droidfish/DroidFish/jni/stockfish/search.cpp
2012-09-23 08:13:11 +00:00

1782 lines
60 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <iostream>
#include <sstream>
#include "book.h"
#include "evaluate.h"
#include "history.h"
#include "movegen.h"
#include "movepick.h"
#include "notation.h"
#include "search.h"
#include "timeman.h"
#include "thread.h"
#include "tt.h"
#include "ucioption.h"
namespace Search {
volatile SignalsType Signals;
LimitsType Limits;
std::vector<RootMove> RootMoves;
Position RootPosition;
Time::point SearchTime;
StateStackPtr SetupStates;
}
using std::string;
using Eval::evaluate;
using namespace Search;
namespace {
// Set to true to force running with one thread. Used for debugging
const bool FakeSplit = false;
// Different node types, used as template parameter
enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV };
// Lookup table to check if a Piece is a slider and its access function
const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 };
inline bool piece_is_slider(Piece p) { return Slidings[p]; }
// Maximum depth for razoring
const Depth RazorDepth = 4 * ONE_PLY;
// Dynamic razoring margin based on depth
inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); }
// Maximum depth for use of dynamic threat detection when null move fails low
const Depth ThreatDepth = 5 * ONE_PLY;
// Minimum depth for use of internal iterative deepening
const Depth IIDDepth[] = { 8 * ONE_PLY, 5 * ONE_PLY };
// At Non-PV nodes we do an internal iterative deepening search
// when the static evaluation is bigger then beta - IIDMargin.
const Value IIDMargin = Value(256);
// Minimum depth for use of singular extension
const Depth SingularExtensionDepth[] = { 8 * ONE_PLY, 6 * ONE_PLY };
// Futility margin for quiescence search
const Value FutilityMarginQS = Value(128);
// Futility lookup tables (initialized at startup) and their access functions
Value FutilityMargins[16][64]; // [depth][moveNumber]
int FutilityMoveCounts[32]; // [depth]
inline Value futility_margin(Depth d, int mn) {
return d < 7 * ONE_PLY ? FutilityMargins[std::max(int(d), 1)][std::min(mn, 63)]
: 2 * VALUE_INFINITE;
}
inline int futility_move_count(Depth d) {
return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES;
}
// Reduction lookup tables (initialized at startup) and their access function
int8_t Reductions[2][64][64]; // [pv][depth][moveNumber]
template <bool PvNode> inline Depth reduction(Depth d, int mn) {
return (Depth) Reductions[PvNode][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)];
}
// Easy move margin. An easy move candidate must be at least this much better
// than the second best move.
const Value EasyMoveMargin = Value(0x150);
// This is the minimum interval in msec between two check_time() calls
const int TimerResolution = 5;
size_t MultiPV, UCIMultiPV, PVIdx;
TimeManager TimeMgr;
int BestMoveChanges;
int SkillLevel;
bool SkillLevelEnabled, Chess960;
History H;
template <NodeType NT>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
template <NodeType NT>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
void id_loop(Position& pos);
bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta);
bool connected_moves(const Position& pos, Move m1, Move m2);
Value value_to_tt(Value v, int ply);
Value value_from_tt(Value v, int ply);
bool can_return_tt(const TTEntry* tte, Depth depth, Value ttValue, Value beta);
bool connected_threat(const Position& pos, Move m, Move threat);
Value refine_eval(const TTEntry* tte, Value ttValue, Value defaultEval);
Move do_skill_level();
string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
// is_dangerous() checks whether a move belongs to some classes of known
// 'dangerous' moves so that we avoid to prune it.
FORCE_INLINE bool is_dangerous(const Position& pos, Move m, bool captureOrPromotion) {
// Castle move?
if (type_of(m) == CASTLE)
return true;
// Passed pawn move?
if ( type_of(pos.piece_moved(m)) == PAWN
&& pos.pawn_is_passed(pos.side_to_move(), to_sq(m)))
return true;
// Entering a pawn endgame?
if ( captureOrPromotion
&& type_of(pos.piece_on(to_sq(m))) != PAWN
&& type_of(m) == NORMAL
&& ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
- PieceValue[Mg][pos.piece_on(to_sq(m))] == VALUE_ZERO))
return true;
return false;
}
} // namespace
/// Search::init() is called during startup to initialize various lookup tables
void Search::init() {
int d; // depth (ONE_PLY == 2)
int hd; // half depth (ONE_PLY == 1)
int mc; // moveCount
// Init reductions array
for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++)
{
double pvRed = log(double(hd)) * log(double(mc)) / 3.0;
double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
Reductions[1][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0);
Reductions[0][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0);
}
// Init futility margins array
for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45);
// Init futility move count array
for (d = 0; d < 32; d++)
FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(d, 2.0));
}
/// Search::perft() is our utility to verify move generation. All the leaf nodes
/// up to the given depth are generated and counted and the sum returned.
size_t Search::perft(Position& pos, Depth depth) {
// At the last ply just return the number of legal moves (leaf nodes)
if (depth == ONE_PLY)
return MoveList<LEGAL>(pos).size();
StateInfo st;
size_t cnt = 0;
CheckInfo ci(pos);
for (MoveList<LEGAL> ml(pos); !ml.end(); ++ml)
{
pos.do_move(ml.move(), st, ci, pos.move_gives_check(ml.move(), ci));
cnt += perft(pos, depth - ONE_PLY);
pos.undo_move(ml.move());
}
return cnt;
}
/// Search::think() is the external interface to Stockfish's search, and is
/// called by the main thread when the program receives the UCI 'go' command. It
/// searches from RootPosition and at the end prints the "bestmove" to output.
void Search::think() {
static PolyglotBook book; // Defined static to initialize the PRNG only once
Position& pos = RootPosition;
Chess960 = pos.is_chess960();
Eval::RootColor = pos.side_to_move();
TimeMgr.init(Limits, pos.startpos_ply_counter(), pos.side_to_move());
TT.new_search();
H.clear();
if (RootMoves.empty())
{
sync_cout << "info depth 0 score "
<< score_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW) << sync_endl;
RootMoves.push_back(MOVE_NONE);
goto finalize;
}
if (Options["OwnBook"] && !Limits.infinite)
{
Move bookMove = book.probe(pos, Options["Book File"], Options["Best Book Move"]);
if (bookMove && std::count(RootMoves.begin(), RootMoves.end(), bookMove))
{
std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), bookMove));
goto finalize;
}
}
UCIMultiPV = Options["MultiPV"];
SkillLevel = Options["Skill Level"];
// Do we have to play with skill handicap? In this case enable MultiPV that
// we will use behind the scenes to retrieve a set of possible moves.
SkillLevelEnabled = (SkillLevel < 20);
MultiPV = (SkillLevelEnabled ? std::max(UCIMultiPV, (size_t)4) : UCIMultiPV);
if (Options["Use Search Log"])
{
Log log(Options["Search Log Filename"]);
log << "\nSearching: " << pos.to_fen()
<< "\ninfinite: " << Limits.infinite
<< " ponder: " << Limits.ponder
<< " time: " << Limits.time[pos.side_to_move()]
<< " increment: " << Limits.inc[pos.side_to_move()]
<< " moves to go: " << Limits.movestogo
<< std::endl;
}
Threads.wake_up();
// Set best timer interval to avoid lagging under time pressure. Timer is
// used to check for remaining available thinking time.
if (Limits.use_time_management())
Threads.set_timer(std::min(100, std::max(TimeMgr.available_time() / 16, TimerResolution)));
else
Threads.set_timer(100);
// We're ready to start searching. Call the iterative deepening loop function
id_loop(pos);
Threads.set_timer(0); // Stop timer
Threads.sleep();
if (Options["Use Search Log"])
{
Time::point elapsed = Time::now() - SearchTime + 1;
Log log(Options["Search Log Filename"]);
log << "Nodes: " << pos.nodes_searched()
<< "\nNodes/second: " << pos.nodes_searched() * 1000 / elapsed
<< "\nBest move: " << move_to_san(pos, RootMoves[0].pv[0]);
StateInfo st;
pos.do_move(RootMoves[0].pv[0], st);
log << "\nPonder move: " << move_to_san(pos, RootMoves[0].pv[1]) << std::endl;
pos.undo_move(RootMoves[0].pv[0]);
}
finalize:
// When we reach max depth we arrive here even without Signals.stop is raised,
// but if we are pondering or in infinite search, we shouldn't print the best
// move before we are told to do so.
if (!Signals.stop && (Limits.ponder || Limits.infinite))
pos.this_thread()->wait_for_stop_or_ponderhit();
// Best move could be MOVE_NONE when searching on a stalemate position
sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], Chess960)
<< " ponder " << move_to_uci(RootMoves[0].pv[1], Chess960) << sync_endl;
}
namespace {
// id_loop() is the main iterative deepening loop. It calls search() repeatedly
// with increasing depth until the allocated thinking time has been consumed,
// user stops the search, or the maximum search depth is reached.
void id_loop(Position& pos) {
Stack ss[MAX_PLY_PLUS_2];
int depth, prevBestMoveChanges;
Value bestValue, alpha, beta, delta;
bool bestMoveNeverChanged = true;
Move skillBest = MOVE_NONE;
memset(ss, 0, 4 * sizeof(Stack));
depth = BestMoveChanges = 0;
bestValue = delta = -VALUE_INFINITE;
ss->currentMove = MOVE_NULL; // Hack to skip update gains
// Iterative deepening loop until requested to stop or target depth reached
while (!Signals.stop && ++depth <= MAX_PLY && (!Limits.depth || depth <= Limits.depth))
{
// Save last iteration's scores before first PV line is searched and all
// the move scores but the (new) PV are set to -VALUE_INFINITE.
for (size_t i = 0; i < RootMoves.size(); i++)
RootMoves[i].prevScore = RootMoves[i].score;
prevBestMoveChanges = BestMoveChanges;
BestMoveChanges = 0;
// MultiPV loop. We perform a full root search for each PV line
for (PVIdx = 0; PVIdx < std::min(MultiPV, RootMoves.size()); PVIdx++)
{
// Set aspiration window default width
if (depth >= 5 && abs(RootMoves[PVIdx].prevScore) < VALUE_KNOWN_WIN)
{
delta = Value(16);
alpha = RootMoves[PVIdx].prevScore - delta;
beta = RootMoves[PVIdx].prevScore + delta;
}
else
{
alpha = -VALUE_INFINITE;
beta = VALUE_INFINITE;
}
// Start with a small aspiration window and, in case of fail high/low,
// research with bigger window until not failing high/low anymore.
while (true)
{
// Search starts from ss+1 to allow referencing (ss-1). This is
// needed by update gains and ss copy when splitting at Root.
bestValue = search<Root>(pos, ss+1, alpha, beta, depth * ONE_PLY);
// Bring to front the best move. It is critical that sorting is
// done with a stable algorithm because all the values but the first
// and eventually the new best one are set to -VALUE_INFINITE and
// we want to keep the same order for all the moves but the new
// PV that goes to the front. Note that in case of MultiPV search
// the already searched PV lines are preserved.
sort<RootMove>(RootMoves.begin() + PVIdx, RootMoves.end());
// In case we have found an exact score and we are going to leave
// the fail high/low loop then reorder the PV moves, otherwise
// leave the last PV move in its position so to be searched again.
// Of course this is needed only in MultiPV search.
if (PVIdx && bestValue > alpha && bestValue < beta)
sort<RootMove>(RootMoves.begin(), RootMoves.begin() + PVIdx);
// Write PV back to transposition table in case the relevant
// entries have been overwritten during the search.
for (size_t i = 0; i <= PVIdx; i++)
RootMoves[i].insert_pv_in_tt(pos);
// If search has been stopped exit the aspiration window loop.
// Sorting and writing PV back to TT is safe becuase RootMoves
// is still valid, although refers to previous iteration.
if (Signals.stop)
break;
// Send full PV info to GUI if we are going to leave the loop or
// if we have a fail high/low and we are deep in the search.
if ((bestValue > alpha && bestValue < beta) || Time::now() - SearchTime > 2000)
sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
// In case of failing high/low increase aspiration window and
// research, otherwise exit the fail high/low loop.
if (bestValue >= beta)
{
beta += delta;
delta += delta / 2;
}
else if (bestValue <= alpha)
{
Signals.failedLowAtRoot = true;
Signals.stopOnPonderhit = false;
alpha -= delta;
delta += delta / 2;
}
else
break;
// Search with full window in case we have a win/mate score
if (abs(bestValue) >= VALUE_KNOWN_WIN)
{
alpha = -VALUE_INFINITE;
beta = VALUE_INFINITE;
}
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
}
}
// Skills: Do we need to pick now the best move ?
if (SkillLevelEnabled && depth == 1 + SkillLevel)
skillBest = do_skill_level();
if (!Signals.stop && Options["Use Search Log"])
{
Log log(Options["Search Log Filename"]);
log << pretty_pv(pos, depth, bestValue, Time::now() - SearchTime, &RootMoves[0].pv[0])
<< std::endl;
}
// Filter out startup noise when monitoring best move stability
if (depth > 2 && BestMoveChanges)
bestMoveNeverChanged = false;
// Do we have time for the next iteration? Can we stop searching now?
if (!Signals.stop && !Signals.stopOnPonderhit && Limits.use_time_management())
{
bool stop = false; // Local variable, not the volatile Signals.stop
// Take in account some extra time if the best move has changed
if (depth > 4 && depth < 50)
TimeMgr.pv_instability(BestMoveChanges, prevBestMoveChanges);
// Stop search if most of available time is already consumed. We
// probably don't have enough time to search the first move at the
// next iteration anyway.
if (Time::now() - SearchTime > (TimeMgr.available_time() * 62) / 100)
stop = true;
// Stop search early if one move seems to be much better than others
if ( depth >= 12
&& !stop
&& ( (bestMoveNeverChanged && pos.captured_piece_type())
|| Time::now() - SearchTime > (TimeMgr.available_time() * 40) / 100))
{
Value rBeta = bestValue - EasyMoveMargin;
(ss+1)->excludedMove = RootMoves[0].pv[0];
(ss+1)->skipNullMove = true;
Value v = search<NonPV>(pos, ss+1, rBeta - 1, rBeta, (depth - 3) * ONE_PLY);
(ss+1)->skipNullMove = false;
(ss+1)->excludedMove = MOVE_NONE;
if (v < rBeta)
stop = true;
}
if (stop)
{
// If we are allowed to ponder do not stop the search now but
// keep pondering until GUI sends "ponderhit" or "stop".
if (Limits.ponder)
Signals.stopOnPonderhit = true;
else
Signals.stop = true;
}
}
}
// When using skills swap best PV line with the sub-optimal one
if (SkillLevelEnabled)
{
if (skillBest == MOVE_NONE) // Still unassigned ?
skillBest = do_skill_level();
std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), skillBest));
}
}
// search<>() is the main search function for both PV and non-PV nodes and for
// normal and SplitPoint nodes. When called just after a split point the search
// is simpler because we have already probed the hash table, done a null move
// search, and searched the first move before splitting, we don't have to repeat
// all this work again. We also don't need to store anything to the hash table
// here: This is taken care of after we return from the split point.
template <NodeType NT>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
const bool PvNode = (NT == PV || NT == Root || NT == SplitPointPV || NT == SplitPointRoot);
const bool SpNode = (NT == SplitPointPV || NT == SplitPointNonPV || NT == SplitPointRoot);
const bool RootNode = (NT == Root || NT == SplitPointRoot);
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
assert((alpha == beta - 1) || PvNode);
assert(depth > DEPTH_ZERO);
Move movesSearched[64];
StateInfo st;
const TTEntry *tte;
Key posKey;
Move ttMove, move, excludedMove, bestMove, threatMove;
Depth ext, newDepth;
Bound bt;
Value bestValue, value, oldAlpha, ttValue;
Value refinedValue, nullValue, futilityBase, futilityValue;
bool isPvMove, inCheck, singularExtensionNode, givesCheck;
bool captureOrPromotion, dangerous, doFullDepthSearch;
int moveCount = 0, playedMoveCount = 0;
Thread* thisThread = pos.this_thread();
SplitPoint* sp = NULL;
refinedValue = bestValue = value = -VALUE_INFINITE;
oldAlpha = alpha;
inCheck = pos.in_check();
ss->ply = (ss-1)->ply + 1;
// Used to send selDepth info to GUI
if (PvNode && thisThread->maxPly < ss->ply)
thisThread->maxPly = ss->ply;
// Step 1. Initialize node
if (SpNode)
{
tte = NULL;
ttMove = excludedMove = MOVE_NONE;
ttValue = VALUE_ZERO;
sp = ss->sp;
bestMove = sp->bestMove;
threatMove = sp->threatMove;
bestValue = sp->bestValue;
moveCount = sp->moveCount; // Lock must be held here
assert(bestValue > -VALUE_INFINITE && moveCount > 0);
goto split_point_start;
}
else
{
ss->currentMove = threatMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
(ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
}
// Step 2. Check for aborted search and immediate draw
// Enforce node limit here. FIXME: This only works with 1 search thread.
if (Limits.nodes && pos.nodes_searched() >= Limits.nodes)
Signals.stop = true;
if (( Signals.stop
|| pos.is_draw<false>()
|| ss->ply > MAX_PLY) && !RootNode)
return VALUE_DRAW;
// Step 3. Mate distance pruning. Even if we mate at the next move our score
// would be at best mate_in(ss->ply+1), but if alpha is already bigger because
// a shorter mate was found upward in the tree then there is no need to search
// further, we will never beat current alpha. Same logic but with reversed signs
// applies also in the opposite condition of being mated instead of giving mate,
// in this case return a fail-high score.
if (!RootNode)
{
alpha = std::max(mated_in(ss->ply), alpha);
beta = std::min(mate_in(ss->ply+1), beta);
if (alpha >= beta)
return alpha;
}
// Step 4. Transposition table lookup
// We don't want the score of a partial search to overwrite a previous full search
// TT value, so we use a different position key in case of an excluded move.
excludedMove = ss->excludedMove;
posKey = excludedMove ? pos.exclusion_key() : pos.key();
tte = TT.probe(posKey);
ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_ZERO;
// At PV nodes we check for exact scores, while at non-PV nodes we check for
// a fail high/low. Biggest advantage at probing at PV nodes is to have a
// smooth experience in analysis mode. We don't probe at Root nodes otherwise
// we should also update RootMoveList to avoid bogus output.
if (!RootNode && tte && (PvNode ? tte->depth() >= depth && tte->type() == BOUND_EXACT
: can_return_tt(tte, depth, ttValue, beta)))
{
TT.refresh(tte);
ss->currentMove = ttMove; // Can be MOVE_NONE
if ( ttValue >= beta
&& ttMove
&& !pos.is_capture_or_promotion(ttMove)
&& ttMove != ss->killers[0])
{
ss->killers[1] = ss->killers[0];
ss->killers[0] = ttMove;
}
return ttValue;
}
// Step 5. Evaluate the position statically and update parent's gain statistics
if (inCheck)
ss->eval = ss->evalMargin = VALUE_NONE;
else if (tte)
{
assert(tte->static_value() != VALUE_NONE);
ss->eval = tte->static_value();
ss->evalMargin = tte->static_value_margin();
refinedValue = refine_eval(tte, ttValue, ss->eval);
}
else
{
refinedValue = ss->eval = evaluate(pos, ss->evalMargin);
TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ss->evalMargin);
}
// Update gain for the parent non-capture move given the static position
// evaluation before and after the move.
if ( (move = (ss-1)->currentMove) != MOVE_NULL
&& (ss-1)->eval != VALUE_NONE
&& ss->eval != VALUE_NONE
&& !pos.captured_piece_type()
&& type_of(move) == NORMAL)
{
Square to = to_sq(move);
H.update_gain(pos.piece_on(to), to, -(ss-1)->eval - ss->eval);
}
// Step 6. Razoring (is omitted in PV nodes)
if ( !PvNode
&& depth < RazorDepth
&& !inCheck
&& refinedValue + razor_margin(depth) < beta
&& ttMove == MOVE_NONE
&& abs(beta) < VALUE_MATE_IN_MAX_PLY
&& !pos.pawn_on_7th(pos.side_to_move()))
{
Value rbeta = beta - razor_margin(depth);
Value v = qsearch<NonPV>(pos, ss, rbeta-1, rbeta, DEPTH_ZERO);
if (v < rbeta)
// Logically we should return (v + razor_margin(depth)), but
// surprisingly this did slightly weaker in tests.
return v;
}
// Step 7. Static null move pruning (is omitted in PV nodes)
// We're betting that the opponent doesn't have a move that will reduce
// the score by more than futility_margin(depth) if we do a null move.
if ( !PvNode
&& !ss->skipNullMove
&& depth < RazorDepth
&& !inCheck
&& refinedValue - futility_margin(depth, 0) >= beta
&& abs(beta) < VALUE_MATE_IN_MAX_PLY
&& pos.non_pawn_material(pos.side_to_move()))
return refinedValue - futility_margin(depth, 0);
// Step 8. Null move search with verification search (is omitted in PV nodes)
if ( !PvNode
&& !ss->skipNullMove
&& depth > ONE_PLY
&& !inCheck
&& refinedValue >= beta
&& abs(beta) < VALUE_MATE_IN_MAX_PLY
&& pos.non_pawn_material(pos.side_to_move()))
{
ss->currentMove = MOVE_NULL;
// Null move dynamic reduction based on depth
Depth R = 3 * ONE_PLY + depth / 4;
// Null move dynamic reduction based on value
if (refinedValue - PawnValueMg > beta)
R += ONE_PLY;
pos.do_null_move<true>(st);
(ss+1)->skipNullMove = true;
nullValue = depth-R < ONE_PLY ? -qsearch<NonPV>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
: - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R);
(ss+1)->skipNullMove = false;
pos.do_null_move<false>(st);
if (nullValue >= beta)
{
// Do not return unproven mate scores
if (nullValue >= VALUE_MATE_IN_MAX_PLY)
nullValue = beta;
if (depth < 6 * ONE_PLY)
return nullValue;
// Do verification search at high depths
ss->skipNullMove = true;
Value v = search<NonPV>(pos, ss, alpha, beta, depth-R);
ss->skipNullMove = false;
if (v >= beta)
return nullValue;
}
else
{
// The null move failed low, which means that we may be faced with
// some kind of threat. If the previous move was reduced, check if
// the move that refuted the null move was somehow connected to the
// move which was reduced. If a connection is found, return a fail
// low score (which will cause the reduced move to fail high in the
// parent node, which will trigger a re-search with full depth).
threatMove = (ss+1)->currentMove;
if ( depth < ThreatDepth
&& (ss-1)->reduction
&& threatMove != MOVE_NONE
&& connected_moves(pos, (ss-1)->currentMove, threatMove))
return beta - 1;
}
}
// Step 9. ProbCut (is omitted in PV nodes)
// If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
// and a reduced search returns a value much above beta, we can (almost) safely
// prune the previous move.
if ( !PvNode
&& depth >= RazorDepth + ONE_PLY
&& !inCheck
&& !ss->skipNullMove
&& excludedMove == MOVE_NONE
&& abs(beta) < VALUE_MATE_IN_MAX_PLY)
{
Value rbeta = beta + 200;
Depth rdepth = depth - ONE_PLY - 3 * ONE_PLY;
assert(rdepth >= ONE_PLY);
assert((ss-1)->currentMove != MOVE_NONE);
assert((ss-1)->currentMove != MOVE_NULL);
MovePicker mp(pos, ttMove, H, pos.captured_piece_type());
CheckInfo ci(pos);
while ((move = mp.next_move<false>()) != MOVE_NONE)
if (pos.pl_move_is_legal(move, ci.pinned))
{
ss->currentMove = move;
pos.do_move(move, st, ci, pos.move_gives_check(move, ci));
value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth);
pos.undo_move(move);
if (value >= rbeta)
return value;
}
}
// Step 10. Internal iterative deepening
if ( depth >= IIDDepth[PvNode]
&& ttMove == MOVE_NONE
&& (PvNode || (!inCheck && ss->eval + IIDMargin >= beta)))
{
Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2);
ss->skipNullMove = true;
search<PvNode ? PV : NonPV>(pos, ss, alpha, beta, d);
ss->skipNullMove = false;
tte = TT.probe(posKey);
ttMove = tte ? tte->move() : MOVE_NONE;
}
split_point_start: // At split points actual search starts from here
MovePicker mp(pos, ttMove, depth, H, ss, PvNode ? -VALUE_INFINITE : beta);
CheckInfo ci(pos);
futilityBase = ss->eval + ss->evalMargin;
singularExtensionNode = !RootNode
&& !SpNode
&& depth >= SingularExtensionDepth[PvNode]
&& ttMove != MOVE_NONE
&& !excludedMove // Recursive singular search is not allowed
&& (tte->type() & BOUND_LOWER)
&& tte->depth() >= depth - 3 * ONE_PLY;
// Step 11. Loop through moves
// Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
while ( bestValue < beta
&& (move = mp.next_move<SpNode>()) != MOVE_NONE
&& !thisThread->cutoff_occurred()
&& !Signals.stop)
{
assert(is_ok(move));
if (move == excludedMove)
continue;
// At root obey the "searchmoves" option and skip moves not listed in Root
// Move List, as a consequence any illegal move is also skipped. In MultiPV
// mode we also skip PV moves which have been already searched.
if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move))
continue;
// At PV and SpNode nodes we want all moves to be legal since the beginning
if ((PvNode || SpNode) && !pos.pl_move_is_legal(move, ci.pinned))
continue;
if (SpNode)
{
moveCount = ++sp->moveCount;
sp->mutex.unlock();
}
else
moveCount++;
if (RootNode)
{
Signals.firstRootMove = (moveCount == 1);
if (thisThread == Threads.main_thread() && Time::now() - SearchTime > 2000)
sync_cout << "info depth " << depth / ONE_PLY
<< " currmove " << move_to_uci(move, Chess960)
<< " currmovenumber " << moveCount + PVIdx << sync_endl;
}
isPvMove = (PvNode && moveCount <= 1);
captureOrPromotion = pos.is_capture_or_promotion(move);
givesCheck = pos.move_gives_check(move, ci);
dangerous = givesCheck || is_dangerous(pos, move, captureOrPromotion);
ext = DEPTH_ZERO;
// Step 12. Extend checks and, in PV nodes, also dangerous moves
if (PvNode && dangerous)
ext = ONE_PLY;
else if (givesCheck && pos.see_sign(move) >= 0)
ext = ONE_PLY / 2;
// Singular extension search. If all moves but one fail low on a search of
// (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
// is singular and should be extended. To verify this we do a reduced search
// on all the other moves but the ttMove, if result is lower than ttValue minus
// a margin then we extend ttMove.
if ( singularExtensionNode
&& !ext
&& move == ttMove
&& pos.pl_move_is_legal(move, ci.pinned)
&& abs(ttValue) < VALUE_KNOWN_WIN)
{
Value rBeta = ttValue - int(depth);
ss->excludedMove = move;
ss->skipNullMove = true;
value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2);
ss->skipNullMove = false;
ss->excludedMove = MOVE_NONE;
if (value < rBeta)
ext = ONE_PLY;
}
// Update current move (this must be done after singular extension search)
newDepth = depth - ONE_PLY + ext;
// Step 13. Futility pruning (is omitted in PV nodes)
if ( !PvNode
&& !captureOrPromotion
&& !inCheck
&& !dangerous
&& move != ttMove
&& (bestValue > VALUE_MATED_IN_MAX_PLY || bestValue == -VALUE_INFINITE))
{
// Move count based pruning
if ( moveCount >= futility_move_count(depth)
&& (!threatMove || !connected_threat(pos, move, threatMove)))
{
if (SpNode)
sp->mutex.lock();
continue;
}
// Value based pruning
// We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
// but fixing this made program slightly weaker.
Depth predictedDepth = newDepth - reduction<PvNode>(depth, moveCount);
futilityValue = futilityBase + futility_margin(predictedDepth, moveCount)
+ H.gain(pos.piece_moved(move), to_sq(move));
if (futilityValue < beta)
{
if (SpNode)
sp->mutex.lock();
continue;
}
// Prune moves with negative SEE at low depths
if ( predictedDepth < 2 * ONE_PLY
&& pos.see_sign(move) < 0)
{
if (SpNode)
sp->mutex.lock();
continue;
}
}
// Check for legality only before to do the move
if (!pos.pl_move_is_legal(move, ci.pinned))
{
moveCount--;
continue;
}
ss->currentMove = move;
if (!SpNode && !captureOrPromotion && playedMoveCount < 64)
movesSearched[playedMoveCount++] = move;
// Step 14. Make the move
pos.do_move(move, st, ci, givesCheck);
// Step 15. Reduced depth search (LMR). If the move fails high will be
// re-searched at full depth.
if ( depth > 3 * ONE_PLY
&& !isPvMove
&& !captureOrPromotion
&& !dangerous
&& ss->killers[0] != move
&& ss->killers[1] != move)
{
ss->reduction = reduction<PvNode>(depth, moveCount);
Depth d = std::max(newDepth - ss->reduction, ONE_PLY);
alpha = SpNode ? sp->alpha : alpha;
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d);
doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO);
ss->reduction = DEPTH_ZERO;
}
else
doFullDepthSearch = !isPvMove;
// Step 16. Full depth search, when LMR is skipped or fails high
if (doFullDepthSearch)
{
alpha = SpNode ? sp->alpha : alpha;
value = newDepth < ONE_PLY ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
: - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth);
}
// Only for PV nodes do a full PV search on the first move or after a fail
// high, in the latter case search only if value < beta, otherwise let the
// parent node to fail low with value <= alpha and to try another move.
if (PvNode && (isPvMove || (value > alpha && (RootNode || value < beta))))
value = newDepth < ONE_PLY ? -qsearch<PV>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
: - search<PV>(pos, ss+1, -beta, -alpha, newDepth);
// Step 17. Undo move
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 18. Check for new best move
if (SpNode)
{
sp->mutex.lock();
bestValue = sp->bestValue;
alpha = sp->alpha;
}
// Finished searching the move. If Signals.stop is true, the search
// was aborted because the user interrupted the search or because we
// ran out of time. In this case, the return value of the search cannot
// be trusted, and we don't update the best move and/or PV.
if (RootNode && !Signals.stop)
{
RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move);
// PV move or new best move ?
if (isPvMove || value > alpha)
{
rm.score = value;
rm.extract_pv_from_tt(pos);
// We record how often the best move has been changed in each
// iteration. This information is used for time management: When
// the best move changes frequently, we allocate some more time.
if (!isPvMove && MultiPV == 1)
BestMoveChanges++;
}
else
// All other moves but the PV are set to the lowest value, this
// is not a problem when sorting becuase sort is stable and move
// position in the list is preserved, just the PV is pushed up.
rm.score = -VALUE_INFINITE;
}
if (value > bestValue)
{
bestValue = value;
bestMove = move;
if ( PvNode
&& value > alpha
&& value < beta) // We want always alpha < beta
alpha = value;
if (SpNode && !thisThread->cutoff_occurred())
{
sp->bestValue = value;
sp->bestMove = move;
sp->alpha = alpha;
if (value >= beta)
sp->cutoff = true;
}
}
// Step 19. Check for split
if ( !SpNode
&& depth >= Threads.min_split_depth()
&& bestValue < beta
&& Threads.available_slave_exists(thisThread)
&& !Signals.stop
&& !thisThread->cutoff_occurred())
bestValue = Threads.split<FakeSplit>(pos, ss, alpha, beta, bestValue, &bestMove,
depth, threatMove, moveCount, &mp, NT);
}
// Step 20. Check for mate and stalemate
// All legal moves have been searched and if there are no legal moves, it
// must be mate or stalemate. Note that we can have a false positive in
// case of Signals.stop or thread.cutoff_occurred() are set, but this is
// harmless because return value is discarded anyhow in the parent nodes.
// If we are in a singular extension search then return a fail low score.
if (!moveCount)
return excludedMove ? oldAlpha : inCheck ? mated_in(ss->ply) : VALUE_DRAW;
// If we have pruned all the moves without searching return a fail-low score
if (bestValue == -VALUE_INFINITE)
{
assert(!playedMoveCount);
bestValue = oldAlpha;
}
// Step 21. Update tables
// Update transposition table entry, killers and history
if (!SpNode && !Signals.stop && !thisThread->cutoff_occurred())
{
move = bestValue <= oldAlpha ? MOVE_NONE : bestMove;
bt = bestValue <= oldAlpha ? BOUND_UPPER
: bestValue >= beta ? BOUND_LOWER : BOUND_EXACT;
TT.store(posKey, value_to_tt(bestValue, ss->ply), bt, depth, move, ss->eval, ss->evalMargin);
// Update killers and history for non capture cut-off moves
if ( bestValue >= beta
&& !pos.is_capture_or_promotion(move)
&& !inCheck)
{
if (move != ss->killers[0])
{
ss->killers[1] = ss->killers[0];
ss->killers[0] = move;
}
// Increase history value of the cut-off move
Value bonus = Value(int(depth) * int(depth));
H.add(pos.piece_moved(move), to_sq(move), bonus);
// Decrease history of all the other played non-capture moves
for (int i = 0; i < playedMoveCount - 1; i++)
{
Move m = movesSearched[i];
H.add(pos.piece_moved(m), to_sq(m), -bonus);
}
}
}
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// qsearch() is the quiescence search function, which is called by the main
// search function when the remaining depth is zero (or, to be more precise,
// less than ONE_PLY).
template <NodeType NT>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
const bool PvNode = (NT == PV);
assert(NT == PV || NT == NonPV);
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
assert((alpha == beta - 1) || PvNode);
assert(depth <= DEPTH_ZERO);
StateInfo st;
Move ttMove, move, bestMove;
Value ttValue, bestValue, value, evalMargin, futilityValue, futilityBase;
bool inCheck, enoughMaterial, givesCheck, evasionPrunable;
const TTEntry* tte;
Depth ttDepth;
Bound bt;
Value oldAlpha = alpha;
ss->currentMove = bestMove = MOVE_NONE;
ss->ply = (ss-1)->ply + 1;
// Check for an instant draw or maximum ply reached
if (pos.is_draw<true>() || ss->ply > MAX_PLY)
return VALUE_DRAW;
// Decide whether or not to include checks, this fixes also the type of
// TT entry depth that we are going to use. Note that in qsearch we use
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
inCheck = pos.in_check();
ttDepth = (inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS);
// Transposition table lookup. At PV nodes, we don't use the TT for
// pruning, but only for move ordering.
tte = TT.probe(pos.key());
ttMove = (tte ? tte->move() : MOVE_NONE);
ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_ZERO;
if (!PvNode && tte && can_return_tt(tte, ttDepth, ttValue, beta))
{
ss->currentMove = ttMove; // Can be MOVE_NONE
return ttValue;
}
// Evaluate the position statically
if (inCheck)
{
bestValue = futilityBase = -VALUE_INFINITE;
ss->eval = evalMargin = VALUE_NONE;
enoughMaterial = false;
}
else
{
if (tte)
{
assert(tte->static_value() != VALUE_NONE);
evalMargin = tte->static_value_margin();
ss->eval = bestValue = tte->static_value();
}
else
ss->eval = bestValue = evaluate(pos, evalMargin);
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
{
if (!tte)
TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin);
return bestValue;
}
if (PvNode && bestValue > alpha)
alpha = bestValue;
futilityBase = ss->eval + evalMargin + FutilityMarginQS;
enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMg;
}
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
// be generated.
MovePicker mp(pos, ttMove, depth, H, to_sq((ss-1)->currentMove));
CheckInfo ci(pos);
// Loop through the moves until no moves remain or a beta cutoff occurs
while ( bestValue < beta
&& (move = mp.next_move<false>()) != MOVE_NONE)
{
assert(is_ok(move));
givesCheck = pos.move_gives_check(move, ci);
// Futility pruning
if ( !PvNode
&& !inCheck
&& !givesCheck
&& move != ttMove
&& enoughMaterial
&& type_of(move) != PROMOTION
&& !pos.is_passed_pawn_push(move))
{
futilityValue = futilityBase
+ PieceValue[Eg][pos.piece_on(to_sq(move))]
+ (type_of(move) == ENPASSANT ? PawnValueEg : VALUE_ZERO);
if (futilityValue < beta)
{
if (futilityValue > bestValue)
bestValue = futilityValue;
continue;
}
// Prune moves with negative or equal SEE
if ( futilityBase < beta
&& depth < DEPTH_ZERO
&& pos.see(move) <= 0)
continue;
}
// Detect non-capture evasions that are candidate to be pruned
evasionPrunable = !PvNode
&& inCheck
&& bestValue > VALUE_MATED_IN_MAX_PLY
&& !pos.is_capture(move)
&& !pos.can_castle(pos.side_to_move());
// Don't search moves with negative SEE values
if ( !PvNode
&& (!inCheck || evasionPrunable)
&& move != ttMove
&& type_of(move) != PROMOTION
&& pos.see_sign(move) < 0)
continue;
// Don't search useless checks
if ( !PvNode
&& !inCheck
&& givesCheck
&& move != ttMove
&& !pos.is_capture_or_promotion(move)
&& ss->eval + PawnValueMg / 4 < beta
&& !check_is_dangerous(pos, move, futilityBase, beta))
continue;
// Check for legality only before to do the move
if (!pos.pl_move_is_legal(move, ci.pinned))
continue;
ss->currentMove = move;
// Make and search the move
pos.do_move(move, st, ci, givesCheck);
value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth-ONE_PLY);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if (value > bestValue)
{
bestValue = value;
bestMove = move;
if ( PvNode
&& value > alpha
&& value < beta) // We want always alpha < beta
alpha = value;
}
}
// All legal moves have been searched. A special case: If we're in check
// and no legal moves were found, it is checkmate.
if (inCheck && bestValue == -VALUE_INFINITE)
return mated_in(ss->ply); // Plies to mate from the root
// Update transposition table
move = bestValue <= oldAlpha ? MOVE_NONE : bestMove;
bt = bestValue <= oldAlpha ? BOUND_UPPER
: bestValue >= beta ? BOUND_LOWER : BOUND_EXACT;
TT.store(pos.key(), value_to_tt(bestValue, ss->ply), bt, ttDepth, move, ss->eval, evalMargin);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// check_is_dangerous() tests if a checking move can be pruned in qsearch().
// bestValue is updated only when returning false because in that case move
// will be pruned.
bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta)
{
Bitboard b, occ, oldAtt, newAtt, kingAtt;
Square from, to, ksq;
Piece pc;
Color them;
from = from_sq(move);
to = to_sq(move);
them = ~pos.side_to_move();
ksq = pos.king_square(them);
kingAtt = pos.attacks_from<KING>(ksq);
pc = pos.piece_moved(move);
occ = pos.pieces() ^ from ^ ksq;
oldAtt = pos.attacks_from(pc, from, occ);
newAtt = pos.attacks_from(pc, to, occ);
// Rule 1. Checks which give opponent's king at most one escape square are dangerous
b = kingAtt & ~pos.pieces(them) & ~newAtt & ~(1ULL << to);
if (!more_than_one(b))
return true;
// Rule 2. Queen contact check is very dangerous
if (type_of(pc) == QUEEN && (kingAtt & to))
return true;
// Rule 3. Creating new double threats with checks
b = pos.pieces(them) & newAtt & ~oldAtt & ~(1ULL << ksq);
while (b)
{
// Note that here we generate illegal "double move"!
if (futilityBase + PieceValue[Eg][pos.piece_on(pop_lsb(&b))] >= beta)
return true;
}
return false;
}
// connected_moves() tests whether two moves are 'connected' in the sense
// that the first move somehow made the second move possible (for instance
// if the moving piece is the same in both moves). The first move is assumed
// to be the move that was made to reach the current position, while the
// second move is assumed to be a move from the current position.
bool connected_moves(const Position& pos, Move m1, Move m2) {
Square f1, t1, f2, t2;
Piece p1, p2;
Square ksq;
assert(is_ok(m1));
assert(is_ok(m2));
// Case 1: The moving piece is the same in both moves
f2 = from_sq(m2);
t1 = to_sq(m1);
if (f2 == t1)
return true;
// Case 2: The destination square for m2 was vacated by m1
t2 = to_sq(m2);
f1 = from_sq(m1);
if (t2 == f1)
return true;
// Case 3: Moving through the vacated square
p2 = pos.piece_on(f2);
if (piece_is_slider(p2) && (between_bb(f2, t2) & f1))
return true;
// Case 4: The destination square for m2 is defended by the moving piece in m1
p1 = pos.piece_on(t1);
if (pos.attacks_from(p1, t1) & t2)
return true;
// Case 5: Discovered check, checking piece is the piece moved in m1
ksq = pos.king_square(pos.side_to_move());
if ( piece_is_slider(p1)
&& (between_bb(t1, ksq) & f2)
&& (pos.attacks_from(p1, t1, pos.pieces() ^ f2) & ksq))
return true;
return false;
}
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
// "plies to mate from the current position". Non-mate scores are unchanged.
// The function is called before storing a value to the transposition table.
Value value_to_tt(Value v, int ply) {
if (v >= VALUE_MATE_IN_MAX_PLY)
return v + ply;
if (v <= VALUE_MATED_IN_MAX_PLY)
return v - ply;
return v;
}
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
// from the transposition table (where refers to the plies to mate/be mated
// from current position) to "plies to mate/be mated from the root".
Value value_from_tt(Value v, int ply) {
if (v >= VALUE_MATE_IN_MAX_PLY)
return v - ply;
if (v <= VALUE_MATED_IN_MAX_PLY)
return v + ply;
return v;
}
// connected_threat() tests whether it is safe to forward prune a move or if
// is somehow connected to the threat move returned by null search.
bool connected_threat(const Position& pos, Move m, Move threat) {
assert(is_ok(m));
assert(is_ok(threat));
assert(!pos.is_capture_or_promotion(m));
assert(!pos.is_passed_pawn_push(m));
Square mfrom, mto, tfrom, tto;
mfrom = from_sq(m);
mto = to_sq(m);
tfrom = from_sq(threat);
tto = to_sq(threat);
// Case 1: Don't prune moves which move the threatened piece
if (mfrom == tto)
return true;
// Case 2: If the threatened piece has value less than or equal to the
// value of the threatening piece, don't prune moves which defend it.
if ( pos.is_capture(threat)
&& ( PieceValue[Mg][pos.piece_on(tfrom)] >= PieceValue[Mg][pos.piece_on(tto)]
|| type_of(pos.piece_on(tfrom)) == KING)
&& pos.move_attacks_square(m, tto))
return true;
// Case 3: If the moving piece in the threatened move is a slider, don't
// prune safe moves which block its ray.
if ( piece_is_slider(pos.piece_on(tfrom))
&& (between_bb(tfrom, tto) & mto)
&& pos.see_sign(m) >= 0)
return true;
return false;
}
// can_return_tt() returns true if a transposition table score can be used to
// cut-off at a given point in search.
bool can_return_tt(const TTEntry* tte, Depth depth, Value v, Value beta) {
return ( tte->depth() >= depth
|| v >= std::max(VALUE_MATE_IN_MAX_PLY, beta)
|| v < std::min(VALUE_MATED_IN_MAX_PLY, beta))
&& ( ((tte->type() & BOUND_LOWER) && v >= beta)
|| ((tte->type() & BOUND_UPPER) && v < beta));
}
// refine_eval() returns the transposition table score if possible, otherwise
// falls back on static position evaluation.
Value refine_eval(const TTEntry* tte, Value v, Value defaultEval) {
assert(tte);
if ( ((tte->type() & BOUND_LOWER) && v >= defaultEval)
|| ((tte->type() & BOUND_UPPER) && v < defaultEval))
return v;
return defaultEval;
}
// When playing with strength handicap choose best move among the MultiPV set
// using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
Move do_skill_level() {
assert(MultiPV > 1);
static RKISS rk;
// PRNG sequence should be not deterministic
for (int i = Time::now() % 50; i > 0; i--)
rk.rand<unsigned>();
// RootMoves are already sorted by score in descending order
size_t size = std::min(MultiPV, RootMoves.size());
int variance = std::min(RootMoves[0].score - RootMoves[size - 1].score, PawnValueMg);
int weakness = 120 - 2 * SkillLevel;
int max_s = -VALUE_INFINITE;
Move best = MOVE_NONE;
// Choose best move. For each move score we add two terms both dependent on
// weakness, one deterministic and bigger for weaker moves, and one random,
// then we choose the move with the resulting highest score.
for (size_t i = 0; i < size; i++)
{
int s = RootMoves[i].score;
// Don't allow crazy blunders even at very low skills
if (i > 0 && RootMoves[i-1].score > s + EasyMoveMargin)
break;
// This is our magic formula
s += ( weakness * int(RootMoves[0].score - s)
+ variance * (rk.rand<unsigned>() % weakness)) / 128;
if (s > max_s)
{
max_s = s;
best = RootMoves[i].pv[0];
}
}
return best;
}
// uci_pv() formats PV information according to UCI protocol. UCI requires
// to send all the PV lines also if are still to be searched and so refer to
// the previous search score.
string uci_pv(const Position& pos, int depth, Value alpha, Value beta) {
std::stringstream s;
Time::point elaspsed = Time::now() - SearchTime + 1;
int selDepth = 0;
for (size_t i = 0; i < Threads.size(); i++)
if (Threads[i].maxPly > selDepth)
selDepth = Threads[i].maxPly;
for (size_t i = 0; i < std::min(UCIMultiPV, RootMoves.size()); i++)
{
bool updated = (i <= PVIdx);
if (depth == 1 && !updated)
continue;
int d = (updated ? depth : depth - 1);
Value v = (updated ? RootMoves[i].score : RootMoves[i].prevScore);
if (s.rdbuf()->in_avail())
s << "\n";
s << "info depth " << d
<< " seldepth " << selDepth
<< " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v))
<< " nodes " << pos.nodes_searched()
<< " nps " << pos.nodes_searched() * 1000 / elaspsed
<< " time " << elaspsed
<< " multipv " << i + 1
<< " pv";
for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; j++)
s << " " << move_to_uci(RootMoves[i].pv[j], Chess960);
}
return s.str();
}
} // namespace
/// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table.
/// We consider also failing high nodes and not only BOUND_EXACT nodes so to
/// allow to always have a ponder move even when we fail high at root, and a
/// long PV to print that is important for position analysis.
void RootMove::extract_pv_from_tt(Position& pos) {
StateInfo state[MAX_PLY_PLUS_2], *st = state;
TTEntry* tte;
int ply = 1;
Move m = pv[0];
assert(m != MOVE_NONE && pos.is_pseudo_legal(m));
pv.clear();
pv.push_back(m);
pos.do_move(m, *st++);
while ( (tte = TT.probe(pos.key())) != NULL
&& (m = tte->move()) != MOVE_NONE // Local copy, TT entry could change
&& pos.is_pseudo_legal(m)
&& pos.pl_move_is_legal(m, pos.pinned_pieces())
&& ply < MAX_PLY
&& (!pos.is_draw<false>() || ply < 2))
{
pv.push_back(m);
pos.do_move(m, *st++);
ply++;
}
pv.push_back(MOVE_NONE);
do pos.undo_move(pv[--ply]); while (ply);
}
/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
/// inserts the PV back into the TT. This makes sure the old PV moves are searched
/// first, even if the old TT entries have been overwritten.
void RootMove::insert_pv_in_tt(Position& pos) {
StateInfo state[MAX_PLY_PLUS_2], *st = state;
TTEntry* tte;
Key k;
Value v, m = VALUE_NONE;
int ply = 0;
assert(pv[ply] != MOVE_NONE && pos.is_pseudo_legal(pv[ply]));
do {
k = pos.key();
tte = TT.probe(k);
// Don't overwrite existing correct entries
if (!tte || tte->move() != pv[ply])
{
v = (pos.in_check() ? VALUE_NONE : evaluate(pos, m));
TT.store(k, VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[ply], v, m);
}
pos.do_move(pv[ply], *st++);
} while (pv[++ply] != MOVE_NONE);
do pos.undo_move(pv[--ply]); while (ply);
}
/// Thread::idle_loop() is where the thread is parked when it has no work to do
void Thread::idle_loop() {
// Pointer 'sp_master', if non-NULL, points to the active SplitPoint
// object for which the thread is the master.
const SplitPoint* sp_master = splitPointsCnt ? curSplitPoint : NULL;
assert(!sp_master || (sp_master->master == this && is_searching));
// If this thread is the master of a split point and all slaves have
// finished their work at this split point, return from the idle loop.
while (!sp_master || sp_master->slavesMask)
{
// If we are not searching, wait for a condition to be signaled
// instead of wasting CPU time polling for work.
while ( do_sleep
|| do_exit
|| (!is_searching && Threads.use_sleeping_threads()))
{
if (do_exit)
{
assert(!sp_master);
return;
}
// Grab the lock to avoid races with Thread::wake_up()
mutex.lock();
// If we are master and all slaves have finished don't go to sleep
if (sp_master && !sp_master->slavesMask)
{
mutex.unlock();
break;
}
// Do sleep after retesting sleep conditions under lock protection, in
// particular we need to avoid a deadlock in case a master thread has,
// in the meanwhile, allocated us and sent the wake_up() call before we
// had the chance to grab the lock.
if (do_sleep || !is_searching)
sleepCondition.wait(mutex);
mutex.unlock();
}
// If this thread has been assigned work, launch a search
if (is_searching)
{
assert(!do_sleep && !do_exit);
Threads.mutex.lock();
assert(is_searching);
SplitPoint* sp = curSplitPoint;
Threads.mutex.unlock();
Stack ss[MAX_PLY_PLUS_2];
Position pos(*sp->pos, this);
memcpy(ss, sp->ss - 1, 4 * sizeof(Stack));
(ss+1)->sp = sp;
sp->mutex.lock();
if (sp->nodeType == Root)
search<SplitPointRoot>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
else if (sp->nodeType == PV)
search<SplitPointPV>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
else if (sp->nodeType == NonPV)
search<SplitPointNonPV>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
else
assert(false);
assert(is_searching);
is_searching = false;
sp->slavesMask &= ~(1ULL << idx);
sp->nodes += pos.nodes_searched();
// Wake up master thread so to allow it to return from the idle loop in
// case we are the last slave of the split point.
if ( Threads.use_sleeping_threads()
&& this != sp->master
&& !sp->slavesMask)
{
assert(!sp->master->is_searching);
sp->master->wake_up();
}
// After releasing the lock we cannot access anymore any SplitPoint
// related data in a safe way becuase it could have been released under
// our feet by the sp master. Also accessing other Thread objects is
// unsafe because if we are exiting there is a chance are already freed.
sp->mutex.unlock();
}
}
}
/// check_time() is called by the timer thread when the timer triggers. It is
/// used to print debug info and, more important, to detect when we are out of
/// available time and so stop the search.
void check_time() {
static Time::point lastInfoTime = Time::now();
if (Time::now() - lastInfoTime >= 1000)
{
lastInfoTime = Time::now();
dbg_print();
}
if (Limits.ponder)
return;
Time::point elapsed = Time::now() - SearchTime;
bool stillAtFirstMove = Signals.firstRootMove
&& !Signals.failedLowAtRoot
&& elapsed > TimeMgr.available_time();
bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerResolution
|| stillAtFirstMove;
if ( (Limits.use_time_management() && noMoreTime)
|| (Limits.movetime && elapsed >= Limits.movetime))
Signals.stop = true;
}