mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-01-10 00:55:54 +01:00
367 lines
11 KiB
C++
367 lines
11 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
|
|
#include "bitboard.h"
|
|
#include "bitcount.h"
|
|
#include "rkiss.h"
|
|
|
|
Bitboard RMasks[64];
|
|
Bitboard RMagics[64];
|
|
Bitboard* RAttacks[64];
|
|
int RShifts[64];
|
|
|
|
Bitboard BMasks[64];
|
|
Bitboard BMagics[64];
|
|
Bitboard* BAttacks[64];
|
|
int BShifts[64];
|
|
|
|
Bitboard SetMaskBB[65];
|
|
Bitboard ClearMaskBB[65];
|
|
|
|
Bitboard FileBB[8];
|
|
Bitboard RankBB[8];
|
|
Bitboard NeighboringFilesBB[8];
|
|
Bitboard ThisAndNeighboringFilesBB[8];
|
|
Bitboard InFrontBB[2][8];
|
|
Bitboard StepAttacksBB[16][64];
|
|
Bitboard BetweenBB[64][64];
|
|
Bitboard SquaresInFrontMask[2][64];
|
|
Bitboard PassedPawnMask[2][64];
|
|
Bitboard AttackSpanMask[2][64];
|
|
|
|
Bitboard BishopPseudoAttacks[64];
|
|
Bitboard RookPseudoAttacks[64];
|
|
Bitboard QueenPseudoAttacks[64];
|
|
|
|
uint8_t BitCount8Bit[256];
|
|
int SquareDistance[64][64];
|
|
|
|
namespace {
|
|
|
|
CACHE_LINE_ALIGNMENT
|
|
|
|
int BSFTable[64];
|
|
Bitboard RookTable[0x19000]; // Storage space for rook attacks
|
|
Bitboard BishopTable[0x1480]; // Storage space for bishop attacks
|
|
|
|
void init_magic_bitboards(PieceType pt, Bitboard* attacks[], Bitboard magics[],
|
|
Bitboard masks[], int shifts[]);
|
|
}
|
|
|
|
|
|
/// print_bitboard() prints a bitboard in an easily readable format to the
|
|
/// standard output. This is sometimes useful for debugging.
|
|
|
|
void print_bitboard(Bitboard b) {
|
|
|
|
for (Rank r = RANK_8; r >= RANK_1; r--)
|
|
{
|
|
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
|
|
for (File f = FILE_A; f <= FILE_H; f++)
|
|
std::cout << "| " << (bit_is_set(b, make_square(f, r)) ? "X " : " ");
|
|
|
|
std::cout << "|\n";
|
|
}
|
|
std::cout << "+---+---+---+---+---+---+---+---+" << std::endl;
|
|
}
|
|
|
|
|
|
/// first_1() finds the least significant nonzero bit in a nonzero bitboard.
|
|
/// pop_1st_bit() finds and clears the least significant nonzero bit in a
|
|
/// nonzero bitboard.
|
|
|
|
#if defined(IS_64BIT) && !defined(USE_BSFQ)
|
|
|
|
Square first_1(Bitboard b) {
|
|
return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]);
|
|
}
|
|
|
|
Square pop_1st_bit(Bitboard* b) {
|
|
Bitboard bb = *b;
|
|
*b &= (*b - 1);
|
|
return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]);
|
|
}
|
|
|
|
#elif !defined(USE_BSFQ)
|
|
|
|
Square first_1(Bitboard b) {
|
|
b ^= (b - 1);
|
|
uint32_t fold = unsigned(b) ^ unsigned(b >> 32);
|
|
return Square(BSFTable[(fold * 0x783A9B23) >> 26]);
|
|
}
|
|
|
|
// Use type-punning
|
|
union b_union {
|
|
|
|
Bitboard b;
|
|
struct {
|
|
#if defined (BIGENDIAN)
|
|
uint32_t h;
|
|
uint32_t l;
|
|
#else
|
|
uint32_t l;
|
|
uint32_t h;
|
|
#endif
|
|
} dw;
|
|
};
|
|
|
|
Square pop_1st_bit(Bitboard* bb) {
|
|
|
|
b_union u;
|
|
Square ret;
|
|
|
|
u.b = *bb;
|
|
|
|
if (u.dw.l)
|
|
{
|
|
ret = Square(BSFTable[((u.dw.l ^ (u.dw.l - 1)) * 0x783A9B23) >> 26]);
|
|
u.dw.l &= (u.dw.l - 1);
|
|
*bb = u.b;
|
|
return ret;
|
|
}
|
|
ret = Square(BSFTable[((~(u.dw.h ^ (u.dw.h - 1))) * 0x783A9B23) >> 26]);
|
|
u.dw.h &= (u.dw.h - 1);
|
|
*bb = u.b;
|
|
return ret;
|
|
}
|
|
|
|
#endif // !defined(USE_BSFQ)
|
|
|
|
|
|
/// bitboards_init() initializes various bitboard arrays. It is called during
|
|
/// program initialization.
|
|
|
|
void bitboards_init() {
|
|
|
|
for (Bitboard b = 0; b < 256; b++)
|
|
BitCount8Bit[b] = (uint8_t)popcount<Max15>(b);
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
{
|
|
SetMaskBB[s] = 1ULL << s;
|
|
ClearMaskBB[s] = ~SetMaskBB[s];
|
|
}
|
|
|
|
ClearMaskBB[SQ_NONE] = ~0ULL;
|
|
|
|
FileBB[FILE_A] = FileABB;
|
|
RankBB[RANK_1] = Rank1BB;
|
|
|
|
for (int f = FILE_B; f <= FILE_H; f++)
|
|
{
|
|
FileBB[f] = FileBB[f - 1] << 1;
|
|
RankBB[f] = RankBB[f - 1] << 8;
|
|
}
|
|
|
|
for (int f = FILE_A; f <= FILE_H; f++)
|
|
{
|
|
NeighboringFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
|
|
ThisAndNeighboringFilesBB[f] = FileBB[f] | NeighboringFilesBB[f];
|
|
}
|
|
|
|
for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++)
|
|
{
|
|
InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1];
|
|
InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1];
|
|
}
|
|
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
{
|
|
SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s);
|
|
PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(file_of(s));
|
|
AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(file_of(s));
|
|
}
|
|
|
|
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
|
|
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
|
|
SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2));
|
|
|
|
for (int i = 0; i < 64; i++)
|
|
if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems
|
|
{
|
|
Bitboard b = 1ULL << i;
|
|
b ^= b - 1;
|
|
b ^= b >> 32;
|
|
BSFTable[uint32_t(b * 0x783A9B23) >> 26] = i;
|
|
}
|
|
else
|
|
BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i;
|
|
|
|
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
|
|
{}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
|
|
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (PieceType pt = PAWN; pt <= KING; pt++)
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
for (int k = 0; steps[pt][k]; k++)
|
|
{
|
|
Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]);
|
|
|
|
if (square_is_ok(to) && square_distance(s, to) < 3)
|
|
set_bit(&StepAttacksBB[make_piece(c, pt)][s], to);
|
|
}
|
|
|
|
init_magic_bitboards(ROOK, RAttacks, RMagics, RMasks, RShifts);
|
|
init_magic_bitboards(BISHOP, BAttacks, BMagics, BMasks, BShifts);
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
{
|
|
BishopPseudoAttacks[s] = bishop_attacks_bb(s, 0);
|
|
RookPseudoAttacks[s] = rook_attacks_bb(s, 0);
|
|
QueenPseudoAttacks[s] = queen_attacks_bb(s, 0);
|
|
}
|
|
|
|
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
|
|
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
|
|
if (bit_is_set(QueenPseudoAttacks[s1], s2))
|
|
{
|
|
Square delta = (s2 - s1) / square_distance(s1, s2);
|
|
|
|
for (Square s = s1 + delta; s != s2; s += delta)
|
|
set_bit(&BetweenBB[s1][s2], s);
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
Bitboard sliding_attacks(PieceType pt, Square sq, Bitboard occupied) {
|
|
|
|
Square deltas[][4] = { { DELTA_N, DELTA_E, DELTA_S, DELTA_W },
|
|
{ DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW } };
|
|
Bitboard attacks = 0;
|
|
Square* delta = (pt == ROOK ? deltas[0] : deltas[1]);
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
Square s = sq + delta[i];
|
|
|
|
while (square_is_ok(s) && square_distance(s, s - delta[i]) == 1)
|
|
{
|
|
set_bit(&attacks, s);
|
|
|
|
if (bit_is_set(occupied, s))
|
|
break;
|
|
|
|
s += delta[i];
|
|
}
|
|
}
|
|
return attacks;
|
|
}
|
|
|
|
|
|
Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) {
|
|
|
|
Bitboard magic;
|
|
|
|
// Values s1 and s2 are used to rotate the candidate magic of a
|
|
// quantity known to be the optimal to quickly find the magics.
|
|
int s1 = booster & 63, s2 = (booster >> 6) & 63;
|
|
|
|
while (true)
|
|
{
|
|
magic = rk.rand<Bitboard>();
|
|
magic = (magic >> s1) | (magic << (64 - s1));
|
|
magic &= rk.rand<Bitboard>();
|
|
magic = (magic >> s2) | (magic << (64 - s2));
|
|
magic &= rk.rand<Bitboard>();
|
|
|
|
if (BitCount8Bit[(mask * magic) >> 56] >= 6)
|
|
return magic;
|
|
}
|
|
}
|
|
|
|
|
|
// init_magic_bitboards() computes all rook and bishop magics at startup.
|
|
// Magic bitboards are used to look up attacks of sliding pieces. As reference
|
|
// see chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
|
|
// use the so called "fancy" approach.
|
|
|
|
void init_magic_bitboards(PieceType pt, Bitboard* attacks[], Bitboard magics[],
|
|
Bitboard masks[], int shifts[]) {
|
|
|
|
int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 },
|
|
{ 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } };
|
|
RKISS rk;
|
|
Bitboard occupancy[4096], reference[4096], edges, b;
|
|
int i, size, index, booster;
|
|
|
|
// attacks[s] is a pointer to the beginning of the attacks table for square 's'
|
|
attacks[SQ_A1] = (pt == ROOK ? RookTable : BishopTable);
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
{
|
|
// Board edges are not considered in the relevant occupancies
|
|
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
|
|
|
|
// Given a square 's', the mask is the bitboard of sliding attacks from
|
|
// 's' computed on an empty board. The index must be big enough to contain
|
|
// all the attacks for each possible subset of the mask and so is 2 power
|
|
// the number of 1s of the mask. Hence we deduce the size of the shift to
|
|
// apply to the 64 or 32 bits word to get the index.
|
|
masks[s] = sliding_attacks(pt, s, 0) & ~edges;
|
|
shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
|
|
|
|
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
|
|
// store the corresponding sliding attacks bitboard in reference[].
|
|
b = size = 0;
|
|
do {
|
|
occupancy[size] = b;
|
|
reference[size++] = sliding_attacks(pt, s, b);
|
|
b = (b - masks[s]) & masks[s];
|
|
} while (b);
|
|
|
|
// Set the offset for the table of the next square. We have individual
|
|
// table sizes for each square with "Fancy Magic Bitboards".
|
|
if (s < SQ_H8)
|
|
attacks[s + 1] = attacks[s] + size;
|
|
|
|
booster = MagicBoosters[Is64Bit][rank_of(s)];
|
|
|
|
// Find a magic for square 's' picking up an (almost) random number
|
|
// until we find the one that passes the verification test.
|
|
do {
|
|
magics[s] = pick_random(masks[s], rk, booster);
|
|
memset(attacks[s], 0, size * sizeof(Bitboard));
|
|
|
|
// A good magic must map every possible occupancy to an index that
|
|
// looks up the correct sliding attack in the attacks[s] database.
|
|
// Note that we build up the database for square 's' as a side
|
|
// effect of verifying the magic.
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
index = (pt == ROOK ? rook_index(s, occupancy[i])
|
|
: bishop_index(s, occupancy[i]));
|
|
|
|
if (!attacks[s][index])
|
|
attacks[s][index] = reference[i];
|
|
|
|
else if (attacks[s][index] != reference[i])
|
|
break;
|
|
}
|
|
} while (i != size);
|
|
}
|
|
}
|
|
}
|