droidfish/DroidFish/jni/stockfish/movepick.cpp
2012-01-15 01:13:33 +00:00

400 lines
13 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include "movegen.h"
#include "movepick.h"
#include "search.h"
#include "types.h"
namespace {
enum MovegenPhase {
PH_TT_MOVE, // Transposition table move
PH_GOOD_CAPTURES, // Queen promotions and captures with SEE values >= captureThreshold (captureThreshold <= 0)
PH_GOOD_PROBCUT, // Queen promotions and captures with SEE values > captureThreshold (captureThreshold >= 0)
PH_KILLERS, // Killer moves from the current ply
PH_NONCAPTURES_1, // Non-captures and underpromotions with positive score
PH_NONCAPTURES_2, // Non-captures and underpromotions with non-positive score
PH_BAD_CAPTURES, // Queen promotions and captures with SEE values < captureThreshold (captureThreshold <= 0)
PH_EVASIONS, // Check evasions
PH_QCAPTURES, // Captures in quiescence search
PH_QRECAPTURES, // Recaptures in quiescence search
PH_QCHECKS, // Non-capture checks in quiescence search
PH_STOP
};
CACHE_LINE_ALIGNMENT
const uint8_t MainSearchTable[] = { PH_TT_MOVE, PH_GOOD_CAPTURES, PH_KILLERS, PH_NONCAPTURES_1, PH_NONCAPTURES_2, PH_BAD_CAPTURES, PH_STOP };
const uint8_t EvasionTable[] = { PH_TT_MOVE, PH_EVASIONS, PH_STOP };
const uint8_t QsearchWithChecksTable[] = { PH_TT_MOVE, PH_QCAPTURES, PH_QCHECKS, PH_STOP };
const uint8_t QsearchWithoutChecksTable[] = { PH_TT_MOVE, PH_QCAPTURES, PH_STOP };
const uint8_t QsearchRecapturesTable[] = { PH_TT_MOVE, PH_QRECAPTURES, PH_STOP };
const uint8_t ProbCutTable[] = { PH_TT_MOVE, PH_GOOD_PROBCUT, PH_STOP };
// Unary predicate used by std::partition to split positive scores from remaining
// ones so to sort separately the two sets, and with the second sort delayed.
inline bool has_positive_score(const MoveStack& move) { return move.score > 0; }
// Picks and pushes to the front the best move in range [firstMove, lastMove),
// it is faster than sorting all the moves in advance when moves are few, as
// normally are the possible captures.
inline MoveStack* pick_best(MoveStack* firstMove, MoveStack* lastMove)
{
std::swap(*firstMove, *std::max_element(firstMove, lastMove));
return firstMove;
}
}
/// Constructors for the MovePicker class. As arguments we pass information
/// to help it to return the presumably good moves first, to decide which
/// moves to return (in the quiescence search, for instance, we only want to
/// search captures, promotions and some checks) and about how important good
/// move ordering is at the current node.
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const History& h,
Search::Stack* ss, Value beta) : pos(p), H(h), depth(d) {
captureThreshold = 0;
badCaptures = moves + MAX_MOVES;
assert(d > DEPTH_ZERO);
if (p.in_check())
{
killers[0].move = killers[1].move = MOVE_NONE;
phasePtr = EvasionTable;
}
else
{
killers[0].move = ss->killers[0];
killers[1].move = ss->killers[1];
// Consider sligtly negative captures as good if at low depth and far from beta
if (ss && ss->eval < beta - PawnValueMidgame && d < 3 * ONE_PLY)
captureThreshold = -PawnValueMidgame;
// Consider negative captures as good if still enough to reach beta
else if (ss && ss->eval > beta)
captureThreshold = beta - ss->eval;
phasePtr = MainSearchTable;
}
ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE);
phasePtr += int(ttMove == MOVE_NONE) - 1;
go_next_phase();
}
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const History& h, Square recaptureSq)
: pos(p), H(h) {
assert(d <= DEPTH_ZERO);
if (p.in_check())
phasePtr = EvasionTable;
else if (d >= DEPTH_QS_CHECKS)
phasePtr = QsearchWithChecksTable;
else if (d >= DEPTH_QS_RECAPTURES)
{
phasePtr = QsearchWithoutChecksTable;
// Skip TT move if is not a capture or a promotion, this avoids
// qsearch tree explosion due to a possible perpetual check or
// similar rare cases when TT table is full.
if (ttm != MOVE_NONE && !pos.is_capture_or_promotion(ttm))
ttm = MOVE_NONE;
}
else
{
phasePtr = QsearchRecapturesTable;
recaptureSquare = recaptureSq;
ttm = MOVE_NONE;
}
ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE);
phasePtr += int(ttMove == MOVE_NONE) - 1;
go_next_phase();
}
MovePicker::MovePicker(const Position& p, Move ttm, const History& h, PieceType parentCapture)
: pos(p), H(h) {
assert (!pos.in_check());
// In ProbCut we consider only captures better than parent's move
captureThreshold = PieceValueMidgame[Piece(parentCapture)];
phasePtr = ProbCutTable;
if ( ttm != MOVE_NONE
&& (!pos.is_capture(ttm) || pos.see(ttm) <= captureThreshold))
ttm = MOVE_NONE;
ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE);
phasePtr += int(ttMove == MOVE_NONE) - 1;
go_next_phase();
}
/// MovePicker::go_next_phase() generates, scores and sorts the next bunch
/// of moves when there are no more moves to try for the current phase.
void MovePicker::go_next_phase() {
curMove = moves;
phase = *(++phasePtr);
switch (phase) {
case PH_TT_MOVE:
lastMove = curMove + 1;
return;
case PH_GOOD_CAPTURES:
case PH_GOOD_PROBCUT:
lastMove = generate<MV_CAPTURE>(pos, moves);
score_captures();
return;
case PH_KILLERS:
curMove = killers;
lastMove = curMove + 2;
return;
case PH_NONCAPTURES_1:
lastNonCapture = lastMove = generate<MV_NON_CAPTURE>(pos, moves);
score_noncaptures();
lastMove = std::partition(curMove, lastMove, has_positive_score);
sort<MoveStack>(curMove, lastMove);
return;
case PH_NONCAPTURES_2:
curMove = lastMove;
lastMove = lastNonCapture;
if (depth >= 3 * ONE_PLY)
sort<MoveStack>(curMove, lastMove);
return;
case PH_BAD_CAPTURES:
// Bad captures SEE value is already calculated so just pick
// them in order to get SEE move ordering.
curMove = badCaptures;
lastMove = moves + MAX_MOVES;
return;
case PH_EVASIONS:
assert(pos.in_check());
lastMove = generate<MV_EVASION>(pos, moves);
score_evasions();
return;
case PH_QCAPTURES:
lastMove = generate<MV_CAPTURE>(pos, moves);
score_captures();
return;
case PH_QRECAPTURES:
lastMove = generate<MV_CAPTURE>(pos, moves);
return;
case PH_QCHECKS:
lastMove = generate<MV_NON_CAPTURE_CHECK>(pos, moves);
return;
case PH_STOP:
lastMove = curMove + 1; // Avoid another go_next_phase() call
return;
default:
assert(false);
return;
}
}
/// MovePicker::score_captures(), MovePicker::score_noncaptures() and
/// MovePicker::score_evasions() assign a numerical move ordering score
/// to each move in a move list. The moves with highest scores will be
/// picked first by next_move().
void MovePicker::score_captures() {
// Winning and equal captures in the main search are ordered by MVV/LVA.
// Suprisingly, this appears to perform slightly better than SEE based
// move ordering. The reason is probably that in a position with a winning
// capture, capturing a more valuable (but sufficiently defended) piece
// first usually doesn't hurt. The opponent will have to recapture, and
// the hanging piece will still be hanging (except in the unusual cases
// where it is possible to recapture with the hanging piece). Exchanging
// big pieces before capturing a hanging piece probably helps to reduce
// the subtree size.
// In main search we want to push captures with negative SEE values to
// badCaptures[] array, but instead of doing it now we delay till when
// the move has been picked up in pick_move_from_list(), this way we save
// some SEE calls in case we get a cutoff (idea from Pablo Vazquez).
Move m;
// Use MVV/LVA ordering
for (MoveStack* cur = moves; cur != lastMove; cur++)
{
m = cur->move;
cur->score = PieceValueMidgame[pos.piece_on(to_sq(m))]
- type_of(pos.piece_moved(m));
if (is_promotion(m))
cur->score += PieceValueMidgame[Piece(promotion_piece_type(m))];
}
}
void MovePicker::score_noncaptures() {
Move m;
Square from;
for (MoveStack* cur = moves; cur != lastMove; cur++)
{
m = cur->move;
from = from_sq(m);
cur->score = H.value(pos.piece_on(from), to_sq(m));
}
}
void MovePicker::score_evasions() {
// Try good captures ordered by MVV/LVA, then non-captures if
// destination square is not under attack, ordered by history
// value, and at the end bad-captures and non-captures with a
// negative SEE. This last group is ordered by the SEE score.
Move m;
int seeScore;
// Skip if we don't have at least two moves to order
if (lastMove < moves + 2)
return;
for (MoveStack* cur = moves; cur != lastMove; cur++)
{
m = cur->move;
if ((seeScore = pos.see_sign(m)) < 0)
cur->score = seeScore - History::MaxValue; // Be sure we are at the bottom
else if (pos.is_capture(m))
cur->score = PieceValueMidgame[pos.piece_on(to_sq(m))]
- type_of(pos.piece_moved(m)) + History::MaxValue;
else
cur->score = H.value(pos.piece_moved(m), to_sq(m));
}
}
/// MovePicker::next_move() is the most important method of the MovePicker class.
/// It returns a new pseudo legal move every time it is called, until there
/// are no more moves left. It picks the move with the biggest score from a list
/// of generated moves taking care not to return the tt move if has already been
/// searched previously. Note that this function is not thread safe so should be
/// lock protected by caller when accessed through a shared MovePicker object.
Move MovePicker::next_move() {
Move move;
while (true)
{
while (curMove == lastMove)
go_next_phase();
switch (phase) {
case PH_TT_MOVE:
curMove++;
return ttMove;
break;
case PH_GOOD_CAPTURES:
move = pick_best(curMove++, lastMove)->move;
if (move != ttMove)
{
assert(captureThreshold <= 0); // Otherwise we must use see instead of see_sign
// Check for a non negative SEE now
int seeValue = pos.see_sign(move);
if (seeValue >= captureThreshold)
return move;
// Losing capture, move it to the tail of the array
(--badCaptures)->move = move;
badCaptures->score = seeValue;
}
break;
case PH_GOOD_PROBCUT:
move = pick_best(curMove++, lastMove)->move;
if ( move != ttMove
&& pos.see(move) > captureThreshold)
return move;
break;
case PH_KILLERS:
move = (curMove++)->move;
if ( move != MOVE_NONE
&& pos.is_pseudo_legal(move)
&& move != ttMove
&& !pos.is_capture(move))
return move;
break;
case PH_NONCAPTURES_1:
case PH_NONCAPTURES_2:
move = (curMove++)->move;
if ( move != ttMove
&& move != killers[0].move
&& move != killers[1].move)
return move;
break;
case PH_BAD_CAPTURES:
move = pick_best(curMove++, lastMove)->move;
return move;
case PH_EVASIONS:
case PH_QCAPTURES:
move = pick_best(curMove++, lastMove)->move;
if (move != ttMove)
return move;
break;
case PH_QRECAPTURES:
move = (curMove++)->move;
if (to_sq(move) == recaptureSquare)
return move;
break;
case PH_QCHECKS:
move = (curMove++)->move;
if (move != ttMove)
return move;
break;
case PH_STOP:
return MOVE_NONE;
default:
assert(false);
break;
}
}
}