Position::startpos_ply_counter() const {
|
||||
return startPosPlyCounter;
|
||||
return startPosPly + st->pliesFromNull; // HACK
|
||||
}
|
||||
|
||||
inline bool Position::opposite_colored_bishops() const {
|
||||
|
||||
return piece_count(WHITE, BISHOP) == 1 && piece_count(BLACK, BISHOP) == 1
|
||||
&& opposite_color_squares(piece_list(WHITE, BISHOP, 0), piece_list(BLACK, BISHOP, 0));
|
||||
return pieceCount[WHITE][BISHOP] == 1
|
||||
&& pieceCount[BLACK][BISHOP] == 1
|
||||
&& opposite_colors(pieceList[WHITE][BISHOP][0], pieceList[BLACK][BISHOP][0]);
|
||||
}
|
||||
|
||||
inline bool Position::has_pawn_on_7th(Color c) const {
|
||||
|
@ -523,16 +451,17 @@ inline bool Position::is_chess960() const {
|
|||
return chess960;
|
||||
}
|
||||
|
||||
inline bool Position::move_is_capture(Move m) const {
|
||||
inline bool Position::is_capture_or_promotion(Move m) const {
|
||||
|
||||
// Move must not be MOVE_NONE !
|
||||
return (m & (3 << 15)) ? !move_is_castle(m) : !square_is_empty(move_to(m));
|
||||
assert(is_ok(m));
|
||||
return is_special(m) ? !is_castle(m) : !square_is_empty(move_to(m));
|
||||
}
|
||||
|
||||
inline bool Position::move_is_capture_or_promotion(Move m) const {
|
||||
inline bool Position::is_capture(Move m) const {
|
||||
|
||||
// Move must not be MOVE_NONE !
|
||||
return (m & (0x1F << 12)) ? !move_is_castle(m) : !square_is_empty(move_to(m));
|
||||
// Note that castle is coded as "king captures the rook"
|
||||
assert(is_ok(m));
|
||||
return (!square_is_empty(move_to(m)) && !is_castle(m)) || is_enpassant(m);
|
||||
}
|
||||
|
||||
inline PieceType Position::captured_piece_type() const {
|
||||
|
@ -543,12 +472,4 @@ inline int Position::thread() const {
|
|||
return threadID;
|
||||
}
|
||||
|
||||
inline void Position::do_allow_oo(Color c) {
|
||||
st->castleRights |= (1 + int(c));
|
||||
}
|
||||
|
||||
inline void Position::do_allow_ooo(Color c) {
|
||||
st->castleRights |= (4 + 4*int(c));
|
||||
}
|
||||
|
||||
#endif // !defined(POSITION_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -22,164 +22,77 @@
|
|||
|
||||
#include "types.h"
|
||||
|
||||
namespace {
|
||||
#define S(mg, eg) make_score(mg, eg)
|
||||
|
||||
////
|
||||
//// Constants modified by Joona Kiiski
|
||||
////
|
||||
|
||||
const Value MP = PawnValueMidgame;
|
||||
const Value MK = KnightValueMidgame;
|
||||
const Value MB = BishopValueMidgame;
|
||||
const Value MR = RookValueMidgame;
|
||||
const Value MQ = QueenValueMidgame;
|
||||
/// PSQT[PieceType][Square] contains Piece-Square scores. For each piece type on
|
||||
/// a given square a (midgame, endgame) score pair is assigned. PSQT is defined
|
||||
/// for white side, for black side the tables are symmetric.
|
||||
|
||||
const Value EP = PawnValueEndgame;
|
||||
const Value EK = KnightValueEndgame;
|
||||
const Value EB = BishopValueEndgame;
|
||||
const Value ER = RookValueEndgame;
|
||||
const Value EQ = QueenValueEndgame;
|
||||
|
||||
const int MgPST[][64] = {
|
||||
static const Score PSQT[][64] = {
|
||||
{ },
|
||||
{// Pawn
|
||||
// A B C D E F G H
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
MP-28, MP-6, MP+ 4, MP+14, MP+14, MP+ 4, MP-6, MP-28,
|
||||
MP-28, MP-6, MP+ 9, MP+36, MP+36, MP+ 9, MP-6, MP-28,
|
||||
MP-28, MP-6, MP+17, MP+58, MP+58, MP+17, MP-6, MP-28,
|
||||
MP-28, MP-6, MP+17, MP+36, MP+36, MP+17, MP-6, MP-28,
|
||||
MP-28, MP-6, MP+ 9, MP+14, MP+14, MP+ 9, MP-6, MP-28,
|
||||
MP-28, MP-6, MP+ 4, MP+14, MP+14, MP+ 4, MP-6, MP-28,
|
||||
0, 0, 0, 0, 0, 0, 0, 0
|
||||
{ // Pawn
|
||||
S( 0, 0), S( 0, 0), S( 0, 0), S( 0, 0), S(0, 0), S( 0, 0), S( 0, 0), S( 0, 0),
|
||||
S(-28,-8), S(-6,-8), S( 4,-8), S(14,-8), S(14,-8), S( 4,-8), S(-6,-8), S(-28,-8),
|
||||
S(-28,-8), S(-6,-8), S( 9,-8), S(36,-8), S(36,-8), S( 9,-8), S(-6,-8), S(-28,-8),
|
||||
S(-28,-8), S(-6,-8), S(17,-8), S(58,-8), S(58,-8), S(17,-8), S(-6,-8), S(-28,-8),
|
||||
S(-28,-8), S(-6,-8), S(17,-8), S(36,-8), S(36,-8), S(17,-8), S(-6,-8), S(-28,-8),
|
||||
S(-28,-8), S(-6,-8), S( 9,-8), S(14,-8), S(14,-8), S( 9,-8), S(-6,-8), S(-28,-8),
|
||||
S(-28,-8), S(-6,-8), S( 4,-8), S(14,-8), S(14,-8), S( 4,-8), S(-6,-8), S(-28,-8),
|
||||
S( 0, 0), S( 0, 0), S( 0, 0), S( 0, 0), S(0, 0), S( 0, 0), S( 0, 0), S( 0, 0)
|
||||
},
|
||||
{// Knight
|
||||
// A B C D E F G H
|
||||
MK-135, MK-107, MK-80, MK-67, MK-67, MK-80, MK-107, MK-135,
|
||||
MK- 93, MK- 67, MK-39, MK-25, MK-25, MK-39, MK- 67, MK- 93,
|
||||
MK- 53, MK- 25, MK+ 1, MK+13, MK+13, MK+ 1, MK- 25, MK- 53,
|
||||
MK- 25, MK+ 1, MK+27, MK+41, MK+41, MK+27, MK+ 1, MK- 25,
|
||||
MK- 11, MK+ 13, MK+41, MK+55, MK+55, MK+41, MK+ 13, MK- 11,
|
||||
MK- 11, MK+ 13, MK+41, MK+55, MK+55, MK+41, MK+ 13, MK- 11,
|
||||
MK- 53, MK- 25, MK+ 1, MK+13, MK+13, MK+ 1, MK- 25, MK- 53,
|
||||
MK-193, MK- 67, MK-39, MK-25, MK-25, MK-39, MK- 67, MK-193
|
||||
{ // Knight
|
||||
S(-135,-104), S(-107,-79), S(-80,-55), S(-67,-42), S(-67,-42), S(-80,-55), S(-107,-79), S(-135,-104),
|
||||
S( -93, -79), S( -67,-55), S(-39,-30), S(-25,-17), S(-25,-17), S(-39,-30), S( -67,-55), S( -93, -79),
|
||||
S( -53, -55), S( -25,-30), S( 1, -6), S( 13, 5), S( 13, 5), S( 1, -6), S( -25,-30), S( -53, -55),
|
||||
S( -25, -42), S( 1,-17), S( 27, 5), S( 41, 18), S( 41, 18), S( 27, 5), S( 1,-17), S( -25, -42),
|
||||
S( -11, -42), S( 13,-17), S( 41, 5), S( 55, 18), S( 55, 18), S( 41, 5), S( 13,-17), S( -11, -42),
|
||||
S( -11, -55), S( 13,-30), S( 41, -6), S( 55, 5), S( 55, 5), S( 41, -6), S( 13,-30), S( -11, -55),
|
||||
S( -53, -79), S( -25,-55), S( 1,-30), S( 13,-17), S( 13,-17), S( 1,-30), S( -25,-55), S( -53, -79),
|
||||
S(-193,-104), S( -67,-79), S(-39,-55), S(-25,-42), S(-25,-42), S(-39,-55), S( -67,-79), S(-193,-104)
|
||||
},
|
||||
{// Bishop
|
||||
// A B C D E F G H
|
||||
MB-40, MB-40, MB-35, MB-30, MB-30, MB-35, MB-40, MB-40,
|
||||
MB-17, MB+ 0, MB- 4, MB+ 0, MB+ 0, MB- 4, MB+ 0, MB-17,
|
||||
MB-13, MB- 4, MB+ 8, MB+ 4, MB+ 4, MB+ 8, MB- 4, MB-13,
|
||||
MB- 8, MB+ 0, MB+ 4, MB+17, MB+17, MB+ 4, MB+ 0, MB- 8,
|
||||
MB- 8, MB+ 0, MB+ 4, MB+17, MB+17, MB+ 4, MB+ 0, MB- 8,
|
||||
MB-13, MB- 4, MB+ 8, MB+ 4, MB+ 4, MB+ 8, MB- 4, MB-13,
|
||||
MB-17, MB+ 0, MB- 4, MB+ 0, MB+ 0, MB- 4, MB+ 0, MB-17,
|
||||
MB-17, MB-17, MB-13, MB- 8, MB- 8, MB-13, MB-17, MB-17
|
||||
{ // Bishop
|
||||
S(-40,-59), S(-40,-42), S(-35,-35), S(-30,-26), S(-30,-26), S(-35,-35), S(-40,-42), S(-40,-59),
|
||||
S(-17,-42), S( 0,-26), S( -4,-18), S( 0,-11), S( 0,-11), S( -4,-18), S( 0,-26), S(-17,-42),
|
||||
S(-13,-35), S( -4,-18), S( 8,-11), S( 4, -4), S( 4, -4), S( 8,-11), S( -4,-18), S(-13,-35),
|
||||
S( -8,-26), S( 0,-11), S( 4, -4), S( 17, 4), S( 17, 4), S( 4, -4), S( 0,-11), S( -8,-26),
|
||||
S( -8,-26), S( 0,-11), S( 4, -4), S( 17, 4), S( 17, 4), S( 4, -4), S( 0,-11), S( -8,-26),
|
||||
S(-13,-35), S( -4,-18), S( 8,-11), S( 4, -4), S( 4, -4), S( 8,-11), S( -4,-18), S(-13,-35),
|
||||
S(-17,-42), S( 0,-26), S( -4,-18), S( 0,-11), S( 0,-11), S( -4,-18), S( 0,-26), S(-17,-42),
|
||||
S(-17,-59), S(-17,-42), S(-13,-35), S( -8,-26), S( -8,-26), S(-13,-35), S(-17,-42), S(-17,-59)
|
||||
},
|
||||
{// Rook
|
||||
// A B C D E F G H
|
||||
MR-12, MR-7, MR-2, MR+2, MR+2, MR-2, MR-7, MR-12,
|
||||
MR-12, MR-7, MR-2, MR+2, MR+2, MR-2, MR-7, MR-12,
|
||||
MR-12, MR-7, MR-2, MR+2, MR+2, MR-2, MR-7, MR-12,
|
||||
MR-12, MR-7, MR-2, MR+2, MR+2, MR-2, MR-7, MR-12,
|
||||
MR-12, MR-7, MR-2, MR+2, MR+2, MR-2, MR-7, MR-12,
|
||||
MR-12, MR-7, MR-2, MR+2, MR+2, MR-2, MR-7, MR-12,
|
||||
MR-12, MR-7, MR-2, MR+2, MR+2, MR-2, MR-7, MR-12,
|
||||
MR-12, MR-7, MR-2, MR+2, MR+2, MR-2, MR-7, MR-12
|
||||
{ // Rook
|
||||
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
||||
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
||||
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
||||
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
||||
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
||||
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
||||
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
||||
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3)
|
||||
},
|
||||
{// Queen
|
||||
// A B C D E F G H
|
||||
MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8,
|
||||
MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8,
|
||||
MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8,
|
||||
MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8,
|
||||
MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8,
|
||||
MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8,
|
||||
MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8,
|
||||
MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8, MQ+8
|
||||
{ // Queen
|
||||
S(8,-80), S(8,-54), S(8,-42), S(8,-30), S(8,-30), S(8,-42), S(8,-54), S(8,-80),
|
||||
S(8,-54), S(8,-30), S(8,-18), S(8, -6), S(8, -6), S(8,-18), S(8,-30), S(8,-54),
|
||||
S(8,-42), S(8,-18), S(8, -6), S(8, 6), S(8, 6), S(8, -6), S(8,-18), S(8,-42),
|
||||
S(8,-30), S(8, -6), S(8, 6), S(8, 18), S(8, 18), S(8, 6), S(8, -6), S(8,-30),
|
||||
S(8,-30), S(8, -6), S(8, 6), S(8, 18), S(8, 18), S(8, 6), S(8, -6), S(8,-30),
|
||||
S(8,-42), S(8,-18), S(8, -6), S(8, 6), S(8, 6), S(8, -6), S(8,-18), S(8,-42),
|
||||
S(8,-54), S(8,-30), S(8,-18), S(8, -6), S(8, -6), S(8,-18), S(8,-30), S(8,-54),
|
||||
S(8,-80), S(8,-54), S(8,-42), S(8,-30), S(8,-30), S(8,-42), S(8,-54), S(8,-80)
|
||||
},
|
||||
{// King
|
||||
//A B C D E F G H
|
||||
287, 311, 262, 214, 214, 262, 311, 287,
|
||||
262, 287, 238, 190, 190, 238, 287, 262,
|
||||
214, 238, 190, 142, 142, 190, 238, 214,
|
||||
190, 214, 167, 119, 119, 167, 214, 190,
|
||||
167, 190, 142, 94, 94, 142, 190, 167,
|
||||
142, 167, 119, 69, 69, 119, 167, 142,
|
||||
119, 142, 94, 46, 46, 94, 142, 119,
|
||||
94, 119, 69, 21, 21, 69, 119, 94
|
||||
{ // King
|
||||
S(287, 18), S(311, 77), S(262,105), S(214,135), S(214,135), S(262,105), S(311, 77), S(287, 18),
|
||||
S(262, 77), S(287,135), S(238,165), S(190,193), S(190,193), S(238,165), S(287,135), S(262, 77),
|
||||
S(214,105), S(238,165), S(190,193), S(142,222), S(142,222), S(190,193), S(238,165), S(214,105),
|
||||
S(190,135), S(214,193), S(167,222), S(119,251), S(119,251), S(167,222), S(214,193), S(190,135),
|
||||
S(167,135), S(190,193), S(142,222), S( 94,251), S( 94,251), S(142,222), S(190,193), S(167,135),
|
||||
S(142,105), S(167,165), S(119,193), S( 69,222), S( 69,222), S(119,193), S(167,165), S(142,105),
|
||||
S(119, 77), S(142,135), S( 94,165), S( 46,193), S( 46,193), S( 94,165), S(142,135), S(119, 77),
|
||||
S(94, 18), S(119, 77), S( 69,105), S( 21,135), S( 21,135), S( 69,105), S(119, 77), S( 94, 18)
|
||||
}
|
||||
};
|
||||
|
||||
const int EgPST[][64] = {
|
||||
{ },
|
||||
{// Pawn
|
||||
// A B C D E F G H
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8,
|
||||
EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8,
|
||||
EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8,
|
||||
EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8,
|
||||
EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8,
|
||||
EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8, EP-8,
|
||||
0, 0, 0, 0, 0, 0, 0, 0
|
||||
},
|
||||
{// Knight
|
||||
// A B C D E F G H
|
||||
EK-104, EK-79, EK-55, EK-42, EK-42, EK-55, EK-79, EK-104,
|
||||
EK- 79, EK-55, EK-30, EK-17, EK-17, EK-30, EK-55, EK- 79,
|
||||
EK- 55, EK-30, EK- 6, EK+ 5, EK+ 5, EK- 6, EK-30, EK- 55,
|
||||
EK- 42, EK-17, EK+ 5, EK+18, EK+18, EK+ 5, EK-17, EK- 42,
|
||||
EK- 42, EK-17, EK+ 5, EK+18, EK+18, EK+ 5, EK-17, EK- 42,
|
||||
EK- 55, EK-30, EK- 6, EK+ 5, EK+ 5, EK- 6, EK-30, EK- 55,
|
||||
EK- 79, EK-55, EK-30, EK-17, EK-17, EK-30, EK-55, EK- 79,
|
||||
EK-104, EK-79, EK-55, EK-42, EK-42, EK-55, EK-79, EK-104
|
||||
},
|
||||
{// Bishop
|
||||
// A B C D E F G H
|
||||
EB-59, EB-42, EB-35, EB-26, EB-26, EB-35, EB-42, EB-59,
|
||||
EB-42, EB-26, EB-18, EB-11, EB-11, EB-18, EB-26, EB-42,
|
||||
EB-35, EB-18, EB-11, EB- 4, EB- 4, EB-11, EB-18, EB-35,
|
||||
EB-26, EB-11, EB- 4, EB+ 4, EB+ 4, EB- 4, EB-11, EB-26,
|
||||
EB-26, EB-11, EB- 4, EB+ 4, EB+ 4, EB- 4, EB-11, EB-26,
|
||||
EB-35, EB-18, EB-11, EB- 4, EB- 4, EB-11, EB-18, EB-35,
|
||||
EB-42, EB-26, EB-18, EB-11, EB-11, EB-18, EB-26, EB-42,
|
||||
EB-59, EB-42, EB-35, EB-26, EB-26, EB-35, EB-42, EB-59
|
||||
},
|
||||
{// Rook
|
||||
// A B C D E F G H
|
||||
ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3,
|
||||
ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3,
|
||||
ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3,
|
||||
ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3,
|
||||
ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3,
|
||||
ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3,
|
||||
ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3,
|
||||
ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3, ER+3
|
||||
},
|
||||
{// Queen
|
||||
// A B C D E F G H
|
||||
EQ-80, EQ-54, EQ-42, EQ-30, EQ-30, EQ-42, EQ-54, EQ-80,
|
||||
EQ-54, EQ-30, EQ-18, EQ- 6, EQ- 6, EQ-18, EQ-30, EQ-54,
|
||||
EQ-42, EQ-18, EQ- 6, EQ+ 6, EQ+ 6, EQ- 6, EQ-18, EQ-42,
|
||||
EQ-30, EQ- 6, EQ+ 6, EQ+18, EQ+18, EQ+ 6, EQ- 6, EQ-30,
|
||||
EQ-30, EQ- 6, EQ+ 6, EQ+18, EQ+18, EQ+ 6, EQ- 6, EQ-30,
|
||||
EQ-42, EQ-18, EQ- 6, EQ+ 6, EQ+ 6, EQ- 6, EQ-18, EQ-42,
|
||||
EQ-54, EQ-30, EQ-18, EQ- 6, EQ- 6, EQ-18, EQ-30, EQ-54,
|
||||
EQ-80, EQ-54, EQ-42, EQ-30, EQ-30, EQ-42, EQ-54, EQ-80
|
||||
},
|
||||
{// King
|
||||
//A B C D E F G H
|
||||
18, 77, 105, 135, 135, 105, 77, 18,
|
||||
77, 135, 165, 193, 193, 165, 135, 77,
|
||||
105, 165, 193, 222, 222, 193, 165, 105,
|
||||
135, 193, 222, 251, 251, 222, 193, 135,
|
||||
135, 193, 222, 251, 251, 222, 193, 135,
|
||||
105, 165, 193, 222, 222, 193, 165, 105,
|
||||
77, 135, 165, 193, 193, 165, 135, 77,
|
||||
18, 77, 105, 135, 135, 105, 77, 18
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
#undef S
|
||||
|
||||
#endif // !defined(PSQTAB_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -20,19 +20,6 @@
|
|||
available under the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
** George Marsaglia invented the RNG-Kiss-family in the early 90's.
|
||||
** This is a specific version that Heinz van Saanen derived and
|
||||
** tested from some public domain code by Bob Jenkins:
|
||||
**
|
||||
** Quite platform independent
|
||||
** Passes ALL dieharder tests! Here *nix sys-rand() e.g. fails miserably:-)
|
||||
** ~12 times faster than my *nix sys-rand()
|
||||
** ~4 times faster than SSE2-version of Mersenne twister
|
||||
** Average cycle length: ~2^126
|
||||
** 64 bit seed
|
||||
** Return doubles with a full 53 bit mantissa
|
||||
** Thread safe
|
||||
*/
|
||||
|
||||
#if !defined(RKISS_H_INCLUDED)
|
||||
|
@ -40,6 +27,20 @@
|
|||
|
||||
#include "types.h"
|
||||
|
||||
/// RKISS is our pseudo random number generator (PRNG) used to compute hash keys.
|
||||
/// George Marsaglia invented the RNG-Kiss-family in the early 90's. This is a
|
||||
/// specific version that Heinz van Saanen derived from some public domain code
|
||||
/// by Bob Jenkins. Following the feature list, as tested by Heinz.
|
||||
///
|
||||
/// - Quite platform independent
|
||||
/// - Passes ALL dieharder tests! Here *nix sys-rand() e.g. fails miserably:-)
|
||||
/// - ~12 times faster than my *nix sys-rand()
|
||||
/// - ~4 times faster than SSE2-version of Mersenne twister
|
||||
/// - Average cycle length: ~2^126
|
||||
/// - 64 bit seed
|
||||
/// - Return doubles with a full 53 bit mantissa
|
||||
/// - Thread safe
|
||||
|
||||
class RKISS {
|
||||
|
||||
// Keep variables always together
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -21,53 +21,62 @@
|
|||
#define SEARCH_H_INCLUDED
|
||||
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
|
||||
#include "move.h"
|
||||
#include "types.h"
|
||||
|
||||
class Position;
|
||||
struct SplitPoint;
|
||||
|
||||
/// The SearchStack struct keeps track of the information we need to remember
|
||||
/// from nodes shallower and deeper in the tree during the search. Each
|
||||
/// search thread has its own array of SearchStack objects, indexed by the
|
||||
/// current ply.
|
||||
namespace Search {
|
||||
|
||||
struct SearchStack {
|
||||
/// The Stack struct keeps track of the information we need to remember from
|
||||
/// nodes shallower and deeper in the tree during the search. Each search thread
|
||||
/// has its own array of Stack objects, indexed by the current ply.
|
||||
|
||||
struct Stack {
|
||||
SplitPoint* sp;
|
||||
int ply;
|
||||
Move currentMove;
|
||||
Move mateKiller;
|
||||
Move excludedMove;
|
||||
Move bestMove;
|
||||
Move killers[2];
|
||||
Depth reduction;
|
||||
Value eval;
|
||||
Value evalMargin;
|
||||
bool skipNullMove;
|
||||
SplitPoint* sp;
|
||||
int skipNullMove;
|
||||
};
|
||||
|
||||
|
||||
/// The SearchLimits struct stores information sent by GUI about available time
|
||||
/// The LimitsType struct stores information sent by GUI about available time
|
||||
/// to search the current move, maximum depth/time, if we are in analysis mode
|
||||
/// or if we have to ponder while is our opponent's side to move.
|
||||
|
||||
struct SearchLimits {
|
||||
struct LimitsType {
|
||||
|
||||
SearchLimits() { memset(this, 0, sizeof(SearchLimits)); }
|
||||
LimitsType() { memset(this, 0, sizeof(LimitsType)); }
|
||||
bool useTimeManagement() const { return !(maxTime | maxDepth | maxNodes | infinite); }
|
||||
|
||||
SearchLimits(int t, int i, int mtg, int mt, int md, int mn, bool inf, bool pon)
|
||||
: time(t), increment(i), movesToGo(mtg), maxTime(mt), maxDepth(md),
|
||||
maxNodes(mn), infinite(inf), ponder(pon) {}
|
||||
|
||||
bool useTimeManagement() const { return !(maxTime | maxDepth | maxNodes | int(infinite)); }
|
||||
|
||||
int time, increment, movesToGo, maxTime, maxDepth, maxNodes;
|
||||
bool infinite, ponder;
|
||||
int time, increment, movesToGo, maxTime, maxDepth, maxNodes, infinite, ponder;
|
||||
};
|
||||
|
||||
extern void init_search();
|
||||
|
||||
/// The SignalsType struct stores volatile flags updated during the search
|
||||
/// typically in an async fashion, for instance to stop the search by the GUI.
|
||||
|
||||
struct SignalsType {
|
||||
bool stopOnPonderhit, firstRootMove, stop, failedLowAtRoot;
|
||||
};
|
||||
|
||||
extern volatile SignalsType Signals;
|
||||
extern LimitsType Limits;
|
||||
extern std::vector<Move> SearchMoves;
|
||||
extern Position RootPosition;
|
||||
|
||||
extern void init();
|
||||
extern int64_t perft(Position& pos, Depth depth);
|
||||
extern bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]);
|
||||
extern void think();
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // !defined(SEARCH_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -19,36 +19,41 @@
|
|||
|
||||
#include <iostream>
|
||||
|
||||
#include "search.h"
|
||||
#include "thread.h"
|
||||
#include "ucioption.h"
|
||||
|
||||
ThreadsManager Threads; // Global object definition
|
||||
using namespace Search;
|
||||
|
||||
ThreadsManager Threads; // Global object
|
||||
|
||||
namespace { extern "C" {
|
||||
|
||||
// start_routine() is the C function which is called when a new thread
|
||||
// is launched. It simply calls idle_loop() with the supplied threadID.
|
||||
// There are two versions of this function; one for POSIX threads and
|
||||
// one for Windows threads.
|
||||
// is launched. It simply calls idle_loop() of the supplied thread. The first
|
||||
// and last thread are special. First one is the main search thread while the
|
||||
// last one mimics a timer, they run in main_loop() and timer_loop().
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
DWORD WINAPI start_routine(LPVOID thread) {
|
||||
#else
|
||||
void* start_routine(void* thread) {
|
||||
#endif
|
||||
|
||||
DWORD WINAPI start_routine(LPVOID threadID) {
|
||||
Thread* th = (Thread*)thread;
|
||||
|
||||
if (th->threadID == 0)
|
||||
th->main_loop();
|
||||
|
||||
else if (th->threadID == MAX_THREADS)
|
||||
th->timer_loop();
|
||||
|
||||
else
|
||||
th->idle_loop(NULL);
|
||||
|
||||
Threads.idle_loop(*(int*)threadID, NULL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void* start_routine(void* threadID) {
|
||||
|
||||
Threads.idle_loop(*(int*)threadID, NULL);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
} }
|
||||
|
||||
|
||||
|
@ -63,15 +68,15 @@ void Thread::wake_up() {
|
|||
}
|
||||
|
||||
|
||||
// cutoff_occurred() checks whether a beta cutoff has occurred in
|
||||
// the thread's currently active split point, or in some ancestor of
|
||||
// the current split point.
|
||||
// cutoff_occurred() checks whether a beta cutoff has occurred in the current
|
||||
// active split point, or in some ancestor of the split point.
|
||||
|
||||
bool Thread::cutoff_occurred() const {
|
||||
|
||||
for (SplitPoint* sp = splitPoint; sp; sp = sp->parent)
|
||||
if (sp->is_betaCutoff)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -85,7 +90,7 @@ bool Thread::cutoff_occurred() const {
|
|||
|
||||
bool Thread::is_available_to(int master) const {
|
||||
|
||||
if (state != AVAILABLE)
|
||||
if (is_searching)
|
||||
return false;
|
||||
|
||||
// Make a local copy to be sure doesn't become zero under our feet while
|
||||
|
@ -102,16 +107,41 @@ bool Thread::is_available_to(int master) const {
|
|||
}
|
||||
|
||||
|
||||
// read_uci_options() updates number of active threads and other internal
|
||||
// parameters according to the UCI options values. It is called before
|
||||
// to start a new search.
|
||||
// read_uci_options() updates number of active threads and other parameters
|
||||
// according to the UCI options values. It is called before to start a new search.
|
||||
|
||||
void ThreadsManager::read_uci_options() {
|
||||
|
||||
maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value<int>();
|
||||
minimumSplitDepth = Options["Minimum Split Depth"].value<int>() * ONE_PLY;
|
||||
useSleepingThreads = Options["Use Sleeping Threads"].value<bool>();
|
||||
activeThreads = Options["Threads"].value<int>();
|
||||
maxThreadsPerSplitPoint = Options["Max Threads per Split Point"];
|
||||
minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY;
|
||||
useSleepingThreads = Options["Use Sleeping Threads"];
|
||||
|
||||
set_size(Options["Threads"]);
|
||||
}
|
||||
|
||||
|
||||
// set_size() changes the number of active threads and raises do_sleep flag for
|
||||
// all the unused threads that will go immediately to sleep.
|
||||
|
||||
void ThreadsManager::set_size(int cnt) {
|
||||
|
||||
assert(cnt > 0 && cnt <= MAX_THREADS);
|
||||
|
||||
activeThreads = cnt;
|
||||
|
||||
for (int i = 1; i < MAX_THREADS; i++) // Ignore main thread
|
||||
if (i < activeThreads)
|
||||
{
|
||||
// Dynamically allocate pawn and material hash tables according to the
|
||||
// number of active threads. This avoids preallocating memory for all
|
||||
// possible threads if only few are used.
|
||||
threads[i].pawnTable.init();
|
||||
threads[i].materialTable.init();
|
||||
|
||||
threads[i].do_sleep = false;
|
||||
}
|
||||
else
|
||||
threads[i].do_sleep = true;
|
||||
}
|
||||
|
||||
|
||||
|
@ -120,22 +150,12 @@ void ThreadsManager::read_uci_options() {
|
|||
|
||||
void ThreadsManager::init() {
|
||||
|
||||
int threadID[MAX_THREADS];
|
||||
// Initialize sleep condition and lock used by thread manager
|
||||
cond_init(&sleepCond);
|
||||
lock_init(&threadsLock);
|
||||
|
||||
// This flag is needed to properly end the threads when program exits
|
||||
allThreadsShouldExit = false;
|
||||
|
||||
// Threads will sent to sleep as soon as created, only main thread is kept alive
|
||||
activeThreads = 1;
|
||||
threads[0].state = Thread::SEARCHING;
|
||||
|
||||
// Allocate pawn and material hash tables for main thread
|
||||
init_hash_tables();
|
||||
|
||||
lock_init(&mpLock);
|
||||
|
||||
// Initialize thread and split point locks
|
||||
for (int i = 0; i < MAX_THREADS; i++)
|
||||
// Initialize thread's sleep conditions and split point locks
|
||||
for (int i = 0; i <= MAX_THREADS; i++)
|
||||
{
|
||||
lock_init(&threads[i].sleepLock);
|
||||
cond_init(&threads[i].sleepCond);
|
||||
|
@ -144,48 +164,51 @@ void ThreadsManager::init() {
|
|||
lock_init(&(threads[i].splitPoints[j].lock));
|
||||
}
|
||||
|
||||
// Create and startup all the threads but the main that is already running
|
||||
for (int i = 1; i < MAX_THREADS; i++)
|
||||
// Allocate main thread tables to call evaluate() also when not searching
|
||||
threads[0].pawnTable.init();
|
||||
threads[0].materialTable.init();
|
||||
|
||||
// Create and launch all the threads, threads will go immediately to sleep
|
||||
for (int i = 0; i <= MAX_THREADS; i++)
|
||||
{
|
||||
threads[i].state = Thread::INITIALIZING;
|
||||
threadID[i] = i;
|
||||
threads[i].is_searching = false;
|
||||
threads[i].do_sleep = true;
|
||||
threads[i].threadID = i;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
bool ok = (CreateThread(NULL, 0, start_routine, (LPVOID)&threadID[i], 0, NULL) != NULL);
|
||||
threads[i].handle = CreateThread(NULL, 0, start_routine, &threads[i], 0, NULL);
|
||||
bool ok = (threads[i].handle != NULL);
|
||||
#else
|
||||
pthread_t pthreadID;
|
||||
bool ok = (pthread_create(&pthreadID, NULL, start_routine, (void*)&threadID[i]) == 0);
|
||||
pthread_detach(pthreadID);
|
||||
bool ok = !pthread_create(&threads[i].handle, NULL, start_routine, &threads[i]);
|
||||
#endif
|
||||
|
||||
if (!ok)
|
||||
{
|
||||
std::cout << "Failed to create thread number " << i << std::endl;
|
||||
std::cerr << "Failed to create thread number " << i << std::endl;
|
||||
::exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Wait until the thread has finished launching and is gone to sleep
|
||||
while (threads[i].state == Thread::INITIALIZING) {}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// exit() is called to cleanly exit the threads when the program finishes
|
||||
// exit() is called to cleanly terminate the threads when the program finishes
|
||||
|
||||
void ThreadsManager::exit() {
|
||||
|
||||
// Force the woken up threads to exit idle_loop() and hence terminate
|
||||
allThreadsShouldExit = true;
|
||||
|
||||
for (int i = 0; i < MAX_THREADS; i++)
|
||||
for (int i = 0; i <= MAX_THREADS; i++)
|
||||
{
|
||||
// Wake up all the threads and waits for termination
|
||||
if (i != 0)
|
||||
{
|
||||
threads[i].wake_up();
|
||||
while (threads[i].state != Thread::TERMINATED) {}
|
||||
}
|
||||
threads[i].do_terminate = true; // Search must be already finished
|
||||
threads[i].wake_up();
|
||||
|
||||
// Now we can safely destroy the locks and wait conditions
|
||||
// Wait for thread termination
|
||||
#if defined(_MSC_VER)
|
||||
WaitForSingleObject(threads[i].handle, 0);
|
||||
CloseHandle(threads[i].handle);
|
||||
#else
|
||||
pthread_join(threads[i].handle, NULL);
|
||||
#endif
|
||||
|
||||
// Now we can safely destroy associated locks and wait conditions
|
||||
lock_destroy(&threads[i].sleepLock);
|
||||
cond_destroy(&threads[i].sleepCond);
|
||||
|
||||
|
@ -193,58 +216,56 @@ void ThreadsManager::exit() {
|
|||
lock_destroy(&(threads[i].splitPoints[j].lock));
|
||||
}
|
||||
|
||||
lock_destroy(&mpLock);
|
||||
}
|
||||
|
||||
|
||||
// init_hash_tables() dynamically allocates pawn and material hash tables
|
||||
// according to the number of active threads. This avoids preallocating
|
||||
// memory for all possible threads if only few are used as, for instance,
|
||||
// on mobile devices where memory is scarce and allocating for MAX_THREADS
|
||||
// threads could even result in a crash.
|
||||
|
||||
void ThreadsManager::init_hash_tables() {
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
{
|
||||
threads[i].pawnTable.init();
|
||||
threads[i].materialTable.init();
|
||||
}
|
||||
lock_destroy(&threadsLock);
|
||||
cond_destroy(&sleepCond);
|
||||
}
|
||||
|
||||
|
||||
// available_slave_exists() tries to find an idle thread which is available as
|
||||
// a slave for the thread with threadID "master".
|
||||
// a slave for the thread with threadID 'master'.
|
||||
|
||||
bool ThreadsManager::available_slave_exists(int master) const {
|
||||
|
||||
assert(master >= 0 && master < activeThreads);
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
if (i != master && threads[i].is_available_to(master))
|
||||
if (threads[i].is_available_to(master))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// split_point_finished() checks if all the slave threads of a given split
|
||||
// point have finished searching.
|
||||
|
||||
bool ThreadsManager::split_point_finished(SplitPoint* sp) const {
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
if (sp->is_slave[i])
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// split() does the actual work of distributing the work at a node between
|
||||
// several available threads. If it does not succeed in splitting the
|
||||
// node (because no idle threads are available, or because we have no unused
|
||||
// split point objects), the function immediately returns. If splitting is
|
||||
// possible, a SplitPoint object is initialized with all the data that must be
|
||||
// copied to the helper threads and we tell our helper threads that they have
|
||||
// been assigned work. This will cause them to instantly leave their idle loops and
|
||||
// call search().When all threads have returned from search() then split() returns.
|
||||
// several available threads. If it does not succeed in splitting the node
|
||||
// (because no idle threads are available, or because we have no unused split
|
||||
// point objects), the function immediately returns. If splitting is possible, a
|
||||
// SplitPoint object is initialized with all the data that must be copied to the
|
||||
// helper threads and then helper threads are told that they have been assigned
|
||||
// work. This will cause them to instantly leave their idle loops and call
|
||||
// search(). When all threads have returned from search() then split() returns.
|
||||
|
||||
template <bool Fake>
|
||||
void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const Value beta,
|
||||
Value* bestValue, Depth depth, Move threatMove,
|
||||
int moveCount, MovePicker* mp, bool pvNode) {
|
||||
assert(pos.is_ok());
|
||||
assert(*bestValue >= -VALUE_INFINITE);
|
||||
assert(*bestValue <= *alpha);
|
||||
assert(*alpha < beta);
|
||||
Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
|
||||
Value bestValue, Depth depth, Move threatMove,
|
||||
int moveCount, MovePicker* mp, int nodeType) {
|
||||
assert(pos.pos_is_ok());
|
||||
assert(bestValue > -VALUE_INFINITE);
|
||||
assert(bestValue <= alpha);
|
||||
assert(alpha < beta);
|
||||
assert(beta <= VALUE_INFINITE);
|
||||
assert(depth > DEPTH_ZERO);
|
||||
assert(pos.thread() >= 0 && pos.thread() < activeThreads);
|
||||
|
@ -253,93 +274,228 @@ void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const V
|
|||
int i, master = pos.thread();
|
||||
Thread& masterThread = threads[master];
|
||||
|
||||
lock_grab(&mpLock);
|
||||
// If we already have too many active split points, don't split
|
||||
if (masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
||||
return bestValue;
|
||||
|
||||
// If no other thread is available to help us, or if we have too many
|
||||
// active split points, don't split.
|
||||
if ( !available_slave_exists(master)
|
||||
|| masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
||||
{
|
||||
lock_release(&mpLock);
|
||||
return;
|
||||
}
|
||||
// Pick the next available split point from the split point stack
|
||||
SplitPoint* sp = &masterThread.splitPoints[masterThread.activeSplitPoints];
|
||||
|
||||
// Pick the next available split point object from the split point stack
|
||||
SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++];
|
||||
// Initialize the split point
|
||||
sp->parent = masterThread.splitPoint;
|
||||
sp->master = master;
|
||||
sp->is_betaCutoff = false;
|
||||
sp->depth = depth;
|
||||
sp->threatMove = threatMove;
|
||||
sp->alpha = alpha;
|
||||
sp->beta = beta;
|
||||
sp->nodeType = nodeType;
|
||||
sp->bestValue = bestValue;
|
||||
sp->mp = mp;
|
||||
sp->moveCount = moveCount;
|
||||
sp->pos = &pos;
|
||||
sp->nodes = 0;
|
||||
sp->ss = ss;
|
||||
|
||||
// Initialize the split point object
|
||||
splitPoint.parent = masterThread.splitPoint;
|
||||
splitPoint.master = master;
|
||||
splitPoint.is_betaCutoff = false;
|
||||
splitPoint.depth = depth;
|
||||
splitPoint.threatMove = threatMove;
|
||||
splitPoint.alpha = *alpha;
|
||||
splitPoint.beta = beta;
|
||||
splitPoint.pvNode = pvNode;
|
||||
splitPoint.bestValue = *bestValue;
|
||||
splitPoint.mp = mp;
|
||||
splitPoint.moveCount = moveCount;
|
||||
splitPoint.pos = &pos;
|
||||
splitPoint.nodes = 0;
|
||||
splitPoint.ss = ss;
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
splitPoint.is_slave[i] = false;
|
||||
|
||||
masterThread.splitPoint = &splitPoint;
|
||||
sp->is_slave[i] = false;
|
||||
|
||||
// If we are here it means we are not available
|
||||
assert(masterThread.state != Thread::AVAILABLE);
|
||||
assert(masterThread.is_searching);
|
||||
|
||||
int workersCnt = 1; // At least the master is included
|
||||
|
||||
// Allocate available threads setting state to THREAD_BOOKED
|
||||
// Try to allocate available threads and ask them to start searching setting
|
||||
// is_searching flag. This must be done under lock protection to avoid concurrent
|
||||
// allocation of the same slave by another master.
|
||||
lock_grab(&threadsLock);
|
||||
|
||||
for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++)
|
||||
if (i != master && threads[i].is_available_to(master))
|
||||
if (threads[i].is_available_to(master))
|
||||
{
|
||||
threads[i].state = Thread::BOOKED;
|
||||
threads[i].splitPoint = &splitPoint;
|
||||
splitPoint.is_slave[i] = true;
|
||||
workersCnt++;
|
||||
}
|
||||
sp->is_slave[i] = true;
|
||||
threads[i].splitPoint = sp;
|
||||
|
||||
assert(Fake || workersCnt > 1);
|
||||
// This makes the slave to exit from idle_loop()
|
||||
threads[i].is_searching = true;
|
||||
|
||||
// We can release the lock because slave threads are already booked and master is not available
|
||||
lock_release(&mpLock);
|
||||
|
||||
// Tell the threads that they have work to do. This will make them leave
|
||||
// their idle loop.
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
if (i == master || splitPoint.is_slave[i])
|
||||
{
|
||||
assert(i == master || threads[i].state == Thread::BOOKED);
|
||||
|
||||
threads[i].state = Thread::WORKISWAITING; // This makes the slave to exit from idle_loop()
|
||||
|
||||
if (useSleepingThreads && i != master)
|
||||
if (useSleepingThreads)
|
||||
threads[i].wake_up();
|
||||
}
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from
|
||||
// which it will instantly launch a search, because its state is
|
||||
// THREAD_WORKISWAITING. We send the split point as a second parameter to the
|
||||
// idle loop, which means that the main thread will return from the idle
|
||||
// loop when all threads have finished their work at this split point.
|
||||
idle_loop(master, &splitPoint);
|
||||
lock_release(&threadsLock);
|
||||
|
||||
// We failed to allocate even one slave, return
|
||||
if (!Fake && workersCnt == 1)
|
||||
return bestValue;
|
||||
|
||||
masterThread.splitPoint = sp;
|
||||
masterThread.activeSplitPoints++;
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from which
|
||||
// it will instantly launch a search, because its is_searching flag is set.
|
||||
// We pass the split point as a parameter to the idle loop, which means that
|
||||
// the thread will return from the idle loop when all slaves have finished
|
||||
// their work at this split point.
|
||||
masterThread.idle_loop(sp);
|
||||
|
||||
// In helpful master concept a master can help only a sub-tree of its split
|
||||
// point, and because here is all finished is not possible master is booked.
|
||||
assert(!masterThread.is_searching);
|
||||
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Update alpha and bestValue, and return.
|
||||
lock_grab(&mpLock);
|
||||
// finished. Note that changing state and decreasing activeSplitPoints is done
|
||||
// under lock protection to avoid a race with Thread::is_available_to().
|
||||
lock_grab(&threadsLock);
|
||||
|
||||
*alpha = splitPoint.alpha;
|
||||
*bestValue = splitPoint.bestValue;
|
||||
masterThread.is_searching = true;
|
||||
masterThread.activeSplitPoints--;
|
||||
masterThread.splitPoint = splitPoint.parent;
|
||||
pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes);
|
||||
|
||||
lock_release(&mpLock);
|
||||
lock_release(&threadsLock);
|
||||
|
||||
masterThread.splitPoint = sp->parent;
|
||||
pos.set_nodes_searched(pos.nodes_searched() + sp->nodes);
|
||||
|
||||
return sp->bestValue;
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template void ThreadsManager::split<false>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool);
|
||||
template void ThreadsManager::split<true>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool);
|
||||
template Value ThreadsManager::split<false>(Position&, Stack*, Value, Value, Value, Depth, Move, int, MovePicker*, int);
|
||||
template Value ThreadsManager::split<true>(Position&, Stack*, Value, Value, Value, Depth, Move, int, MovePicker*, int);
|
||||
|
||||
|
||||
// Thread::timer_loop() is where the timer thread waits maxPly milliseconds and
|
||||
// then calls do_timer_event(). If maxPly is 0 thread sleeps until is woken up.
|
||||
extern void do_timer_event();
|
||||
|
||||
void Thread::timer_loop() {
|
||||
|
||||
while (!do_terminate)
|
||||
{
|
||||
lock_grab(&sleepLock);
|
||||
timed_wait(&sleepCond, &sleepLock, maxPly ? maxPly : INT_MAX);
|
||||
lock_release(&sleepLock);
|
||||
do_timer_event();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::set_timer() is used to set the timer to trigger after msec
|
||||
// milliseconds. If msec is 0 then timer is stopped.
|
||||
|
||||
void ThreadsManager::set_timer(int msec) {
|
||||
|
||||
Thread& timer = threads[MAX_THREADS];
|
||||
|
||||
lock_grab(&timer.sleepLock);
|
||||
timer.maxPly = msec;
|
||||
cond_signal(&timer.sleepCond); // Wake up and restart the timer
|
||||
lock_release(&timer.sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// Thread::main_loop() is where the main thread is parked waiting to be started
|
||||
// when there is a new search. Main thread will launch all the slave threads.
|
||||
|
||||
void Thread::main_loop() {
|
||||
|
||||
while (true)
|
||||
{
|
||||
lock_grab(&sleepLock);
|
||||
|
||||
do_sleep = true; // Always return to sleep after a search
|
||||
is_searching = false;
|
||||
|
||||
while (do_sleep && !do_terminate)
|
||||
{
|
||||
cond_signal(&Threads.sleepCond); // Wake up UI thread if needed
|
||||
cond_wait(&sleepCond, &sleepLock);
|
||||
}
|
||||
|
||||
is_searching = true;
|
||||
|
||||
lock_release(&sleepLock);
|
||||
|
||||
if (do_terminate)
|
||||
return;
|
||||
|
||||
think(); // This is the search entry point
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::start_thinking() is used by UI thread to wake up the main
|
||||
// thread parked in main_loop() and starting a new search. If asyncMode is true
|
||||
// then function returns immediately, otherwise caller is blocked waiting for
|
||||
// the search to finish.
|
||||
|
||||
void ThreadsManager::start_thinking(const Position& pos, const LimitsType& limits,
|
||||
const std::vector<Move>& searchMoves, bool asyncMode) {
|
||||
Thread& main = threads[0];
|
||||
|
||||
lock_grab(&main.sleepLock);
|
||||
|
||||
// Wait main thread has finished before to launch a new search
|
||||
while (!main.do_sleep)
|
||||
cond_wait(&sleepCond, &main.sleepLock);
|
||||
|
||||
// Copy input arguments to initialize the search
|
||||
RootPosition.copy(pos, 0);
|
||||
Limits = limits;
|
||||
SearchMoves = searchMoves;
|
||||
|
||||
// Reset signals before to start the new search
|
||||
memset((void*)&Signals, 0, sizeof(Signals));
|
||||
|
||||
main.do_sleep = false;
|
||||
cond_signal(&main.sleepCond); // Wake up main thread and start searching
|
||||
|
||||
if (!asyncMode)
|
||||
cond_wait(&sleepCond, &main.sleepLock);
|
||||
|
||||
lock_release(&main.sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::stop_thinking() is used by UI thread to raise a stop request
|
||||
// and to wait for the main thread finishing the search. Needed to wait exiting
|
||||
// and terminate the threads after a 'quit' command.
|
||||
|
||||
void ThreadsManager::stop_thinking() {
|
||||
|
||||
Thread& main = threads[0];
|
||||
|
||||
Search::Signals.stop = true;
|
||||
|
||||
lock_grab(&main.sleepLock);
|
||||
|
||||
cond_signal(&main.sleepCond); // In case is waiting for stop or ponderhit
|
||||
|
||||
while (!main.do_sleep)
|
||||
cond_wait(&sleepCond, &main.sleepLock);
|
||||
|
||||
lock_release(&main.sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::wait_for_stop_or_ponderhit() is called when the maximum depth
|
||||
// is reached while the program is pondering. The point is to work around a wrinkle
|
||||
// in the UCI protocol: When pondering, the engine is not allowed to give a
|
||||
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command. We simply
|
||||
// wait here until one of these commands (that raise StopRequest) is sent and
|
||||
// then return, after which the bestmove and pondermove will be printed.
|
||||
|
||||
void ThreadsManager::wait_for_stop_or_ponderhit() {
|
||||
|
||||
Signals.stopOnPonderhit = true;
|
||||
|
||||
Thread& main = threads[0];
|
||||
|
||||
lock_grab(&main.sleepLock);
|
||||
|
||||
while (!Signals.stop)
|
||||
cond_wait(&main.sleepCond, &main.sleepLock);
|
||||
|
||||
lock_release(&main.sleepLock);
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -27,6 +27,7 @@
|
|||
#include "movepick.h"
|
||||
#include "pawns.h"
|
||||
#include "position.h"
|
||||
#include "search.h"
|
||||
|
||||
const int MAX_THREADS = 32;
|
||||
const int MAX_ACTIVE_SPLIT_POINTS = 8;
|
||||
|
@ -37,15 +38,15 @@ struct SplitPoint {
|
|||
SplitPoint* parent;
|
||||
const Position* pos;
|
||||
Depth depth;
|
||||
bool pvNode;
|
||||
Value beta;
|
||||
int nodeType;
|
||||
int ply;
|
||||
int master;
|
||||
Move threatMove;
|
||||
|
||||
// Const pointers to shared data
|
||||
MovePicker* mp;
|
||||
SearchStack* ss;
|
||||
Search::Stack* ss;
|
||||
|
||||
// Shared data
|
||||
Lock lock;
|
||||
|
@ -58,42 +59,44 @@ struct SplitPoint {
|
|||
};
|
||||
|
||||
|
||||
/// Thread struct is used to keep together all the thread related stuff like locks,
|
||||
/// state and especially split points. We also use per-thread pawn and material hash
|
||||
/// tables so that once we get a pointer to an entry its life time is unlimited and
|
||||
/// we don't have to care about someone changing the entry under our feet.
|
||||
/// Thread struct keeps together all the thread related stuff like locks, state
|
||||
/// and especially split points. We also use per-thread pawn and material hash
|
||||
/// tables so that once we get a pointer to an entry its life time is unlimited
|
||||
/// and we don't have to care about someone changing the entry under our feet.
|
||||
|
||||
struct Thread {
|
||||
|
||||
enum ThreadState
|
||||
{
|
||||
INITIALIZING, // Thread is initializing itself
|
||||
SEARCHING, // Thread is performing work
|
||||
AVAILABLE, // Thread is waiting for work
|
||||
BOOKED, // Other thread (master) has booked us as a slave
|
||||
WORKISWAITING, // Master has ordered us to start
|
||||
TERMINATED // We are quitting and thread is terminated
|
||||
};
|
||||
|
||||
void wake_up();
|
||||
bool cutoff_occurred() const;
|
||||
bool is_available_to(int master) const;
|
||||
void idle_loop(SplitPoint* sp);
|
||||
void main_loop();
|
||||
void timer_loop();
|
||||
|
||||
SplitPoint splitPoints[MAX_ACTIVE_SPLIT_POINTS];
|
||||
MaterialInfoTable materialTable;
|
||||
PawnInfoTable pawnTable;
|
||||
int threadID;
|
||||
int maxPly;
|
||||
Lock sleepLock;
|
||||
WaitCondition sleepCond;
|
||||
volatile ThreadState state;
|
||||
SplitPoint* volatile splitPoint;
|
||||
volatile int activeSplitPoints;
|
||||
SplitPoint splitPoints[MAX_ACTIVE_SPLIT_POINTS];
|
||||
volatile bool is_searching;
|
||||
volatile bool do_sleep;
|
||||
volatile bool do_terminate;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
HANDLE handle;
|
||||
#else
|
||||
pthread_t handle;
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
/// ThreadsManager class is used to handle all the threads related stuff like init,
|
||||
/// starting, parking and, the most important, launching a slave thread at a split
|
||||
/// point. All the access to shared thread data is done through this class.
|
||||
/// ThreadsManager class handles all the threads related stuff like init, starting,
|
||||
/// parking and, the most important, launching a slave thread at a split point.
|
||||
/// All the access to shared thread data is done through this class.
|
||||
|
||||
class ThreadsManager {
|
||||
/* As long as the single ThreadsManager object is defined as a global we don't
|
||||
|
@ -104,27 +107,34 @@ public:
|
|||
Thread& operator[](int threadID) { return threads[threadID]; }
|
||||
void init();
|
||||
void exit();
|
||||
void init_hash_tables();
|
||||
|
||||
bool use_sleeping_threads() const { return useSleepingThreads; }
|
||||
int min_split_depth() const { return minimumSplitDepth; }
|
||||
int size() const { return activeThreads; }
|
||||
void set_size(int cnt) { activeThreads = cnt; }
|
||||
|
||||
void set_size(int cnt);
|
||||
void read_uci_options();
|
||||
bool available_slave_exists(int master) const;
|
||||
void idle_loop(int threadID, SplitPoint* sp);
|
||||
bool split_point_finished(SplitPoint* sp) const;
|
||||
void set_timer(int msec);
|
||||
void wait_for_stop_or_ponderhit();
|
||||
void stop_thinking();
|
||||
void start_thinking(const Position& pos, const Search::LimitsType& limits,
|
||||
const std::vector<Move>& searchMoves, bool asyncMode);
|
||||
|
||||
template <bool Fake>
|
||||
void split(Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue,
|
||||
Depth depth, Move threatMove, int moveCount, MovePicker* mp, bool pvNode);
|
||||
Value split(Position& pos, Search::Stack* ss, Value alpha, Value beta, Value bestValue,
|
||||
Depth depth, Move threatMove, int moveCount, MovePicker* mp, int nodeType);
|
||||
private:
|
||||
Lock mpLock;
|
||||
friend struct Thread;
|
||||
|
||||
Thread threads[MAX_THREADS + 1]; // Last one is used as a timer
|
||||
Lock threadsLock;
|
||||
Depth minimumSplitDepth;
|
||||
int maxThreadsPerSplitPoint;
|
||||
bool useSleepingThreads;
|
||||
int activeThreads;
|
||||
volatile bool allThreadsShouldExit;
|
||||
Thread threads[MAX_THREADS];
|
||||
bool useSleepingThreads;
|
||||
WaitCondition sleepCond;
|
||||
};
|
||||
|
||||
extern ThreadsManager Threads;
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -18,6 +18,7 @@
|
|||
*/
|
||||
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
|
||||
#include "misc.h"
|
||||
#include "search.h"
|
||||
|
@ -64,7 +65,7 @@ namespace {
|
|||
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2,
|
||||
2, 1, 1, 1, 1, 1, 1, 1 };
|
||||
|
||||
int move_importance(int ply) { return MoveImportance[Min(ply, 511)]; }
|
||||
int move_importance(int ply) { return MoveImportance[std::min(ply, 511)]; }
|
||||
|
||||
|
||||
/// Function Prototypes
|
||||
|
@ -72,18 +73,18 @@ namespace {
|
|||
enum TimeType { OptimumTime, MaxTime };
|
||||
|
||||
template<TimeType>
|
||||
int remaining(int myTime, int movesToGo, int currentPly);
|
||||
int remaining(int myTime, int movesToGo, int fullMoveNumber);
|
||||
}
|
||||
|
||||
|
||||
void TimeManager::pv_instability(int curChanges, int prevChanges) {
|
||||
|
||||
unstablePVExtraTime = curChanges * (optimumSearchTime / 2)
|
||||
+ prevChanges * (optimumSearchTime / 3);
|
||||
unstablePVExtraTime = curChanges * (optimumSearchTime / 2)
|
||||
+ prevChanges * (optimumSearchTime / 3);
|
||||
}
|
||||
|
||||
|
||||
void TimeManager::init(const SearchLimits& limits, int currentPly)
|
||||
void TimeManager::init(const Search::LimitsType& limits, int currentPly)
|
||||
{
|
||||
/* We support four different kind of time controls:
|
||||
|
||||
|
@ -103,10 +104,10 @@ void TimeManager::init(const SearchLimits& limits, int currentPly)
|
|||
int hypMTG, hypMyTime, t1, t2;
|
||||
|
||||
// Read uci parameters
|
||||
int emergencyMoveHorizon = Options["Emergency Move Horizon"].value<int>();
|
||||
int emergencyBaseTime = Options["Emergency Base Time"].value<int>();
|
||||
int emergencyMoveTime = Options["Emergency Move Time"].value<int>();
|
||||
int minThinkingTime = Options["Minimum Thinking Time"].value<int>();
|
||||
int emergencyMoveHorizon = Options["Emergency Move Horizon"];
|
||||
int emergencyBaseTime = Options["Emergency Base Time"];
|
||||
int emergencyMoveTime = Options["Emergency Move Time"];
|
||||
int minThinkingTime = Options["Minimum Thinking Time"];
|
||||
|
||||
// Initialize to maximum values but unstablePVExtraTime that is reset
|
||||
unstablePVExtraTime = 0;
|
||||
|
@ -114,28 +115,28 @@ void TimeManager::init(const SearchLimits& limits, int currentPly)
|
|||
|
||||
// We calculate optimum time usage for different hypothetic "moves to go"-values and choose the
|
||||
// minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values.
|
||||
for (hypMTG = 1; hypMTG <= (limits.movesToGo ? Min(limits.movesToGo, MoveHorizon) : MoveHorizon); hypMTG++)
|
||||
for (hypMTG = 1; hypMTG <= (limits.movesToGo ? std::min(limits.movesToGo, MoveHorizon) : MoveHorizon); hypMTG++)
|
||||
{
|
||||
// Calculate thinking time for hypothetic "moves to go"-value
|
||||
hypMyTime = limits.time
|
||||
+ limits.increment * (hypMTG - 1)
|
||||
- emergencyBaseTime
|
||||
- emergencyMoveTime * Min(hypMTG, emergencyMoveHorizon);
|
||||
- emergencyMoveTime * std::min(hypMTG, emergencyMoveHorizon);
|
||||
|
||||
hypMyTime = Max(hypMyTime, 0);
|
||||
hypMyTime = std::max(hypMyTime, 0);
|
||||
|
||||
t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, currentPly);
|
||||
t2 = minThinkingTime + remaining<MaxTime>(hypMyTime, hypMTG, currentPly);
|
||||
|
||||
optimumSearchTime = Min(optimumSearchTime, t1);
|
||||
maximumSearchTime = Min(maximumSearchTime, t2);
|
||||
optimumSearchTime = std::min(optimumSearchTime, t1);
|
||||
maximumSearchTime = std::min(maximumSearchTime, t2);
|
||||
}
|
||||
|
||||
if (Options["Ponder"].value<bool>())
|
||||
if (Options["Ponder"])
|
||||
optimumSearchTime += optimumSearchTime / 4;
|
||||
|
||||
// Make sure that maxSearchTime is not over absoluteMaxSearchTime
|
||||
optimumSearchTime = Min(optimumSearchTime, maximumSearchTime);
|
||||
optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime);
|
||||
}
|
||||
|
||||
|
||||
|
@ -156,6 +157,6 @@ namespace {
|
|||
float ratio1 = (TMaxRatio * thisMoveImportance) / float(TMaxRatio * thisMoveImportance + otherMovesImportance);
|
||||
float ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / float(thisMoveImportance + otherMovesImportance);
|
||||
|
||||
return int(floor(myTime * Min(ratio1, ratio2)));
|
||||
return int(floor(myTime * std::min(ratio1, ratio2)));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -20,12 +20,12 @@
|
|||
#if !defined(TIMEMAN_H_INCLUDED)
|
||||
#define TIMEMAN_H_INCLUDED
|
||||
|
||||
struct SearchLimits;
|
||||
/// The TimeManager class computes the optimal time to think depending on the
|
||||
/// maximum available time, the move game number and other parameters.
|
||||
|
||||
class TimeManager {
|
||||
public:
|
||||
|
||||
void init(const SearchLimits& limits, int currentPly);
|
||||
void init(const Search::LimitsType& limits, int currentPly);
|
||||
void pv_instability(int curChanges, int prevChanges);
|
||||
int available_time() const { return optimumSearchTime + unstablePVExtraTime; }
|
||||
int maximum_time() const { return maximumSearchTime; }
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -17,7 +17,6 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
|
||||
|
@ -60,7 +59,7 @@ void TranspositionTable::set_size(size_t mbSize) {
|
|||
if (!entries)
|
||||
{
|
||||
std::cerr << "Failed to allocate " << mbSize
|
||||
<< " MB for transposition table." << std::endl;
|
||||
<< "MB for transposition table." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
clear();
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -22,7 +22,7 @@
|
|||
|
||||
#include <iostream>
|
||||
|
||||
#include "move.h"
|
||||
#include "misc.h"
|
||||
#include "types.h"
|
||||
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -20,6 +20,26 @@
|
|||
#if !defined(TYPES_H_INCLUDED)
|
||||
#define TYPES_H_INCLUDED
|
||||
|
||||
/// For Linux and OSX configuration is done automatically using Makefile. To get
|
||||
/// started type 'make help'.
|
||||
///
|
||||
/// For Windows, part of the configuration is detected automatically, but some
|
||||
/// switches need to be set manually:
|
||||
///
|
||||
/// -DNDEBUG | Disable debugging mode. Use always.
|
||||
///
|
||||
/// -DNO_PREFETCH | Disable use of prefetch asm-instruction. A must if you want
|
||||
/// | the executable to run on some very old machines.
|
||||
///
|
||||
/// -DUSE_POPCNT | Add runtime support for use of popcnt asm-instruction. Works
|
||||
/// | only in 64-bit mode. For compiling requires hardware with
|
||||
/// | popcnt support.
|
||||
///
|
||||
/// -DOLD_LOCKS | Under Windows are used the fast Slim Reader/Writer (SRW)
|
||||
/// | Locks and Condition Variables: these are not supported by
|
||||
/// | Windows XP and older, to compile for those platforms you
|
||||
/// | should enable OLD_LOCKS.
|
||||
|
||||
#include <climits>
|
||||
#include <cstdlib>
|
||||
#include <ctype.h>
|
||||
|
@ -27,9 +47,9 @@
|
|||
#if defined(_MSC_VER)
|
||||
|
||||
// Disable some silly and noisy warning from MSVC compiler
|
||||
#pragma warning(disable: 4800) // Forcing value to bool 'true' or 'false'
|
||||
#pragma warning(disable: 4127) // Conditional expression is constant
|
||||
#pragma warning(disable: 4146) // Unary minus operator applied to unsigned type
|
||||
#pragma warning(disable: 4800) // Forcing value to bool 'true' or 'false'
|
||||
|
||||
// MSVC does not support <inttypes.h>
|
||||
typedef signed __int8 int8_t;
|
||||
|
@ -42,125 +62,111 @@ typedef signed __int64 int64_t;
|
|||
typedef unsigned __int64 uint64_t;
|
||||
|
||||
#else
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
# include <inttypes.h>
|
||||
#endif
|
||||
|
||||
#define Min(x, y) (((x) < (y)) ? (x) : (y))
|
||||
#define Max(x, y) (((x) < (y)) ? (y) : (x))
|
||||
|
||||
////
|
||||
//// Configuration
|
||||
////
|
||||
|
||||
//// For Linux and OSX configuration is done automatically using Makefile.
|
||||
//// To get started type "make help".
|
||||
////
|
||||
//// For windows part of the configuration is detected automatically, but
|
||||
//// some switches need to be set manually:
|
||||
////
|
||||
//// -DNDEBUG | Disable debugging mode. Use always.
|
||||
////
|
||||
//// -DNO_PREFETCH | Disable use of prefetch asm-instruction. A must if you want the
|
||||
//// | executable to run on some very old machines.
|
||||
////
|
||||
//// -DUSE_POPCNT | Add runtime support for use of popcnt asm-instruction.
|
||||
//// | Works only in 64-bit mode. For compiling requires hardware
|
||||
//// | with popcnt support. Around 4% speed-up.
|
||||
////
|
||||
//// -DOLD_LOCKS | By default under Windows are used the fast Slim Reader/Writer (SRW)
|
||||
//// | Locks and Condition Variables: these are not supported by Windows XP
|
||||
//// | and older, to compile for those platforms you should enable OLD_LOCKS.
|
||||
|
||||
// Automatic detection for 64-bit under Windows
|
||||
#if defined(_WIN64)
|
||||
#define IS_64BIT
|
||||
# include <intrin.h> // MSVC popcnt and bsfq instrinsics
|
||||
# define IS_64BIT
|
||||
# define USE_BSFQ
|
||||
#endif
|
||||
|
||||
// Automatic detection for use of bsfq asm-instruction under Windows
|
||||
#if defined(_WIN64)
|
||||
#define USE_BSFQ
|
||||
#endif
|
||||
|
||||
// Intel header for _mm_popcnt_u64() intrinsic
|
||||
#if defined(USE_POPCNT) && defined(_MSC_VER) && defined(__INTEL_COMPILER)
|
||||
#include <nmmintrin.h>
|
||||
# include <nmmintrin.h> // Intel header for _mm_popcnt_u64() intrinsic
|
||||
#endif
|
||||
|
||||
// Cache line alignment specification
|
||||
#if defined(_MSC_VER) || defined(__INTEL_COMPILER)
|
||||
#define CACHE_LINE_ALIGNMENT __declspec(align(64))
|
||||
# define CACHE_LINE_ALIGNMENT __declspec(align(64))
|
||||
#else
|
||||
#define CACHE_LINE_ALIGNMENT __attribute__ ((aligned(64)))
|
||||
# define CACHE_LINE_ALIGNMENT __attribute__ ((aligned(64)))
|
||||
#endif
|
||||
|
||||
// Define a __cpuid() function for gcc compilers, for Intel and MSVC
|
||||
// is already available as an intrinsic.
|
||||
#if defined(_MSC_VER)
|
||||
#include <intrin.h>
|
||||
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
||||
inline void __cpuid(int CPUInfo[4], int InfoType)
|
||||
{
|
||||
int* eax = CPUInfo + 0;
|
||||
int* ebx = CPUInfo + 1;
|
||||
int* ecx = CPUInfo + 2;
|
||||
int* edx = CPUInfo + 3;
|
||||
|
||||
*eax = InfoType;
|
||||
*ecx = 0;
|
||||
__asm__("cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx)
|
||||
: "0" (*eax), "2" (*ecx));
|
||||
}
|
||||
#else
|
||||
inline void __cpuid(int CPUInfo[4], int)
|
||||
{
|
||||
CPUInfo[0] = CPUInfo[1] = CPUInfo[2] = CPUInfo[3] = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Define FORCE_INLINE macro to force inlining overriding compiler choice
|
||||
#if defined(_MSC_VER)
|
||||
#define FORCE_INLINE __forceinline
|
||||
# define FORCE_INLINE __forceinline
|
||||
#elif defined(__GNUC__)
|
||||
#define FORCE_INLINE inline __attribute__((always_inline))
|
||||
# define FORCE_INLINE inline __attribute__((always_inline))
|
||||
#else
|
||||
#define FORCE_INLINE inline
|
||||
# define FORCE_INLINE inline
|
||||
#endif
|
||||
|
||||
/// cpu_has_popcnt() detects support for popcnt instruction at runtime
|
||||
inline bool cpu_has_popcnt() {
|
||||
|
||||
int CPUInfo[4] = {-1};
|
||||
__cpuid(CPUInfo, 0x00000001);
|
||||
return (CPUInfo[2] >> 23) & 1;
|
||||
}
|
||||
|
||||
/// CpuHasPOPCNT is a global constant initialized at startup that
|
||||
/// is set to true if CPU on which application runs supports popcnt
|
||||
/// hardware instruction. Unless USE_POPCNT is not defined.
|
||||
#if defined(USE_POPCNT)
|
||||
const bool CpuHasPOPCNT = cpu_has_popcnt();
|
||||
const bool HasPopCnt = true;
|
||||
#else
|
||||
const bool CpuHasPOPCNT = false;
|
||||
const bool HasPopCnt = false;
|
||||
#endif
|
||||
|
||||
|
||||
/// CpuIs64Bit is a global constant initialized at compile time that
|
||||
/// is set to true if CPU on which application runs is a 64 bits.
|
||||
#if defined(IS_64BIT)
|
||||
const bool CpuIs64Bit = true;
|
||||
const bool Is64Bit = true;
|
||||
#else
|
||||
const bool CpuIs64Bit = false;
|
||||
const bool Is64Bit = false;
|
||||
#endif
|
||||
|
||||
#include <string>
|
||||
|
||||
typedef uint64_t Key;
|
||||
typedef uint64_t Bitboard;
|
||||
|
||||
const int PLY_MAX = 100;
|
||||
const int PLY_MAX_PLUS_2 = PLY_MAX + 2;
|
||||
const int MAX_MOVES = 256;
|
||||
const int MAX_PLY = 100;
|
||||
const int MAX_PLY_PLUS_2 = MAX_PLY + 2;
|
||||
|
||||
const Bitboard FileABB = 0x0101010101010101ULL;
|
||||
const Bitboard FileBBB = FileABB << 1;
|
||||
const Bitboard FileCBB = FileABB << 2;
|
||||
const Bitboard FileDBB = FileABB << 3;
|
||||
const Bitboard FileEBB = FileABB << 4;
|
||||
const Bitboard FileFBB = FileABB << 5;
|
||||
const Bitboard FileGBB = FileABB << 6;
|
||||
const Bitboard FileHBB = FileABB << 7;
|
||||
|
||||
const Bitboard Rank1BB = 0xFF;
|
||||
const Bitboard Rank2BB = Rank1BB << (8 * 1);
|
||||
const Bitboard Rank3BB = Rank1BB << (8 * 2);
|
||||
const Bitboard Rank4BB = Rank1BB << (8 * 3);
|
||||
const Bitboard Rank5BB = Rank1BB << (8 * 4);
|
||||
const Bitboard Rank6BB = Rank1BB << (8 * 5);
|
||||
const Bitboard Rank7BB = Rank1BB << (8 * 6);
|
||||
const Bitboard Rank8BB = Rank1BB << (8 * 7);
|
||||
|
||||
|
||||
/// A move needs 16 bits to be stored
|
||||
///
|
||||
/// bit 0- 5: destination square (from 0 to 63)
|
||||
/// bit 6-11: origin square (from 0 to 63)
|
||||
/// bit 12-13: promotion piece type - 2 (from KNIGHT-2 to QUEEN-2)
|
||||
/// bit 14-15: special move flag: promotion (1), en passant (2), castle (3)
|
||||
///
|
||||
/// Special cases are MOVE_NONE and MOVE_NULL. We can sneak these in because in
|
||||
/// any normal move destination square is always different from origin square
|
||||
/// while MOVE_NONE and MOVE_NULL have the same origin and destination square.
|
||||
|
||||
enum Move {
|
||||
MOVE_NONE = 0,
|
||||
MOVE_NULL = 65
|
||||
};
|
||||
|
||||
struct MoveStack {
|
||||
Move move;
|
||||
int score;
|
||||
};
|
||||
|
||||
inline bool operator<(const MoveStack& f, const MoveStack& s) {
|
||||
return f.score < s.score;
|
||||
}
|
||||
|
||||
enum CastleRight {
|
||||
CASTLES_NONE = 0,
|
||||
WHITE_OO = 1,
|
||||
BLACK_OO = 2,
|
||||
WHITE_OOO = 4,
|
||||
BLACK_OOO = 8,
|
||||
ALL_CASTLES = 15
|
||||
};
|
||||
|
||||
enum ScaleFactor {
|
||||
SCALE_FACTOR_DRAW = 0,
|
||||
SCALE_FACTOR_NORMAL = 64,
|
||||
SCALE_FACTOR_MAX = 128,
|
||||
SCALE_FACTOR_NONE = 255
|
||||
};
|
||||
|
||||
enum ValueType {
|
||||
VALUE_TYPE_NONE = 0,
|
||||
|
@ -177,34 +183,36 @@ enum Value {
|
|||
VALUE_INFINITE = 30001,
|
||||
VALUE_NONE = 30002,
|
||||
|
||||
VALUE_MATE_IN_PLY_MAX = VALUE_MATE - PLY_MAX,
|
||||
VALUE_MATED_IN_PLY_MAX = -VALUE_MATE + PLY_MAX,
|
||||
VALUE_MATE_IN_MAX_PLY = VALUE_MATE - MAX_PLY,
|
||||
VALUE_MATED_IN_MAX_PLY = -VALUE_MATE + MAX_PLY,
|
||||
|
||||
VALUE_ENSURE_INTEGER_SIZE_P = INT_MAX,
|
||||
VALUE_ENSURE_INTEGER_SIZE_N = INT_MIN
|
||||
};
|
||||
|
||||
enum PieceType {
|
||||
PIECE_TYPE_NONE = 0,
|
||||
NO_PIECE_TYPE = 0,
|
||||
PAWN = 1, KNIGHT = 2, BISHOP = 3, ROOK = 4, QUEEN = 5, KING = 6
|
||||
};
|
||||
|
||||
enum Piece {
|
||||
PIECE_NONE_DARK_SQ = 0, WP = 1, WN = 2, WB = 3, WR = 4, WQ = 5, WK = 6,
|
||||
BP = 9, BN = 10, BB = 11, BR = 12, BQ = 13, BK = 14, PIECE_NONE = 16
|
||||
NO_PIECE = 16, // color_of(NO_PIECE) == NO_COLOR
|
||||
W_PAWN = 1, W_KNIGHT = 2, W_BISHOP = 3, W_ROOK = 4, W_QUEEN = 5, W_KING = 6,
|
||||
B_PAWN = 9, B_KNIGHT = 10, B_BISHOP = 11, B_ROOK = 12, B_QUEEN = 13, B_KING = 14
|
||||
};
|
||||
|
||||
enum Color {
|
||||
WHITE, BLACK, COLOR_NONE
|
||||
WHITE, BLACK, NO_COLOR
|
||||
};
|
||||
|
||||
enum Depth {
|
||||
|
||||
ONE_PLY = 2,
|
||||
|
||||
DEPTH_ZERO = 0 * ONE_PLY,
|
||||
DEPTH_QS_CHECKS = -1 * ONE_PLY,
|
||||
DEPTH_QS_NO_CHECKS = -2 * ONE_PLY,
|
||||
DEPTH_ZERO = 0 * ONE_PLY,
|
||||
DEPTH_QS_CHECKS = -1 * ONE_PLY,
|
||||
DEPTH_QS_NO_CHECKS = -2 * ONE_PLY,
|
||||
DEPTH_QS_RECAPTURES = -4 * ONE_PLY,
|
||||
|
||||
DEPTH_NONE = -127 * ONE_PLY
|
||||
};
|
||||
|
@ -241,42 +249,54 @@ enum Rank {
|
|||
RANK_1, RANK_2, RANK_3, RANK_4, RANK_5, RANK_6, RANK_7, RANK_8
|
||||
};
|
||||
|
||||
enum SquareColor {
|
||||
DARK, LIGHT
|
||||
};
|
||||
|
||||
enum ScaleFactor {
|
||||
SCALE_FACTOR_ZERO = 0,
|
||||
SCALE_FACTOR_NORMAL = 64,
|
||||
SCALE_FACTOR_MAX = 128,
|
||||
SCALE_FACTOR_NONE = 255
|
||||
};
|
||||
|
||||
|
||||
/// Score enum keeps a midgame and an endgame value in a single
|
||||
/// integer (enum), first LSB 16 bits are used to store endgame
|
||||
/// value, while upper bits are used for midgame value. Compiler
|
||||
/// is free to choose the enum type as long as can keep its data,
|
||||
/// so ensure Score to be an integer type.
|
||||
/// Score enum keeps a midgame and an endgame value in a single integer (enum),
|
||||
/// first LSB 16 bits are used to store endgame value, while upper bits are used
|
||||
/// for midgame value. Compiler is free to choose the enum type as long as can
|
||||
/// keep its data, so ensure Score to be an integer type.
|
||||
enum Score {
|
||||
SCORE_ZERO = 0,
|
||||
SCORE_ENSURE_INTEGER_SIZE_P = INT_MAX,
|
||||
SCORE_ENSURE_INTEGER_SIZE_N = INT_MIN
|
||||
SCORE_ZERO = 0,
|
||||
SCORE_ENSURE_INTEGER_SIZE_P = INT_MAX,
|
||||
SCORE_ENSURE_INTEGER_SIZE_N = INT_MIN
|
||||
};
|
||||
|
||||
#define ENABLE_OPERATORS_ON(T) \
|
||||
inline T operator+ (const T d1, const T d2) { return T(int(d1) + int(d2)); } \
|
||||
inline T operator- (const T d1, const T d2) { return T(int(d1) - int(d2)); } \
|
||||
inline T operator* (int i, const T d) { return T(i * int(d)); } \
|
||||
inline T operator* (const T d, int i) { return T(int(d) * i); } \
|
||||
inline T operator/ (const T d, int i) { return T(int(d) / i); } \
|
||||
inline T operator- (const T d) { return T(-int(d)); } \
|
||||
inline T operator++ (T& d, int) {d = T(int(d) + 1); return d; } \
|
||||
inline T operator-- (T& d, int) { d = T(int(d) - 1); return d; } \
|
||||
inline void operator+= (T& d1, const T d2) { d1 = d1 + d2; } \
|
||||
inline void operator-= (T& d1, const T d2) { d1 = d1 - d2; } \
|
||||
inline void operator*= (T& d, int i) { d = T(int(d) * i); } \
|
||||
inline void operator/= (T& d, int i) { d = T(int(d) / i); }
|
||||
inline Score make_score(int mg, int eg) { return Score((mg << 16) + eg); }
|
||||
|
||||
/// Extracting the signed lower and upper 16 bits it not so trivial because
|
||||
/// according to the standard a simple cast to short is implementation defined
|
||||
/// and so is a right shift of a signed integer.
|
||||
inline Value mg_value(Score s) { return Value(((s + 32768) & ~0xffff) / 0x10000); }
|
||||
|
||||
/// On Intel 64 bit we have a small speed regression with the standard conforming
|
||||
/// version, so use a faster code in this case that, although not 100% standard
|
||||
/// compliant it seems to work for Intel and MSVC.
|
||||
#if defined(IS_64BIT) && (!defined(__GNUC__) || defined(__INTEL_COMPILER))
|
||||
|
||||
inline Value eg_value(Score s) { return Value(int16_t(s & 0xffff)); }
|
||||
|
||||
#else
|
||||
|
||||
inline Value eg_value(Score s) {
|
||||
return Value((int)(unsigned(s) & 0x7fffu) - (int)(unsigned(s) & 0x8000u));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#define ENABLE_SAFE_OPERATORS_ON(T) \
|
||||
inline T operator+(const T d1, const T d2) { return T(int(d1) + int(d2)); } \
|
||||
inline T operator-(const T d1, const T d2) { return T(int(d1) - int(d2)); } \
|
||||
inline T operator*(int i, const T d) { return T(i * int(d)); } \
|
||||
inline T operator*(const T d, int i) { return T(int(d) * i); } \
|
||||
inline T operator-(const T d) { return T(-int(d)); } \
|
||||
inline T& operator+=(T& d1, const T d2) { d1 = d1 + d2; return d1; } \
|
||||
inline T& operator-=(T& d1, const T d2) { d1 = d1 - d2; return d1; } \
|
||||
inline T& operator*=(T& d, int i) { d = T(int(d) * i); return d; }
|
||||
|
||||
#define ENABLE_OPERATORS_ON(T) ENABLE_SAFE_OPERATORS_ON(T) \
|
||||
inline T operator++(T& d, int) { d = T(int(d) + 1); return d; } \
|
||||
inline T operator--(T& d, int) { d = T(int(d) - 1); return d; } \
|
||||
inline T operator/(const T d, int i) { return T(int(d) / i); } \
|
||||
inline T& operator/=(T& d, int i) { d = T(int(d) / i); return d; }
|
||||
|
||||
ENABLE_OPERATORS_ON(Value)
|
||||
ENABLE_OPERATORS_ON(PieceType)
|
||||
|
@ -287,44 +307,23 @@ ENABLE_OPERATORS_ON(Square)
|
|||
ENABLE_OPERATORS_ON(File)
|
||||
ENABLE_OPERATORS_ON(Rank)
|
||||
|
||||
#undef ENABLE_OPERATORS_ON
|
||||
/// Added operators for adding integers to a Value
|
||||
inline Value operator+(Value v, int i) { return Value(int(v) + i); }
|
||||
inline Value operator-(Value v, int i) { return Value(int(v) - i); }
|
||||
|
||||
// Extra operators for adding integers to a Value
|
||||
inline Value operator+ (Value v, int i) { return Value(int(v) + i); }
|
||||
inline Value operator- (Value v, int i) { return Value(int(v) - i); }
|
||||
ENABLE_SAFE_OPERATORS_ON(Score)
|
||||
|
||||
// Extracting the _signed_ lower and upper 16 bits it not so trivial
|
||||
// because according to the standard a simple cast to short is
|
||||
// implementation defined and so is a right shift of a signed integer.
|
||||
inline Value mg_value(Score s) { return Value(((int(s) + 32768) & ~0xffff) / 0x10000); }
|
||||
|
||||
// Unfortunatly on Intel 64 bit we have a small speed regression, so use a faster code in
|
||||
// this case, although not 100% standard compliant it seems to work for Intel and MSVC.
|
||||
#if defined(IS_64BIT) && (!defined(__GNUC__) || defined(__INTEL_COMPILER))
|
||||
inline Value eg_value(Score s) { return Value(int16_t(s & 0xffff)); }
|
||||
#else
|
||||
inline Value eg_value(Score s) { return Value((int)(unsigned(s) & 0x7fffu) - (int)(unsigned(s) & 0x8000u)); }
|
||||
#endif
|
||||
|
||||
inline Score make_score(int mg, int eg) { return Score((mg << 16) + eg); }
|
||||
|
||||
// Division must be handled separately for each term
|
||||
inline Score operator/(Score s, int i) { return make_score(mg_value(s) / i, eg_value(s) / i); }
|
||||
|
||||
// Only declared but not defined. We don't want to multiply two scores due to
|
||||
// a very high risk of overflow. So user should explicitly convert to integer.
|
||||
/// Only declared but not defined. We don't want to multiply two scores due to
|
||||
/// a very high risk of overflow. So user should explicitly convert to integer.
|
||||
inline Score operator*(Score s1, Score s2);
|
||||
|
||||
// Remaining Score operators are standard
|
||||
inline Score operator+ (const Score d1, const Score d2) { return Score(int(d1) + int(d2)); }
|
||||
inline Score operator- (const Score d1, const Score d2) { return Score(int(d1) - int(d2)); }
|
||||
inline Score operator* (int i, const Score d) { return Score(i * int(d)); }
|
||||
inline Score operator* (const Score d, int i) { return Score(int(d) * i); }
|
||||
inline Score operator- (const Score d) { return Score(-int(d)); }
|
||||
inline void operator+= (Score& d1, const Score d2) { d1 = d1 + d2; }
|
||||
inline void operator-= (Score& d1, const Score d2) { d1 = d1 - d2; }
|
||||
inline void operator*= (Score& d, int i) { d = Score(int(d) * i); }
|
||||
inline void operator/= (Score& d, int i) { d = Score(int(d) / i); }
|
||||
/// Division of a Score must be handled separately for each term
|
||||
inline Score operator/(Score s, int i) {
|
||||
return make_score(mg_value(s) / i, eg_value(s) / i);
|
||||
}
|
||||
|
||||
#undef ENABLE_OPERATORS_ON
|
||||
#undef ENABLE_SAFE_OPERATORS_ON
|
||||
|
||||
const Value PawnValueMidgame = Value(0x0C6);
|
||||
const Value PawnValueEndgame = Value(0x102);
|
||||
|
@ -337,135 +336,178 @@ const Value RookValueEndgame = Value(0x4FE);
|
|||
const Value QueenValueMidgame = Value(0x9D9);
|
||||
const Value QueenValueEndgame = Value(0x9FE);
|
||||
|
||||
inline Value value_mate_in(int ply) {
|
||||
extern const Value PieceValueMidgame[17];
|
||||
extern const Value PieceValueEndgame[17];
|
||||
extern int SquareDistance[64][64];
|
||||
|
||||
inline Value mate_in(int ply) {
|
||||
return VALUE_MATE - ply;
|
||||
}
|
||||
|
||||
inline Value value_mated_in(int ply) {
|
||||
inline Value mated_in(int ply) {
|
||||
return -VALUE_MATE + ply;
|
||||
}
|
||||
|
||||
inline Piece make_piece(Color c, PieceType pt) {
|
||||
return Piece((int(c) << 3) | int(pt));
|
||||
return Piece((c << 3) | pt);
|
||||
}
|
||||
|
||||
inline PieceType type_of_piece(Piece p) {
|
||||
return PieceType(int(p) & 7);
|
||||
inline PieceType type_of(Piece p) {
|
||||
return PieceType(p & 7);
|
||||
}
|
||||
|
||||
inline Color color_of_piece(Piece p) {
|
||||
return Color(int(p) >> 3);
|
||||
inline Color color_of(Piece p) {
|
||||
return Color(p >> 3);
|
||||
}
|
||||
|
||||
inline Color opposite_color(Color c) {
|
||||
return Color(int(c) ^ 1);
|
||||
}
|
||||
|
||||
inline bool color_is_ok(Color c) {
|
||||
return c == WHITE || c == BLACK;
|
||||
}
|
||||
|
||||
inline bool piece_type_is_ok(PieceType pt) {
|
||||
return pt >= PAWN && pt <= KING;
|
||||
}
|
||||
|
||||
inline bool piece_is_ok(Piece p) {
|
||||
return piece_type_is_ok(type_of_piece(p)) && color_is_ok(color_of_piece(p));
|
||||
}
|
||||
|
||||
inline char piece_type_to_char(PieceType pt) {
|
||||
static const char ch[] = " PNBRQK";
|
||||
return ch[pt];
|
||||
inline Color flip(Color c) {
|
||||
return Color(c ^ 1);
|
||||
}
|
||||
|
||||
inline Square make_square(File f, Rank r) {
|
||||
return Square((int(r) << 3) | int(f));
|
||||
}
|
||||
|
||||
inline File square_file(Square s) {
|
||||
return File(int(s) & 7);
|
||||
}
|
||||
|
||||
inline Rank square_rank(Square s) {
|
||||
return Rank(int(s) >> 3);
|
||||
}
|
||||
|
||||
inline Square flip_square(Square s) {
|
||||
return Square(int(s) ^ 56);
|
||||
}
|
||||
|
||||
inline Square flop_square(Square s) {
|
||||
return Square(int(s) ^ 7);
|
||||
}
|
||||
|
||||
inline Square relative_square(Color c, Square s) {
|
||||
return Square(int(s) ^ (int(c) * 56));
|
||||
}
|
||||
|
||||
inline Rank relative_rank(Color c, Rank r) {
|
||||
return Rank(int(r) ^ (int(c) * 7));
|
||||
}
|
||||
|
||||
inline Rank relative_rank(Color c, Square s) {
|
||||
return relative_rank(c, square_rank(s));
|
||||
}
|
||||
|
||||
inline SquareColor square_color(Square s) {
|
||||
return SquareColor(int(square_rank(s) + s) & 1);
|
||||
}
|
||||
|
||||
inline bool opposite_color_squares(Square s1, Square s2) {
|
||||
int s = int(s1) ^ int(s2);
|
||||
return ((s >> 3) ^ s) & 1;
|
||||
}
|
||||
|
||||
inline int file_distance(Square s1, Square s2) {
|
||||
return abs(square_file(s1) - square_file(s2));
|
||||
}
|
||||
|
||||
inline int rank_distance(Square s1, Square s2) {
|
||||
return abs(square_rank(s1) - square_rank(s2));
|
||||
}
|
||||
|
||||
inline int square_distance(Square s1, Square s2) {
|
||||
return Max(file_distance(s1, s2), rank_distance(s1, s2));
|
||||
}
|
||||
|
||||
inline File file_from_char(char c) {
|
||||
return File(c - 'a') + FILE_A;
|
||||
}
|
||||
|
||||
inline char file_to_char(File f) {
|
||||
return char(f - FILE_A + int('a'));
|
||||
}
|
||||
|
||||
inline Rank rank_from_char(char c) {
|
||||
return Rank(c - '1') + RANK_1;
|
||||
}
|
||||
|
||||
inline char rank_to_char(Rank r) {
|
||||
return char(r - RANK_1 + int('1'));
|
||||
}
|
||||
|
||||
inline const std::string square_to_string(Square s) {
|
||||
char ch[] = { file_to_char(square_file(s)), rank_to_char(square_rank(s)), 0 };
|
||||
return std::string(ch);
|
||||
}
|
||||
|
||||
inline bool file_is_ok(File f) {
|
||||
return f >= FILE_A && f <= FILE_H;
|
||||
}
|
||||
|
||||
inline bool rank_is_ok(Rank r) {
|
||||
return r >= RANK_1 && r <= RANK_8;
|
||||
return Square((r << 3) | f);
|
||||
}
|
||||
|
||||
inline bool square_is_ok(Square s) {
|
||||
return s >= SQ_A1 && s <= SQ_H8;
|
||||
}
|
||||
|
||||
inline File file_of(Square s) {
|
||||
return File(s & 7);
|
||||
}
|
||||
|
||||
inline Rank rank_of(Square s) {
|
||||
return Rank(s >> 3);
|
||||
}
|
||||
|
||||
inline Square flip(Square s) {
|
||||
return Square(s ^ 56);
|
||||
}
|
||||
|
||||
inline Square mirror(Square s) {
|
||||
return Square(s ^ 7);
|
||||
}
|
||||
|
||||
inline Square relative_square(Color c, Square s) {
|
||||
return Square(s ^ (c * 56));
|
||||
}
|
||||
|
||||
inline Rank relative_rank(Color c, Rank r) {
|
||||
return Rank(r ^ (c * 7));
|
||||
}
|
||||
|
||||
inline Rank relative_rank(Color c, Square s) {
|
||||
return relative_rank(c, rank_of(s));
|
||||
}
|
||||
|
||||
inline bool opposite_colors(Square s1, Square s2) {
|
||||
int s = s1 ^ s2;
|
||||
return ((s >> 3) ^ s) & 1;
|
||||
}
|
||||
|
||||
inline int file_distance(Square s1, Square s2) {
|
||||
return abs(file_of(s1) - file_of(s2));
|
||||
}
|
||||
|
||||
inline int rank_distance(Square s1, Square s2) {
|
||||
return abs(rank_of(s1) - rank_of(s2));
|
||||
}
|
||||
|
||||
inline int square_distance(Square s1, Square s2) {
|
||||
return SquareDistance[s1][s2];
|
||||
}
|
||||
|
||||
inline char piece_type_to_char(PieceType pt) {
|
||||
return " PNBRQK"[pt];
|
||||
}
|
||||
|
||||
inline char file_to_char(File f) {
|
||||
return char(f - FILE_A + int('a'));
|
||||
}
|
||||
|
||||
inline char rank_to_char(Rank r) {
|
||||
return char(r - RANK_1 + int('1'));
|
||||
}
|
||||
|
||||
inline Square pawn_push(Color c) {
|
||||
return c == WHITE ? DELTA_N : DELTA_S;
|
||||
}
|
||||
|
||||
inline Square move_from(Move m) {
|
||||
return Square((m >> 6) & 0x3F);
|
||||
}
|
||||
|
||||
inline Square move_to(Move m) {
|
||||
return Square(m & 0x3F);
|
||||
}
|
||||
|
||||
inline bool is_special(Move m) {
|
||||
return m & (3 << 14);
|
||||
}
|
||||
|
||||
inline bool is_promotion(Move m) {
|
||||
return (m & (3 << 14)) == (1 << 14);
|
||||
}
|
||||
|
||||
inline int is_enpassant(Move m) {
|
||||
return (m & (3 << 14)) == (2 << 14);
|
||||
}
|
||||
|
||||
inline int is_castle(Move m) {
|
||||
return (m & (3 << 14)) == (3 << 14);
|
||||
}
|
||||
|
||||
inline PieceType promotion_piece_type(Move m) {
|
||||
return PieceType(((m >> 12) & 3) + 2);
|
||||
}
|
||||
|
||||
inline Move make_move(Square from, Square to) {
|
||||
return Move(to | (from << 6));
|
||||
}
|
||||
|
||||
inline Move make_promotion_move(Square from, Square to, PieceType promotion) {
|
||||
return Move(to | (from << 6) | (1 << 14) | ((promotion - 2) << 12)) ;
|
||||
}
|
||||
|
||||
inline Move make_enpassant_move(Square from, Square to) {
|
||||
return Move(to | (from << 6) | (2 << 14));
|
||||
}
|
||||
|
||||
inline Move make_castle_move(Square from, Square to) {
|
||||
return Move(to | (from << 6) | (3 << 14));
|
||||
}
|
||||
|
||||
inline bool is_ok(Move m) {
|
||||
return move_from(m) != move_to(m); // Catches also MOVE_NULL and MOVE_NONE
|
||||
}
|
||||
|
||||
#include <string>
|
||||
|
||||
inline const std::string square_to_string(Square s) {
|
||||
char ch[] = { file_to_char(file_of(s)), rank_to_char(rank_of(s)), 0 };
|
||||
return ch;
|
||||
}
|
||||
|
||||
/// Our insertion sort implementation, works with pointers and iterators and is
|
||||
/// guaranteed to be stable, as is needed.
|
||||
template<typename T, typename K>
|
||||
void sort(K firstMove, K lastMove)
|
||||
{
|
||||
T value;
|
||||
K cur, p, d;
|
||||
|
||||
if (firstMove != lastMove)
|
||||
for (cur = firstMove + 1; cur != lastMove; cur++)
|
||||
{
|
||||
p = d = cur;
|
||||
value = *p--;
|
||||
if (*p < value)
|
||||
{
|
||||
do *d = *p;
|
||||
while (--d != firstMove && *--p < value);
|
||||
*d = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // !defined(TYPES_H_INCLUDED)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -17,97 +17,112 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "evaluate.h"
|
||||
#include "misc.h"
|
||||
#include "move.h"
|
||||
#include "position.h"
|
||||
#include "search.h"
|
||||
#include "thread.h"
|
||||
#include "ucioption.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace {
|
||||
|
||||
// FEN string for the initial position
|
||||
const string StartPositionFEN = "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1";
|
||||
// FEN string of the initial position, normal chess
|
||||
const char* StartFEN = "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1";
|
||||
|
||||
// UCIParser is a class for parsing UCI input. The class
|
||||
// is actually a string stream built on a given input string.
|
||||
typedef istringstream UCIParser;
|
||||
// Keep track of position keys along the setup moves (from start position to the
|
||||
// position just before to start searching). This is needed by draw detection
|
||||
// where, due to 50 moves rule, we need to check at most 100 plies back.
|
||||
StateInfo StateRingBuf[102], *SetupState = StateRingBuf;
|
||||
|
||||
void set_option(UCIParser& up);
|
||||
void set_position(Position& pos, UCIParser& up);
|
||||
bool go(Position& pos, UCIParser& up);
|
||||
void perft(Position& pos, UCIParser& up);
|
||||
void set_option(istringstream& up);
|
||||
void set_position(Position& pos, istringstream& up);
|
||||
void go(Position& pos, istringstream& up);
|
||||
void perft(Position& pos, istringstream& up);
|
||||
}
|
||||
|
||||
|
||||
/// execute_uci_command() takes a string as input, uses a UCIParser
|
||||
/// object to parse this text string as a UCI command, and calls
|
||||
/// the appropriate functions. In addition to the UCI commands,
|
||||
/// the function also supports a few debug commands.
|
||||
/// Wait for a command from the user, parse this text string as an UCI command,
|
||||
/// and call the appropriate functions. Also intercepts EOF from stdin to ensure
|
||||
/// that we exit gracefully if the GUI dies unexpectedly. In addition to the UCI
|
||||
/// commands, the function also supports a few debug commands.
|
||||
|
||||
bool execute_uci_command(const string& cmd) {
|
||||
void uci_loop() {
|
||||
|
||||
static Position pos(StartPositionFEN, false, 0); // The root position
|
||||
Position pos(StartFEN, false, 0); // The root position
|
||||
string cmd, token;
|
||||
|
||||
UCIParser up(cmd);
|
||||
string token;
|
||||
|
||||
up >> token; // operator>>() skips any whitespace
|
||||
|
||||
if (token == "quit")
|
||||
return false;
|
||||
|
||||
if (token == "go")
|
||||
return go(pos, up);
|
||||
|
||||
if (token == "ucinewgame")
|
||||
pos.from_fen(StartPositionFEN, false);
|
||||
|
||||
else if (token == "isready")
|
||||
cout << "readyok" << endl;
|
||||
|
||||
else if (token == "position")
|
||||
set_position(pos, up);
|
||||
|
||||
else if (token == "setoption")
|
||||
set_option(up);
|
||||
|
||||
else if (token == "perft")
|
||||
perft(pos, up);
|
||||
|
||||
else if (token == "d")
|
||||
pos.print();
|
||||
|
||||
else if (token == "flip")
|
||||
pos.flip();
|
||||
|
||||
else if (token == "eval")
|
||||
while (token != "quit")
|
||||
{
|
||||
read_evaluation_uci_options(pos.side_to_move());
|
||||
cout << trace_evaluate(pos) << endl;
|
||||
if (!getline(cin, cmd)) // Block here waiting for input
|
||||
cmd = "quit";
|
||||
|
||||
istringstream is(cmd);
|
||||
|
||||
is >> skipws >> token;
|
||||
|
||||
if (token == "quit" || token == "stop")
|
||||
Threads.stop_thinking();
|
||||
|
||||
else if (token == "ponderhit")
|
||||
{
|
||||
// The opponent has played the expected move. GUI sends "ponderhit" if
|
||||
// we were told to ponder on the same move the opponent has played. We
|
||||
// should continue searching but switching from pondering to normal search.
|
||||
Search::Limits.ponder = false;
|
||||
|
||||
if (Search::Signals.stopOnPonderhit)
|
||||
Threads.stop_thinking();
|
||||
}
|
||||
|
||||
else if (token == "go")
|
||||
go(pos, is);
|
||||
|
||||
else if (token == "ucinewgame")
|
||||
pos.from_fen(StartFEN, false);
|
||||
|
||||
else if (token == "isready")
|
||||
cout << "readyok" << endl;
|
||||
|
||||
else if (token == "position")
|
||||
set_position(pos, is);
|
||||
|
||||
else if (token == "setoption")
|
||||
set_option(is);
|
||||
|
||||
else if (token == "perft")
|
||||
perft(pos, is);
|
||||
|
||||
else if (token == "d")
|
||||
pos.print();
|
||||
|
||||
else if (token == "flip")
|
||||
pos.flip_me();
|
||||
|
||||
else if (token == "eval")
|
||||
{
|
||||
read_evaluation_uci_options(pos.side_to_move());
|
||||
cout << trace_evaluate(pos) << endl;
|
||||
}
|
||||
|
||||
else if (token == "key")
|
||||
cout << "key: " << hex << pos.key()
|
||||
<< "\nmaterial key: " << pos.material_key()
|
||||
<< "\npawn key: " << pos.pawn_key() << endl;
|
||||
|
||||
else if (token == "uci")
|
||||
cout << "id name " << engine_info(true)
|
||||
<< "\n" << Options
|
||||
<< "\nuciok" << endl;
|
||||
else
|
||||
cout << "Unknown command: " << cmd << endl;
|
||||
}
|
||||
|
||||
else if (token == "key")
|
||||
cout << "key: " << hex << pos.get_key()
|
||||
<< "\nmaterial key: " << pos.get_material_key()
|
||||
<< "\npawn key: " << pos.get_pawn_key() << endl;
|
||||
|
||||
else if (token == "uci")
|
||||
cout << "id name " << engine_name()
|
||||
<< "\nid author " << engine_authors()
|
||||
<< "\n" << Options.print_all()
|
||||
<< "\nuciok" << endl;
|
||||
else
|
||||
cout << "Unknown command: " << cmd << endl;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
@ -118,127 +133,127 @@ namespace {
|
|||
// fen string ("fen") or the starting position ("startpos") and then
|
||||
// makes the moves given in the following move list ("moves").
|
||||
|
||||
void set_position(Position& pos, UCIParser& up) {
|
||||
void set_position(Position& pos, istringstream& is) {
|
||||
|
||||
Move m;
|
||||
string token, fen;
|
||||
|
||||
up >> token; // operator>>() skips any whitespace
|
||||
is >> token;
|
||||
|
||||
if (token == "startpos")
|
||||
{
|
||||
pos.from_fen(StartPositionFEN, false);
|
||||
up >> token; // Consume "moves" token if any
|
||||
fen = StartFEN;
|
||||
is >> token; // Consume "moves" token if any
|
||||
}
|
||||
else if (token == "fen")
|
||||
{
|
||||
while (up >> token && token != "moves")
|
||||
while (is >> token && token != "moves")
|
||||
fen += token + " ";
|
||||
else
|
||||
return;
|
||||
|
||||
pos.from_fen(fen, Options["UCI_Chess960"].value<bool>());
|
||||
}
|
||||
else return;
|
||||
pos.from_fen(fen, Options["UCI_Chess960"]);
|
||||
|
||||
// Parse move list (if any)
|
||||
while (up >> token)
|
||||
pos.do_setup_move(move_from_uci(pos, token));
|
||||
while (is >> token && (m = move_from_uci(pos, token)) != MOVE_NONE)
|
||||
{
|
||||
pos.do_move(m, *SetupState);
|
||||
|
||||
// Increment pointer to StateRingBuf circular buffer
|
||||
if (++SetupState - StateRingBuf >= 102)
|
||||
SetupState = StateRingBuf;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// set_option() is called when engine receives the "setoption" UCI
|
||||
// command. The function updates the corresponding UCI option ("name")
|
||||
// to the given value ("value").
|
||||
// set_option() is called when engine receives the "setoption" UCI command. The
|
||||
// function updates the UCI option ("name") to the given value ("value").
|
||||
|
||||
void set_option(UCIParser& up) {
|
||||
void set_option(istringstream& is) {
|
||||
|
||||
string token, name;
|
||||
string value = "true"; // UCI buttons don't have a "value" field
|
||||
string token, name, value;
|
||||
|
||||
up >> token; // Consume "name" token
|
||||
up >> name; // Read option name
|
||||
is >> token; // Consume "name" token
|
||||
|
||||
// Handle names with included spaces
|
||||
while (up >> token && token != "value")
|
||||
name += " " + token;
|
||||
// Read option name (can contain spaces)
|
||||
while (is >> token && token != "value")
|
||||
name += string(" ", !name.empty()) + token;
|
||||
|
||||
up >> value; // Read option value
|
||||
// Read option value (can contain spaces)
|
||||
while (is >> token)
|
||||
value += string(" ", !value.empty()) + token;
|
||||
|
||||
// Handle values with included spaces
|
||||
while (up >> token)
|
||||
value += " " + token;
|
||||
|
||||
if (Options.find(name) != Options.end())
|
||||
Options[name].set_value(value);
|
||||
else
|
||||
if (!Options.count(name))
|
||||
cout << "No such option: " << name << endl;
|
||||
|
||||
else if (value.empty()) // UCI buttons don't have a value
|
||||
Options[name] = true;
|
||||
|
||||
else
|
||||
Options[name] = value;
|
||||
}
|
||||
|
||||
|
||||
// go() is called when engine receives the "go" UCI command. The
|
||||
// function sets the thinking time and other parameters from the input
|
||||
// string, and then calls think(). Returns false if a quit command
|
||||
// is received while thinking, true otherwise.
|
||||
// go() is called when engine receives the "go" UCI command. The function sets
|
||||
// the thinking time and other parameters from the input string, and then starts
|
||||
// the main searching thread.
|
||||
|
||||
bool go(Position& pos, UCIParser& up) {
|
||||
void go(Position& pos, istringstream& is) {
|
||||
|
||||
string token;
|
||||
SearchLimits limits;
|
||||
Move searchMoves[MAX_MOVES], *cur = searchMoves;
|
||||
Search::LimitsType limits;
|
||||
std::vector<Move> searchMoves;
|
||||
int time[] = { 0, 0 }, inc[] = { 0, 0 };
|
||||
|
||||
while (up >> token)
|
||||
while (is >> token)
|
||||
{
|
||||
if (token == "infinite")
|
||||
limits.infinite = true;
|
||||
else if (token == "ponder")
|
||||
limits.ponder = true;
|
||||
else if (token == "wtime")
|
||||
up >> time[WHITE];
|
||||
is >> time[WHITE];
|
||||
else if (token == "btime")
|
||||
up >> time[BLACK];
|
||||
is >> time[BLACK];
|
||||
else if (token == "winc")
|
||||
up >> inc[WHITE];
|
||||
is >> inc[WHITE];
|
||||
else if (token == "binc")
|
||||
up >> inc[BLACK];
|
||||
is >> inc[BLACK];
|
||||
else if (token == "movestogo")
|
||||
up >> limits.movesToGo;
|
||||
is >> limits.movesToGo;
|
||||
else if (token == "depth")
|
||||
up >> limits.maxDepth;
|
||||
is >> limits.maxDepth;
|
||||
else if (token == "nodes")
|
||||
up >> limits.maxNodes;
|
||||
is >> limits.maxNodes;
|
||||
else if (token == "movetime")
|
||||
up >> limits.maxTime;
|
||||
is >> limits.maxTime;
|
||||
else if (token == "searchmoves")
|
||||
while (up >> token)
|
||||
*cur++ = move_from_uci(pos, token);
|
||||
while (is >> token)
|
||||
searchMoves.push_back(move_from_uci(pos, token));
|
||||
}
|
||||
|
||||
*cur = MOVE_NONE;
|
||||
limits.time = time[pos.side_to_move()];
|
||||
limits.increment = inc[pos.side_to_move()];
|
||||
|
||||
assert(pos.is_ok());
|
||||
|
||||
return think(pos, limits, searchMoves);
|
||||
Threads.start_thinking(pos, limits, searchMoves, true);
|
||||
}
|
||||
|
||||
|
||||
// perft() is called when engine receives the "perft" command.
|
||||
// The function calls perft() passing the required search depth
|
||||
// then prints counted leaf nodes and elapsed time.
|
||||
// perft() is called when engine receives the "perft" command. The function
|
||||
// calls perft() with the required search depth then prints counted leaf nodes
|
||||
// and elapsed time.
|
||||
|
||||
void perft(Position& pos, UCIParser& up) {
|
||||
void perft(Position& pos, istringstream& is) {
|
||||
|
||||
int depth, time;
|
||||
int64_t n;
|
||||
|
||||
if (!(up >> depth))
|
||||
if (!(is >> depth))
|
||||
return;
|
||||
|
||||
time = get_system_time();
|
||||
time = system_time();
|
||||
|
||||
n = perft(pos, depth * ONE_PLY);
|
||||
int64_t n = Search::perft(pos, depth * ONE_PLY);
|
||||
|
||||
time = get_system_time() - time;
|
||||
time = system_time() - time;
|
||||
|
||||
std::cout << "\nNodes " << n
|
||||
<< "\nTime (ms) " << time
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -17,8 +17,7 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <cctype>
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
|
||||
#include "misc.h"
|
||||
|
@ -26,145 +25,103 @@
|
|||
#include "ucioption.h"
|
||||
|
||||
using std::string;
|
||||
using std::cout;
|
||||
using std::endl;
|
||||
|
||||
OptionsMap Options; // Global object
|
||||
|
||||
|
||||
// Our case insensitive less() function as required by UCI protocol
|
||||
/// Our case insensitive less() function as required by UCI protocol
|
||||
static bool ci_less(char c1, char c2) { return tolower(c1) < tolower(c2); }
|
||||
|
||||
bool CaseInsensitiveLess::operator() (const string& s1, const string& s2) const {
|
||||
|
||||
int c1, c2;
|
||||
size_t i = 0;
|
||||
|
||||
while (i < s1.size() && i < s2.size())
|
||||
{
|
||||
c1 = tolower(s1[i]);
|
||||
c2 = tolower(s2[i++]);
|
||||
|
||||
if (c1 != c2)
|
||||
return c1 < c2;
|
||||
}
|
||||
return s1.size() < s2.size();
|
||||
}
|
||||
|
||||
|
||||
// stringify() converts a numeric value of type T to a std::string
|
||||
template<typename T>
|
||||
static string stringify(const T& v) {
|
||||
|
||||
std::ostringstream ss;
|
||||
ss << v;
|
||||
return ss.str();
|
||||
return std::lexicographical_compare(s1.begin(), s1.end(), s2.begin(), s2.end(), ci_less);
|
||||
}
|
||||
|
||||
|
||||
/// OptionsMap c'tor initializes the UCI options to their hard coded default
|
||||
/// values and initializes the default value of "Threads" and "Minimum Split Depth"
|
||||
/// parameters according to the number of CPU cores.
|
||||
/// values and initializes the default value of "Threads" and "Min Split Depth"
|
||||
/// parameters according to the number of CPU cores detected.
|
||||
|
||||
OptionsMap::OptionsMap() {
|
||||
|
||||
int cpus = std::min(cpu_count(), MAX_THREADS);
|
||||
int msd = cpus < 8 ? 4 : 7;
|
||||
OptionsMap& o = *this;
|
||||
|
||||
o["Use Search Log"] = UCIOption(false);
|
||||
o["Search Log Filename"] = UCIOption("SearchLog.txt");
|
||||
o["Book File"] = UCIOption("book.bin");
|
||||
o["Best Book Move"] = UCIOption(false);
|
||||
o["Mobility (Middle Game)"] = UCIOption(100, 0, 200);
|
||||
o["Mobility (Endgame)"] = UCIOption(100, 0, 200);
|
||||
o["Passed Pawns (Middle Game)"] = UCIOption(100, 0, 200);
|
||||
o["Passed Pawns (Endgame)"] = UCIOption(100, 0, 200);
|
||||
o["Space"] = UCIOption(100, 0, 200);
|
||||
o["Aggressiveness"] = UCIOption(100, 0, 200);
|
||||
o["Cowardice"] = UCIOption(100, 0, 200);
|
||||
o["Minimum Split Depth"] = UCIOption(4, 4, 7);
|
||||
o["Maximum Number of Threads per Split Point"] = UCIOption(5, 4, 8);
|
||||
o["Threads"] = UCIOption(1, 1, MAX_THREADS);
|
||||
o["Use Sleeping Threads"] = UCIOption(false);
|
||||
o["Hash"] = UCIOption(32, 4, 8192);
|
||||
o["Clear Hash"] = UCIOption(false, "button");
|
||||
o["Ponder"] = UCIOption(true);
|
||||
o["OwnBook"] = UCIOption(true);
|
||||
o["MultiPV"] = UCIOption(1, 1, 500);
|
||||
o["Skill Level"] = UCIOption(20, 0, 20);
|
||||
o["Emergency Move Horizon"] = UCIOption(40, 0, 50);
|
||||
o["Emergency Base Time"] = UCIOption(200, 0, 30000);
|
||||
o["Emergency Move Time"] = UCIOption(70, 0, 5000);
|
||||
o["Minimum Thinking Time"] = UCIOption(20, 0, 5000);
|
||||
o["UCI_Chess960"] = UCIOption(false);
|
||||
o["UCI_AnalyseMode"] = UCIOption(false);
|
||||
|
||||
// Set some SMP parameters accordingly to the detected CPU count
|
||||
UCIOption& thr = o["Threads"];
|
||||
UCIOption& msd = o["Minimum Split Depth"];
|
||||
|
||||
thr.defaultValue = thr.currentValue = stringify(cpu_count());
|
||||
|
||||
if (cpu_count() >= 8)
|
||||
msd.defaultValue = msd.currentValue = stringify(7);
|
||||
o["Use Search Log"] = UCIOption(false);
|
||||
o["Search Log Filename"] = UCIOption("SearchLog.txt");
|
||||
o["Book File"] = UCIOption("book.bin");
|
||||
o["Best Book Move"] = UCIOption(false);
|
||||
o["Mobility (Middle Game)"] = UCIOption(100, 0, 200);
|
||||
o["Mobility (Endgame)"] = UCIOption(100, 0, 200);
|
||||
o["Passed Pawns (Middle Game)"] = UCIOption(100, 0, 200);
|
||||
o["Passed Pawns (Endgame)"] = UCIOption(100, 0, 200);
|
||||
o["Space"] = UCIOption(100, 0, 200);
|
||||
o["Aggressiveness"] = UCIOption(100, 0, 200);
|
||||
o["Cowardice"] = UCIOption(100, 0, 200);
|
||||
o["Min Split Depth"] = UCIOption(msd, 4, 7);
|
||||
o["Max Threads per Split Point"] = UCIOption(5, 4, 8);
|
||||
o["Threads"] = UCIOption(cpus, 1, MAX_THREADS);
|
||||
o["Use Sleeping Threads"] = UCIOption(false);
|
||||
o["Hash"] = UCIOption(32, 4, 8192);
|
||||
o["Clear Hash"] = UCIOption(false, "button");
|
||||
o["Ponder"] = UCIOption(true);
|
||||
o["OwnBook"] = UCIOption(true);
|
||||
o["MultiPV"] = UCIOption(1, 1, 500);
|
||||
o["Skill Level"] = UCIOption(20, 0, 20);
|
||||
o["Emergency Move Horizon"] = UCIOption(40, 0, 50);
|
||||
o["Emergency Base Time"] = UCIOption(200, 0, 30000);
|
||||
o["Emergency Move Time"] = UCIOption(70, 0, 5000);
|
||||
o["Minimum Thinking Time"] = UCIOption(20, 0, 5000);
|
||||
o["UCI_Chess960"] = UCIOption(false);
|
||||
o["UCI_AnalyseMode"] = UCIOption(false);
|
||||
}
|
||||
|
||||
|
||||
/// OptionsMap::print_all() returns a string with all the UCI options in chronological
|
||||
/// insertion order (the idx field) and in the format defined by the UCI protocol.
|
||||
/// operator<<() is used to output all the UCI options in chronological insertion
|
||||
/// order (the idx field) and in the format defined by the UCI protocol.
|
||||
std::ostream& operator<<(std::ostream& os, const OptionsMap& om) {
|
||||
|
||||
string OptionsMap::print_all() const {
|
||||
|
||||
std::stringstream s;
|
||||
|
||||
for (size_t i = 0; i <= size(); i++)
|
||||
for (OptionsMap::const_iterator it = begin(); it != end(); ++it)
|
||||
if (it->second.idx == i)
|
||||
for (size_t idx = 0; idx < om.size(); idx++)
|
||||
for (OptionsMap::const_iterator it = om.begin(); it != om.end(); ++it)
|
||||
if (it->second.idx == idx)
|
||||
{
|
||||
const UCIOption& o = it->second;
|
||||
s << "\noption name " << it->first << " type " << o.type;
|
||||
os << "\noption name " << it->first << " type " << o.type;
|
||||
|
||||
if (o.type != "button")
|
||||
s << " default " << o.defaultValue;
|
||||
os << " default " << o.defaultValue;
|
||||
|
||||
if (o.type == "spin")
|
||||
s << " min " << o.minValue << " max " << o.maxValue;
|
||||
os << " min " << o.min << " max " << o.max;
|
||||
|
||||
break;
|
||||
}
|
||||
return s.str();
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
/// Option class c'tors
|
||||
/// UCIOption class c'tors
|
||||
|
||||
UCIOption::UCIOption(const char* def) : type("string"), minValue(0), maxValue(0), idx(Options.size())
|
||||
{ defaultValue = currentValue = def; }
|
||||
UCIOption::UCIOption(const char* v) : type("string"), min(0), max(0), idx(Options.size())
|
||||
{ defaultValue = currentValue = v; }
|
||||
|
||||
UCIOption::UCIOption(bool def, string t) : type(t), minValue(0), maxValue(0), idx(Options.size())
|
||||
{ defaultValue = currentValue = (def ? "true" : "false"); }
|
||||
UCIOption::UCIOption(bool v, string t) : type(t), min(0), max(0), idx(Options.size())
|
||||
{ defaultValue = currentValue = (v ? "true" : "false"); }
|
||||
|
||||
UCIOption::UCIOption(int def, int minv, int maxv) : type("spin"), minValue(minv), maxValue(maxv), idx(Options.size())
|
||||
{ defaultValue = currentValue = stringify(def); }
|
||||
UCIOption::UCIOption(int v, int minv, int maxv) : type("spin"), min(minv), max(maxv), idx(Options.size())
|
||||
{ std::ostringstream ss; ss << v; defaultValue = currentValue = ss.str(); }
|
||||
|
||||
|
||||
/// set_value() updates currentValue of the Option object. Normally it's up to
|
||||
/// the GUI to check for option's limits, but we could receive the new value
|
||||
/// directly from the user by teminal window. So let's check the bounds anyway.
|
||||
/// UCIOption::operator=() updates currentValue. Normally it's up to the GUI to
|
||||
/// check for option's limits, but we could receive the new value directly from
|
||||
/// the user by teminal window, so let's check the bounds anyway.
|
||||
|
||||
void UCIOption::set_value(const string& v) {
|
||||
void UCIOption::operator=(const string& v) {
|
||||
|
||||
assert(!type.empty());
|
||||
|
||||
if (v.empty())
|
||||
return;
|
||||
|
||||
if ((type == "check" || type == "button") != (v == "true" || v == "false"))
|
||||
return;
|
||||
|
||||
if (type == "spin")
|
||||
{
|
||||
int val = atoi(v.c_str());
|
||||
if (val < minValue || val > maxValue)
|
||||
return;
|
||||
}
|
||||
|
||||
currentValue = v;
|
||||
if ( !v.empty()
|
||||
&& (type == "check" || type == "button") == (v == "true" || v == "false")
|
||||
&& (type != "spin" || (atoi(v.c_str()) >= min && atoi(v.c_str()) <= max)))
|
||||
currentValue = v;
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -25,61 +25,50 @@
|
|||
#include <map>
|
||||
#include <string>
|
||||
|
||||
struct OptionsMap;
|
||||
|
||||
/// UCIOption class implements an option as defined by UCI protocol
|
||||
class UCIOption {
|
||||
public:
|
||||
UCIOption() {} // To be used in a std::map
|
||||
UCIOption(const char* defaultValue);
|
||||
UCIOption(bool defaultValue, std::string type = "check");
|
||||
UCIOption(int defaultValue, int minValue, int maxValue);
|
||||
UCIOption() {} // Required by std::map::operator[]
|
||||
UCIOption(const char* v);
|
||||
UCIOption(bool v, std::string type = "check");
|
||||
UCIOption(int v, int min, int max);
|
||||
|
||||
void set_value(const std::string& v);
|
||||
template<typename T> T value() const;
|
||||
void operator=(const std::string& v);
|
||||
void operator=(bool v) { *this = std::string(v ? "true" : "false"); }
|
||||
|
||||
operator int() const {
|
||||
assert(type == "check" || type == "button" || type == "spin");
|
||||
return (type == "spin" ? atoi(currentValue.c_str()) : currentValue == "true");
|
||||
}
|
||||
|
||||
operator std::string() const {
|
||||
assert(type == "string");
|
||||
return currentValue;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class OptionsMap;
|
||||
friend std::ostream& operator<<(std::ostream&, const OptionsMap&);
|
||||
|
||||
std::string defaultValue, currentValue, type;
|
||||
int minValue, maxValue;
|
||||
int min, max;
|
||||
size_t idx;
|
||||
};
|
||||
|
||||
|
||||
/// Custom comparator because UCI options should not be case sensitive
|
||||
/// Custom comparator because UCI options should be case insensitive
|
||||
struct CaseInsensitiveLess {
|
||||
bool operator() (const std::string&, const std::string&) const;
|
||||
};
|
||||
|
||||
|
||||
/// Our options container is actually a map with a customized c'tor
|
||||
class OptionsMap : public std::map<std::string, UCIOption, CaseInsensitiveLess> {
|
||||
public:
|
||||
struct OptionsMap : public std::map<std::string, UCIOption, CaseInsensitiveLess> {
|
||||
OptionsMap();
|
||||
std::string print_all() const;
|
||||
};
|
||||
|
||||
extern std::ostream& operator<<(std::ostream&, const OptionsMap&);
|
||||
extern OptionsMap Options;
|
||||
|
||||
|
||||
/// Option::value() definition and specializations
|
||||
template<typename T>
|
||||
T UCIOption::value() const {
|
||||
|
||||
assert(type == "spin");
|
||||
return T(atoi(currentValue.c_str()));
|
||||
}
|
||||
|
||||
template<>
|
||||
inline std::string UCIOption::value<std::string>() const {
|
||||
|
||||
assert(type == "string");
|
||||
return currentValue;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline bool UCIOption::value<bool>() const {
|
||||
|
||||
assert(type == "check" || type == "button");
|
||||
return currentValue == "true";
|
||||
}
|
||||
|
||||
#endif // !defined(UCIOPTION_H_INCLUDED)
|
||||
|
|
|
@ -165,7 +165,7 @@
|
|||
</string-array>
|
||||
<string name="about_info">\
|
||||
<b>Information</b>\n\
|
||||
<i>DroidFish</i> ist eine Android-Version von <i>Stockfish 2.1.1</i>, \
|
||||
<i>DroidFish</i> ist eine Android-Version von <i>Stockfish 2.2</i>, \
|
||||
das zu den spielstärksten Schachprogrammen der Welt zählt. \
|
||||
Die Android-Version erreicht auf einem 1GHz-Snapdragon-Prozessor oft eine Rechentiefe von 15 oder mehr Halbzügen.\n\
|
||||
\n\
|
||||
|
|
|
@ -183,7 +183,7 @@
|
|||
|
||||
<string name="about_info">\
|
||||
<b>About</b>\n\
|
||||
<i>DroidFish</i> is an Android port of the famous <i>stockfish 2.1.1</i> chess engine. \
|
||||
<i>DroidFish</i> is an Android port of the famous <i>stockfish 2.2</i> chess engine. \
|
||||
<i>Stockfish</i> is one of the strongest chess engines in the world. \
|
||||
The Android version can often search 15 ply or deeper on a 1GHz Snapdragon CPU.\n\
|
||||
\n\
|
||||
|
|
Loading…
Reference in New Issue
Block a user