/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include "book.h" #include "evaluate.h" #include "history.h" #include "movegen.h" #include "movepick.h" #include "notation.h" #include "search.h" #include "timeman.h" #include "thread.h" #include "tt.h" #include "ucioption.h" namespace Search { volatile SignalsType Signals; LimitsType Limits; std::vector RootMoves; Position RootPosition; Time::point SearchTime; StateStackPtr SetupStates; } using std::string; using Eval::evaluate; using namespace Search; namespace { // Set to true to force running with one thread. Used for debugging const bool FakeSplit = false; // Different node types, used as template parameter enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV }; // Lookup table to check if a Piece is a slider and its access function const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 }; inline bool piece_is_slider(Piece p) { return Slidings[p]; } // Maximum depth for razoring const Depth RazorDepth = 4 * ONE_PLY; // Dynamic razoring margin based on depth inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); } // Maximum depth for use of dynamic threat detection when null move fails low const Depth ThreatDepth = 5 * ONE_PLY; // Minimum depth for use of internal iterative deepening const Depth IIDDepth[] = { 8 * ONE_PLY, 5 * ONE_PLY }; // At Non-PV nodes we do an internal iterative deepening search // when the static evaluation is bigger then beta - IIDMargin. const Value IIDMargin = Value(256); // Minimum depth for use of singular extension const Depth SingularExtensionDepth[] = { 8 * ONE_PLY, 6 * ONE_PLY }; // Futility margin for quiescence search const Value FutilityMarginQS = Value(128); // Futility lookup tables (initialized at startup) and their access functions Value FutilityMargins[16][64]; // [depth][moveNumber] int FutilityMoveCounts[32]; // [depth] inline Value futility_margin(Depth d, int mn) { return d < 7 * ONE_PLY ? FutilityMargins[std::max(int(d), 1)][std::min(mn, 63)] : 2 * VALUE_INFINITE; } inline int futility_move_count(Depth d) { return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES; } // Reduction lookup tables (initialized at startup) and their access function int8_t Reductions[2][64][64]; // [pv][depth][moveNumber] template inline Depth reduction(Depth d, int mn) { return (Depth) Reductions[PvNode][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)]; } // Easy move margin. An easy move candidate must be at least this much better // than the second best move. const Value EasyMoveMargin = Value(0x150); // This is the minimum interval in msec between two check_time() calls const int TimerResolution = 5; size_t MultiPV, UCIMultiPV, PVIdx; TimeManager TimeMgr; int BestMoveChanges; int SkillLevel; bool SkillLevelEnabled, Chess960; History H; template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); void id_loop(Position& pos); bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta); bool connected_moves(const Position& pos, Move m1, Move m2); Value value_to_tt(Value v, int ply); Value value_from_tt(Value v, int ply); bool can_return_tt(const TTEntry* tte, Depth depth, Value ttValue, Value beta); bool connected_threat(const Position& pos, Move m, Move threat); Value refine_eval(const TTEntry* tte, Value ttValue, Value defaultEval); Move do_skill_level(); string uci_pv(const Position& pos, int depth, Value alpha, Value beta); // is_dangerous() checks whether a move belongs to some classes of known // 'dangerous' moves so that we avoid to prune it. FORCE_INLINE bool is_dangerous(const Position& pos, Move m, bool captureOrPromotion) { // Castle move? if (type_of(m) == CASTLE) return true; // Passed pawn move? if ( type_of(pos.piece_moved(m)) == PAWN && pos.pawn_is_passed(pos.side_to_move(), to_sq(m))) return true; // Entering a pawn endgame? if ( captureOrPromotion && type_of(pos.piece_on(to_sq(m))) != PAWN && type_of(m) == NORMAL && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - PieceValue[Mg][pos.piece_on(to_sq(m))] == VALUE_ZERO)) return true; return false; } } // namespace /// Search::init() is called during startup to initialize various lookup tables void Search::init() { int d; // depth (ONE_PLY == 2) int hd; // half depth (ONE_PLY == 1) int mc; // moveCount // Init reductions array for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++) { double pvRed = log(double(hd)) * log(double(mc)) / 3.0; double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; Reductions[1][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); Reductions[0][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); } // Init futility margins array for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++) FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45); // Init futility move count array for (d = 0; d < 32; d++) FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(d, 2.0)); } /// Search::perft() is our utility to verify move generation. All the leaf nodes /// up to the given depth are generated and counted and the sum returned. size_t Search::perft(Position& pos, Depth depth) { // At the last ply just return the number of legal moves (leaf nodes) if (depth == ONE_PLY) return MoveList(pos).size(); StateInfo st; size_t cnt = 0; CheckInfo ci(pos); for (MoveList ml(pos); !ml.end(); ++ml) { pos.do_move(ml.move(), st, ci, pos.move_gives_check(ml.move(), ci)); cnt += perft(pos, depth - ONE_PLY); pos.undo_move(ml.move()); } return cnt; } /// Search::think() is the external interface to Stockfish's search, and is /// called by the main thread when the program receives the UCI 'go' command. It /// searches from RootPosition and at the end prints the "bestmove" to output. void Search::think() { static PolyglotBook book; // Defined static to initialize the PRNG only once Position& pos = RootPosition; Chess960 = pos.is_chess960(); Eval::RootColor = pos.side_to_move(); TimeMgr.init(Limits, pos.startpos_ply_counter(), pos.side_to_move()); TT.new_search(); H.clear(); if (RootMoves.empty()) { sync_cout << "info depth 0 score " << score_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW) << sync_endl; RootMoves.push_back(MOVE_NONE); goto finalize; } if (Options["OwnBook"] && !Limits.infinite) { Move bookMove = book.probe(pos, Options["Book File"], Options["Best Book Move"]); if (bookMove && std::count(RootMoves.begin(), RootMoves.end(), bookMove)) { std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), bookMove)); goto finalize; } } UCIMultiPV = Options["MultiPV"]; SkillLevel = Options["Skill Level"]; // Do we have to play with skill handicap? In this case enable MultiPV that // we will use behind the scenes to retrieve a set of possible moves. SkillLevelEnabled = (SkillLevel < 20); MultiPV = (SkillLevelEnabled ? std::max(UCIMultiPV, (size_t)4) : UCIMultiPV); if (Options["Use Search Log"]) { Log log(Options["Search Log Filename"]); log << "\nSearching: " << pos.to_fen() << "\ninfinite: " << Limits.infinite << " ponder: " << Limits.ponder << " time: " << Limits.time[pos.side_to_move()] << " increment: " << Limits.inc[pos.side_to_move()] << " moves to go: " << Limits.movestogo << std::endl; } Threads.wake_up(); // Set best timer interval to avoid lagging under time pressure. Timer is // used to check for remaining available thinking time. if (Limits.use_time_management()) Threads.set_timer(std::min(100, std::max(TimeMgr.available_time() / 16, TimerResolution))); else Threads.set_timer(100); // We're ready to start searching. Call the iterative deepening loop function id_loop(pos); Threads.set_timer(0); // Stop timer Threads.sleep(); if (Options["Use Search Log"]) { Time::point elapsed = Time::now() - SearchTime + 1; Log log(Options["Search Log Filename"]); log << "Nodes: " << pos.nodes_searched() << "\nNodes/second: " << pos.nodes_searched() * 1000 / elapsed << "\nBest move: " << move_to_san(pos, RootMoves[0].pv[0]); StateInfo st; pos.do_move(RootMoves[0].pv[0], st); log << "\nPonder move: " << move_to_san(pos, RootMoves[0].pv[1]) << std::endl; pos.undo_move(RootMoves[0].pv[0]); } finalize: // When we reach max depth we arrive here even without Signals.stop is raised, // but if we are pondering or in infinite search, we shouldn't print the best // move before we are told to do so. if (!Signals.stop && (Limits.ponder || Limits.infinite)) pos.this_thread()->wait_for_stop_or_ponderhit(); // Best move could be MOVE_NONE when searching on a stalemate position sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], Chess960) << " ponder " << move_to_uci(RootMoves[0].pv[1], Chess960) << sync_endl; } namespace { // id_loop() is the main iterative deepening loop. It calls search() repeatedly // with increasing depth until the allocated thinking time has been consumed, // user stops the search, or the maximum search depth is reached. void id_loop(Position& pos) { Stack ss[MAX_PLY_PLUS_2]; int depth, prevBestMoveChanges; Value bestValue, alpha, beta, delta; bool bestMoveNeverChanged = true; Move skillBest = MOVE_NONE; memset(ss, 0, 4 * sizeof(Stack)); depth = BestMoveChanges = 0; bestValue = delta = -VALUE_INFINITE; ss->currentMove = MOVE_NULL; // Hack to skip update gains // Iterative deepening loop until requested to stop or target depth reached while (!Signals.stop && ++depth <= MAX_PLY && (!Limits.depth || depth <= Limits.depth)) { // Save last iteration's scores before first PV line is searched and all // the move scores but the (new) PV are set to -VALUE_INFINITE. for (size_t i = 0; i < RootMoves.size(); i++) RootMoves[i].prevScore = RootMoves[i].score; prevBestMoveChanges = BestMoveChanges; BestMoveChanges = 0; // MultiPV loop. We perform a full root search for each PV line for (PVIdx = 0; PVIdx < std::min(MultiPV, RootMoves.size()); PVIdx++) { // Set aspiration window default width if (depth >= 5 && abs(RootMoves[PVIdx].prevScore) < VALUE_KNOWN_WIN) { delta = Value(16); alpha = RootMoves[PVIdx].prevScore - delta; beta = RootMoves[PVIdx].prevScore + delta; } else { alpha = -VALUE_INFINITE; beta = VALUE_INFINITE; } // Start with a small aspiration window and, in case of fail high/low, // research with bigger window until not failing high/low anymore. while (true) { // Search starts from ss+1 to allow referencing (ss-1). This is // needed by update gains and ss copy when splitting at Root. bestValue = search(pos, ss+1, alpha, beta, depth * ONE_PLY); // Bring to front the best move. It is critical that sorting is // done with a stable algorithm because all the values but the first // and eventually the new best one are set to -VALUE_INFINITE and // we want to keep the same order for all the moves but the new // PV that goes to the front. Note that in case of MultiPV search // the already searched PV lines are preserved. sort(RootMoves.begin() + PVIdx, RootMoves.end()); // In case we have found an exact score and we are going to leave // the fail high/low loop then reorder the PV moves, otherwise // leave the last PV move in its position so to be searched again. // Of course this is needed only in MultiPV search. if (PVIdx && bestValue > alpha && bestValue < beta) sort(RootMoves.begin(), RootMoves.begin() + PVIdx); // Write PV back to transposition table in case the relevant // entries have been overwritten during the search. for (size_t i = 0; i <= PVIdx; i++) RootMoves[i].insert_pv_in_tt(pos); // If search has been stopped exit the aspiration window loop. // Sorting and writing PV back to TT is safe becuase RootMoves // is still valid, although refers to previous iteration. if (Signals.stop) break; // Send full PV info to GUI if we are going to leave the loop or // if we have a fail high/low and we are deep in the search. if ((bestValue > alpha && bestValue < beta) || Time::now() - SearchTime > 2000) sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl; // In case of failing high/low increase aspiration window and // research, otherwise exit the fail high/low loop. if (bestValue >= beta) { beta += delta; delta += delta / 2; } else if (bestValue <= alpha) { Signals.failedLowAtRoot = true; Signals.stopOnPonderhit = false; alpha -= delta; delta += delta / 2; } else break; // Search with full window in case we have a win/mate score if (abs(bestValue) >= VALUE_KNOWN_WIN) { alpha = -VALUE_INFINITE; beta = VALUE_INFINITE; } assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); } } // Skills: Do we need to pick now the best move ? if (SkillLevelEnabled && depth == 1 + SkillLevel) skillBest = do_skill_level(); if (!Signals.stop && Options["Use Search Log"]) { Log log(Options["Search Log Filename"]); log << pretty_pv(pos, depth, bestValue, Time::now() - SearchTime, &RootMoves[0].pv[0]) << std::endl; } // Filter out startup noise when monitoring best move stability if (depth > 2 && BestMoveChanges) bestMoveNeverChanged = false; // Do we have time for the next iteration? Can we stop searching now? if (!Signals.stop && !Signals.stopOnPonderhit && Limits.use_time_management()) { bool stop = false; // Local variable, not the volatile Signals.stop // Take in account some extra time if the best move has changed if (depth > 4 && depth < 50) TimeMgr.pv_instability(BestMoveChanges, prevBestMoveChanges); // Stop search if most of available time is already consumed. We // probably don't have enough time to search the first move at the // next iteration anyway. if (Time::now() - SearchTime > (TimeMgr.available_time() * 62) / 100) stop = true; // Stop search early if one move seems to be much better than others if ( depth >= 12 && !stop && ( (bestMoveNeverChanged && pos.captured_piece_type()) || Time::now() - SearchTime > (TimeMgr.available_time() * 40) / 100)) { Value rBeta = bestValue - EasyMoveMargin; (ss+1)->excludedMove = RootMoves[0].pv[0]; (ss+1)->skipNullMove = true; Value v = search(pos, ss+1, rBeta - 1, rBeta, (depth - 3) * ONE_PLY); (ss+1)->skipNullMove = false; (ss+1)->excludedMove = MOVE_NONE; if (v < rBeta) stop = true; } if (stop) { // If we are allowed to ponder do not stop the search now but // keep pondering until GUI sends "ponderhit" or "stop". if (Limits.ponder) Signals.stopOnPonderhit = true; else Signals.stop = true; } } } // When using skills swap best PV line with the sub-optimal one if (SkillLevelEnabled) { if (skillBest == MOVE_NONE) // Still unassigned ? skillBest = do_skill_level(); std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), skillBest)); } } // search<>() is the main search function for both PV and non-PV nodes and for // normal and SplitPoint nodes. When called just after a split point the search // is simpler because we have already probed the hash table, done a null move // search, and searched the first move before splitting, we don't have to repeat // all this work again. We also don't need to store anything to the hash table // here: This is taken care of after we return from the split point. template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { const bool PvNode = (NT == PV || NT == Root || NT == SplitPointPV || NT == SplitPointRoot); const bool SpNode = (NT == SplitPointPV || NT == SplitPointNonPV || NT == SplitPointRoot); const bool RootNode = (NT == Root || NT == SplitPointRoot); assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); assert((alpha == beta - 1) || PvNode); assert(depth > DEPTH_ZERO); Move movesSearched[64]; StateInfo st; const TTEntry *tte; Key posKey; Move ttMove, move, excludedMove, bestMove, threatMove; Depth ext, newDepth; Bound bt; Value bestValue, value, oldAlpha, ttValue; Value refinedValue, nullValue, futilityBase, futilityValue; bool isPvMove, inCheck, singularExtensionNode, givesCheck; bool captureOrPromotion, dangerous, doFullDepthSearch; int moveCount = 0, playedMoveCount = 0; Thread* thisThread = pos.this_thread(); SplitPoint* sp = NULL; refinedValue = bestValue = value = -VALUE_INFINITE; oldAlpha = alpha; inCheck = pos.in_check(); ss->ply = (ss-1)->ply + 1; // Used to send selDepth info to GUI if (PvNode && thisThread->maxPly < ss->ply) thisThread->maxPly = ss->ply; // Step 1. Initialize node if (SpNode) { tte = NULL; ttMove = excludedMove = MOVE_NONE; ttValue = VALUE_ZERO; sp = ss->sp; bestMove = sp->bestMove; threatMove = sp->threatMove; bestValue = sp->bestValue; moveCount = sp->moveCount; // Lock must be held here assert(bestValue > -VALUE_INFINITE && moveCount > 0); goto split_point_start; } else { ss->currentMove = threatMove = (ss+1)->excludedMove = bestMove = MOVE_NONE; (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO; (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; } // Step 2. Check for aborted search and immediate draw // Enforce node limit here. FIXME: This only works with 1 search thread. if (Limits.nodes && pos.nodes_searched() >= Limits.nodes) Signals.stop = true; if (( Signals.stop || pos.is_draw() || ss->ply > MAX_PLY) && !RootNode) return VALUE_DRAW; // Step 3. Mate distance pruning. Even if we mate at the next move our score // would be at best mate_in(ss->ply+1), but if alpha is already bigger because // a shorter mate was found upward in the tree then there is no need to search // further, we will never beat current alpha. Same logic but with reversed signs // applies also in the opposite condition of being mated instead of giving mate, // in this case return a fail-high score. if (!RootNode) { alpha = std::max(mated_in(ss->ply), alpha); beta = std::min(mate_in(ss->ply+1), beta); if (alpha >= beta) return alpha; } // Step 4. Transposition table lookup // We don't want the score of a partial search to overwrite a previous full search // TT value, so we use a different position key in case of an excluded move. excludedMove = ss->excludedMove; posKey = excludedMove ? pos.exclusion_key() : pos.key(); tte = TT.probe(posKey); ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE; ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_ZERO; // At PV nodes we check for exact scores, while at non-PV nodes we check for // a fail high/low. Biggest advantage at probing at PV nodes is to have a // smooth experience in analysis mode. We don't probe at Root nodes otherwise // we should also update RootMoveList to avoid bogus output. if (!RootNode && tte && (PvNode ? tte->depth() >= depth && tte->type() == BOUND_EXACT : can_return_tt(tte, depth, ttValue, beta))) { TT.refresh(tte); ss->currentMove = ttMove; // Can be MOVE_NONE if ( ttValue >= beta && ttMove && !pos.is_capture_or_promotion(ttMove) && ttMove != ss->killers[0]) { ss->killers[1] = ss->killers[0]; ss->killers[0] = ttMove; } return ttValue; } // Step 5. Evaluate the position statically and update parent's gain statistics if (inCheck) ss->eval = ss->evalMargin = VALUE_NONE; else if (tte) { assert(tte->static_value() != VALUE_NONE); ss->eval = tte->static_value(); ss->evalMargin = tte->static_value_margin(); refinedValue = refine_eval(tte, ttValue, ss->eval); } else { refinedValue = ss->eval = evaluate(pos, ss->evalMargin); TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ss->evalMargin); } // Update gain for the parent non-capture move given the static position // evaluation before and after the move. if ( (move = (ss-1)->currentMove) != MOVE_NULL && (ss-1)->eval != VALUE_NONE && ss->eval != VALUE_NONE && !pos.captured_piece_type() && type_of(move) == NORMAL) { Square to = to_sq(move); H.update_gain(pos.piece_on(to), to, -(ss-1)->eval - ss->eval); } // Step 6. Razoring (is omitted in PV nodes) if ( !PvNode && depth < RazorDepth && !inCheck && refinedValue + razor_margin(depth) < beta && ttMove == MOVE_NONE && abs(beta) < VALUE_MATE_IN_MAX_PLY && !pos.pawn_on_7th(pos.side_to_move())) { Value rbeta = beta - razor_margin(depth); Value v = qsearch(pos, ss, rbeta-1, rbeta, DEPTH_ZERO); if (v < rbeta) // Logically we should return (v + razor_margin(depth)), but // surprisingly this did slightly weaker in tests. return v; } // Step 7. Static null move pruning (is omitted in PV nodes) // We're betting that the opponent doesn't have a move that will reduce // the score by more than futility_margin(depth) if we do a null move. if ( !PvNode && !ss->skipNullMove && depth < RazorDepth && !inCheck && refinedValue - futility_margin(depth, 0) >= beta && abs(beta) < VALUE_MATE_IN_MAX_PLY && pos.non_pawn_material(pos.side_to_move())) return refinedValue - futility_margin(depth, 0); // Step 8. Null move search with verification search (is omitted in PV nodes) if ( !PvNode && !ss->skipNullMove && depth > ONE_PLY && !inCheck && refinedValue >= beta && abs(beta) < VALUE_MATE_IN_MAX_PLY && pos.non_pawn_material(pos.side_to_move())) { ss->currentMove = MOVE_NULL; // Null move dynamic reduction based on depth Depth R = 3 * ONE_PLY + depth / 4; // Null move dynamic reduction based on value if (refinedValue - PawnValueMg > beta) R += ONE_PLY; pos.do_null_move(st); (ss+1)->skipNullMove = true; nullValue = depth-R < ONE_PLY ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) : - search(pos, ss+1, -beta, -alpha, depth-R); (ss+1)->skipNullMove = false; pos.do_null_move(st); if (nullValue >= beta) { // Do not return unproven mate scores if (nullValue >= VALUE_MATE_IN_MAX_PLY) nullValue = beta; if (depth < 6 * ONE_PLY) return nullValue; // Do verification search at high depths ss->skipNullMove = true; Value v = search(pos, ss, alpha, beta, depth-R); ss->skipNullMove = false; if (v >= beta) return nullValue; } else { // The null move failed low, which means that we may be faced with // some kind of threat. If the previous move was reduced, check if // the move that refuted the null move was somehow connected to the // move which was reduced. If a connection is found, return a fail // low score (which will cause the reduced move to fail high in the // parent node, which will trigger a re-search with full depth). threatMove = (ss+1)->currentMove; if ( depth < ThreatDepth && (ss-1)->reduction && threatMove != MOVE_NONE && connected_moves(pos, (ss-1)->currentMove, threatMove)) return beta - 1; } } // Step 9. ProbCut (is omitted in PV nodes) // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type]) // and a reduced search returns a value much above beta, we can (almost) safely // prune the previous move. if ( !PvNode && depth >= RazorDepth + ONE_PLY && !inCheck && !ss->skipNullMove && excludedMove == MOVE_NONE && abs(beta) < VALUE_MATE_IN_MAX_PLY) { Value rbeta = beta + 200; Depth rdepth = depth - ONE_PLY - 3 * ONE_PLY; assert(rdepth >= ONE_PLY); assert((ss-1)->currentMove != MOVE_NONE); assert((ss-1)->currentMove != MOVE_NULL); MovePicker mp(pos, ttMove, H, pos.captured_piece_type()); CheckInfo ci(pos); while ((move = mp.next_move()) != MOVE_NONE) if (pos.pl_move_is_legal(move, ci.pinned)) { ss->currentMove = move; pos.do_move(move, st, ci, pos.move_gives_check(move, ci)); value = -search(pos, ss+1, -rbeta, -rbeta+1, rdepth); pos.undo_move(move); if (value >= rbeta) return value; } } // Step 10. Internal iterative deepening if ( depth >= IIDDepth[PvNode] && ttMove == MOVE_NONE && (PvNode || (!inCheck && ss->eval + IIDMargin >= beta))) { Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2); ss->skipNullMove = true; search(pos, ss, alpha, beta, d); ss->skipNullMove = false; tte = TT.probe(posKey); ttMove = tte ? tte->move() : MOVE_NONE; } split_point_start: // At split points actual search starts from here MovePicker mp(pos, ttMove, depth, H, ss, PvNode ? -VALUE_INFINITE : beta); CheckInfo ci(pos); futilityBase = ss->eval + ss->evalMargin; singularExtensionNode = !RootNode && !SpNode && depth >= SingularExtensionDepth[PvNode] && ttMove != MOVE_NONE && !excludedMove // Recursive singular search is not allowed && (tte->type() & BOUND_LOWER) && tte->depth() >= depth - 3 * ONE_PLY; // Step 11. Loop through moves // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.next_move()) != MOVE_NONE && !thisThread->cutoff_occurred() && !Signals.stop) { assert(is_ok(move)); if (move == excludedMove) continue; // At root obey the "searchmoves" option and skip moves not listed in Root // Move List, as a consequence any illegal move is also skipped. In MultiPV // mode we also skip PV moves which have been already searched. if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move)) continue; // At PV and SpNode nodes we want all moves to be legal since the beginning if ((PvNode || SpNode) && !pos.pl_move_is_legal(move, ci.pinned)) continue; if (SpNode) { moveCount = ++sp->moveCount; sp->mutex.unlock(); } else moveCount++; if (RootNode) { Signals.firstRootMove = (moveCount == 1); if (thisThread == Threads.main_thread() && Time::now() - SearchTime > 2000) sync_cout << "info depth " << depth / ONE_PLY << " currmove " << move_to_uci(move, Chess960) << " currmovenumber " << moveCount + PVIdx << sync_endl; } isPvMove = (PvNode && moveCount <= 1); captureOrPromotion = pos.is_capture_or_promotion(move); givesCheck = pos.move_gives_check(move, ci); dangerous = givesCheck || is_dangerous(pos, move, captureOrPromotion); ext = DEPTH_ZERO; // Step 12. Extend checks and, in PV nodes, also dangerous moves if (PvNode && dangerous) ext = ONE_PLY; else if (givesCheck && pos.see_sign(move) >= 0) ext = ONE_PLY / 2; // Singular extension search. If all moves but one fail low on a search of // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move // is singular and should be extended. To verify this we do a reduced search // on all the other moves but the ttMove, if result is lower than ttValue minus // a margin then we extend ttMove. if ( singularExtensionNode && !ext && move == ttMove && pos.pl_move_is_legal(move, ci.pinned) && abs(ttValue) < VALUE_KNOWN_WIN) { Value rBeta = ttValue - int(depth); ss->excludedMove = move; ss->skipNullMove = true; value = search(pos, ss, rBeta - 1, rBeta, depth / 2); ss->skipNullMove = false; ss->excludedMove = MOVE_NONE; if (value < rBeta) ext = ONE_PLY; } // Update current move (this must be done after singular extension search) newDepth = depth - ONE_PLY + ext; // Step 13. Futility pruning (is omitted in PV nodes) if ( !PvNode && !captureOrPromotion && !inCheck && !dangerous && move != ttMove && (bestValue > VALUE_MATED_IN_MAX_PLY || bestValue == -VALUE_INFINITE)) { // Move count based pruning if ( moveCount >= futility_move_count(depth) && (!threatMove || !connected_threat(pos, move, threatMove))) { if (SpNode) sp->mutex.lock(); continue; } // Value based pruning // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth, // but fixing this made program slightly weaker. Depth predictedDepth = newDepth - reduction(depth, moveCount); futilityValue = futilityBase + futility_margin(predictedDepth, moveCount) + H.gain(pos.piece_moved(move), to_sq(move)); if (futilityValue < beta) { if (SpNode) sp->mutex.lock(); continue; } // Prune moves with negative SEE at low depths if ( predictedDepth < 2 * ONE_PLY && pos.see_sign(move) < 0) { if (SpNode) sp->mutex.lock(); continue; } } // Check for legality only before to do the move if (!pos.pl_move_is_legal(move, ci.pinned)) { moveCount--; continue; } ss->currentMove = move; if (!SpNode && !captureOrPromotion && playedMoveCount < 64) movesSearched[playedMoveCount++] = move; // Step 14. Make the move pos.do_move(move, st, ci, givesCheck); // Step 15. Reduced depth search (LMR). If the move fails high will be // re-searched at full depth. if ( depth > 3 * ONE_PLY && !isPvMove && !captureOrPromotion && !dangerous && ss->killers[0] != move && ss->killers[1] != move) { ss->reduction = reduction(depth, moveCount); Depth d = std::max(newDepth - ss->reduction, ONE_PLY); alpha = SpNode ? sp->alpha : alpha; value = -search(pos, ss+1, -(alpha+1), -alpha, d); doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO); ss->reduction = DEPTH_ZERO; } else doFullDepthSearch = !isPvMove; // Step 16. Full depth search, when LMR is skipped or fails high if (doFullDepthSearch) { alpha = SpNode ? sp->alpha : alpha; value = newDepth < ONE_PLY ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) : - search(pos, ss+1, -(alpha+1), -alpha, newDepth); } // Only for PV nodes do a full PV search on the first move or after a fail // high, in the latter case search only if value < beta, otherwise let the // parent node to fail low with value <= alpha and to try another move. if (PvNode && (isPvMove || (value > alpha && (RootNode || value < beta)))) value = newDepth < ONE_PLY ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) : - search(pos, ss+1, -beta, -alpha, newDepth); // Step 17. Undo move pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Step 18. Check for new best move if (SpNode) { sp->mutex.lock(); bestValue = sp->bestValue; alpha = sp->alpha; } // Finished searching the move. If Signals.stop is true, the search // was aborted because the user interrupted the search or because we // ran out of time. In this case, the return value of the search cannot // be trusted, and we don't update the best move and/or PV. if (RootNode && !Signals.stop) { RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move); // PV move or new best move ? if (isPvMove || value > alpha) { rm.score = value; rm.extract_pv_from_tt(pos); // We record how often the best move has been changed in each // iteration. This information is used for time management: When // the best move changes frequently, we allocate some more time. if (!isPvMove && MultiPV == 1) BestMoveChanges++; } else // All other moves but the PV are set to the lowest value, this // is not a problem when sorting becuase sort is stable and move // position in the list is preserved, just the PV is pushed up. rm.score = -VALUE_INFINITE; } if (value > bestValue) { bestValue = value; bestMove = move; if ( PvNode && value > alpha && value < beta) // We want always alpha < beta alpha = value; if (SpNode && !thisThread->cutoff_occurred()) { sp->bestValue = value; sp->bestMove = move; sp->alpha = alpha; if (value >= beta) sp->cutoff = true; } } // Step 19. Check for split if ( !SpNode && depth >= Threads.min_split_depth() && bestValue < beta && Threads.available_slave_exists(thisThread) && !Signals.stop && !thisThread->cutoff_occurred()) bestValue = Threads.split(pos, ss, alpha, beta, bestValue, &bestMove, depth, threatMove, moveCount, &mp, NT); } // Step 20. Check for mate and stalemate // All legal moves have been searched and if there are no legal moves, it // must be mate or stalemate. Note that we can have a false positive in // case of Signals.stop or thread.cutoff_occurred() are set, but this is // harmless because return value is discarded anyhow in the parent nodes. // If we are in a singular extension search then return a fail low score. if (!moveCount) return excludedMove ? oldAlpha : inCheck ? mated_in(ss->ply) : VALUE_DRAW; // If we have pruned all the moves without searching return a fail-low score if (bestValue == -VALUE_INFINITE) { assert(!playedMoveCount); bestValue = oldAlpha; } // Step 21. Update tables // Update transposition table entry, killers and history if (!SpNode && !Signals.stop && !thisThread->cutoff_occurred()) { move = bestValue <= oldAlpha ? MOVE_NONE : bestMove; bt = bestValue <= oldAlpha ? BOUND_UPPER : bestValue >= beta ? BOUND_LOWER : BOUND_EXACT; TT.store(posKey, value_to_tt(bestValue, ss->ply), bt, depth, move, ss->eval, ss->evalMargin); // Update killers and history for non capture cut-off moves if ( bestValue >= beta && !pos.is_capture_or_promotion(move) && !inCheck) { if (move != ss->killers[0]) { ss->killers[1] = ss->killers[0]; ss->killers[0] = move; } // Increase history value of the cut-off move Value bonus = Value(int(depth) * int(depth)); H.add(pos.piece_moved(move), to_sq(move), bonus); // Decrease history of all the other played non-capture moves for (int i = 0; i < playedMoveCount - 1; i++) { Move m = movesSearched[i]; H.add(pos.piece_moved(m), to_sq(m), -bonus); } } } assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // qsearch() is the quiescence search function, which is called by the main // search function when the remaining depth is zero (or, to be more precise, // less than ONE_PLY). template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { const bool PvNode = (NT == PV); assert(NT == PV || NT == NonPV); assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); assert((alpha == beta - 1) || PvNode); assert(depth <= DEPTH_ZERO); StateInfo st; Move ttMove, move, bestMove; Value ttValue, bestValue, value, evalMargin, futilityValue, futilityBase; bool inCheck, enoughMaterial, givesCheck, evasionPrunable; const TTEntry* tte; Depth ttDepth; Bound bt; Value oldAlpha = alpha; ss->currentMove = bestMove = MOVE_NONE; ss->ply = (ss-1)->ply + 1; // Check for an instant draw or maximum ply reached if (pos.is_draw() || ss->ply > MAX_PLY) return VALUE_DRAW; // Decide whether or not to include checks, this fixes also the type of // TT entry depth that we are going to use. Note that in qsearch we use // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. inCheck = pos.in_check(); ttDepth = (inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS); // Transposition table lookup. At PV nodes, we don't use the TT for // pruning, but only for move ordering. tte = TT.probe(pos.key()); ttMove = (tte ? tte->move() : MOVE_NONE); ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_ZERO; if (!PvNode && tte && can_return_tt(tte, ttDepth, ttValue, beta)) { ss->currentMove = ttMove; // Can be MOVE_NONE return ttValue; } // Evaluate the position statically if (inCheck) { bestValue = futilityBase = -VALUE_INFINITE; ss->eval = evalMargin = VALUE_NONE; enoughMaterial = false; } else { if (tte) { assert(tte->static_value() != VALUE_NONE); evalMargin = tte->static_value_margin(); ss->eval = bestValue = tte->static_value(); } else ss->eval = bestValue = evaluate(pos, evalMargin); // Stand pat. Return immediately if static value is at least beta if (bestValue >= beta) { if (!tte) TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin); return bestValue; } if (PvNode && bestValue > alpha) alpha = bestValue; futilityBase = ss->eval + evalMargin + FutilityMarginQS; enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMg; } // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will // be generated. MovePicker mp(pos, ttMove, depth, H, to_sq((ss-1)->currentMove)); CheckInfo ci(pos); // Loop through the moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.next_move()) != MOVE_NONE) { assert(is_ok(move)); givesCheck = pos.move_gives_check(move, ci); // Futility pruning if ( !PvNode && !inCheck && !givesCheck && move != ttMove && enoughMaterial && type_of(move) != PROMOTION && !pos.is_passed_pawn_push(move)) { futilityValue = futilityBase + PieceValue[Eg][pos.piece_on(to_sq(move))] + (type_of(move) == ENPASSANT ? PawnValueEg : VALUE_ZERO); if (futilityValue < beta) { if (futilityValue > bestValue) bestValue = futilityValue; continue; } // Prune moves with negative or equal SEE if ( futilityBase < beta && depth < DEPTH_ZERO && pos.see(move) <= 0) continue; } // Detect non-capture evasions that are candidate to be pruned evasionPrunable = !PvNode && inCheck && bestValue > VALUE_MATED_IN_MAX_PLY && !pos.is_capture(move) && !pos.can_castle(pos.side_to_move()); // Don't search moves with negative SEE values if ( !PvNode && (!inCheck || evasionPrunable) && move != ttMove && type_of(move) != PROMOTION && pos.see_sign(move) < 0) continue; // Don't search useless checks if ( !PvNode && !inCheck && givesCheck && move != ttMove && !pos.is_capture_or_promotion(move) && ss->eval + PawnValueMg / 4 < beta && !check_is_dangerous(pos, move, futilityBase, beta)) continue; // Check for legality only before to do the move if (!pos.pl_move_is_legal(move, ci.pinned)) continue; ss->currentMove = move; // Make and search the move pos.do_move(move, st, ci, givesCheck); value = -qsearch(pos, ss+1, -beta, -alpha, depth-ONE_PLY); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > bestValue) { bestValue = value; bestMove = move; if ( PvNode && value > alpha && value < beta) // We want always alpha < beta alpha = value; } } // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. if (inCheck && bestValue == -VALUE_INFINITE) return mated_in(ss->ply); // Plies to mate from the root // Update transposition table move = bestValue <= oldAlpha ? MOVE_NONE : bestMove; bt = bestValue <= oldAlpha ? BOUND_UPPER : bestValue >= beta ? BOUND_LOWER : BOUND_EXACT; TT.store(pos.key(), value_to_tt(bestValue, ss->ply), bt, ttDepth, move, ss->eval, evalMargin); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // check_is_dangerous() tests if a checking move can be pruned in qsearch(). // bestValue is updated only when returning false because in that case move // will be pruned. bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta) { Bitboard b, occ, oldAtt, newAtt, kingAtt; Square from, to, ksq; Piece pc; Color them; from = from_sq(move); to = to_sq(move); them = ~pos.side_to_move(); ksq = pos.king_square(them); kingAtt = pos.attacks_from(ksq); pc = pos.piece_moved(move); occ = pos.pieces() ^ from ^ ksq; oldAtt = pos.attacks_from(pc, from, occ); newAtt = pos.attacks_from(pc, to, occ); // Rule 1. Checks which give opponent's king at most one escape square are dangerous b = kingAtt & ~pos.pieces(them) & ~newAtt & ~(1ULL << to); if (!more_than_one(b)) return true; // Rule 2. Queen contact check is very dangerous if (type_of(pc) == QUEEN && (kingAtt & to)) return true; // Rule 3. Creating new double threats with checks b = pos.pieces(them) & newAtt & ~oldAtt & ~(1ULL << ksq); while (b) { // Note that here we generate illegal "double move"! if (futilityBase + PieceValue[Eg][pos.piece_on(pop_lsb(&b))] >= beta) return true; } return false; } // connected_moves() tests whether two moves are 'connected' in the sense // that the first move somehow made the second move possible (for instance // if the moving piece is the same in both moves). The first move is assumed // to be the move that was made to reach the current position, while the // second move is assumed to be a move from the current position. bool connected_moves(const Position& pos, Move m1, Move m2) { Square f1, t1, f2, t2; Piece p1, p2; Square ksq; assert(is_ok(m1)); assert(is_ok(m2)); // Case 1: The moving piece is the same in both moves f2 = from_sq(m2); t1 = to_sq(m1); if (f2 == t1) return true; // Case 2: The destination square for m2 was vacated by m1 t2 = to_sq(m2); f1 = from_sq(m1); if (t2 == f1) return true; // Case 3: Moving through the vacated square p2 = pos.piece_on(f2); if (piece_is_slider(p2) && (between_bb(f2, t2) & f1)) return true; // Case 4: The destination square for m2 is defended by the moving piece in m1 p1 = pos.piece_on(t1); if (pos.attacks_from(p1, t1) & t2) return true; // Case 5: Discovered check, checking piece is the piece moved in m1 ksq = pos.king_square(pos.side_to_move()); if ( piece_is_slider(p1) && (between_bb(t1, ksq) & f2) && (pos.attacks_from(p1, t1, pos.pieces() ^ f2) & ksq)) return true; return false; } // value_to_tt() adjusts a mate score from "plies to mate from the root" to // "plies to mate from the current position". Non-mate scores are unchanged. // The function is called before storing a value to the transposition table. Value value_to_tt(Value v, int ply) { if (v >= VALUE_MATE_IN_MAX_PLY) return v + ply; if (v <= VALUE_MATED_IN_MAX_PLY) return v - ply; return v; } // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score // from the transposition table (where refers to the plies to mate/be mated // from current position) to "plies to mate/be mated from the root". Value value_from_tt(Value v, int ply) { if (v >= VALUE_MATE_IN_MAX_PLY) return v - ply; if (v <= VALUE_MATED_IN_MAX_PLY) return v + ply; return v; } // connected_threat() tests whether it is safe to forward prune a move or if // is somehow connected to the threat move returned by null search. bool connected_threat(const Position& pos, Move m, Move threat) { assert(is_ok(m)); assert(is_ok(threat)); assert(!pos.is_capture_or_promotion(m)); assert(!pos.is_passed_pawn_push(m)); Square mfrom, mto, tfrom, tto; mfrom = from_sq(m); mto = to_sq(m); tfrom = from_sq(threat); tto = to_sq(threat); // Case 1: Don't prune moves which move the threatened piece if (mfrom == tto) return true; // Case 2: If the threatened piece has value less than or equal to the // value of the threatening piece, don't prune moves which defend it. if ( pos.is_capture(threat) && ( PieceValue[Mg][pos.piece_on(tfrom)] >= PieceValue[Mg][pos.piece_on(tto)] || type_of(pos.piece_on(tfrom)) == KING) && pos.move_attacks_square(m, tto)) return true; // Case 3: If the moving piece in the threatened move is a slider, don't // prune safe moves which block its ray. if ( piece_is_slider(pos.piece_on(tfrom)) && (between_bb(tfrom, tto) & mto) && pos.see_sign(m) >= 0) return true; return false; } // can_return_tt() returns true if a transposition table score can be used to // cut-off at a given point in search. bool can_return_tt(const TTEntry* tte, Depth depth, Value v, Value beta) { return ( tte->depth() >= depth || v >= std::max(VALUE_MATE_IN_MAX_PLY, beta) || v < std::min(VALUE_MATED_IN_MAX_PLY, beta)) && ( ((tte->type() & BOUND_LOWER) && v >= beta) || ((tte->type() & BOUND_UPPER) && v < beta)); } // refine_eval() returns the transposition table score if possible, otherwise // falls back on static position evaluation. Value refine_eval(const TTEntry* tte, Value v, Value defaultEval) { assert(tte); if ( ((tte->type() & BOUND_LOWER) && v >= defaultEval) || ((tte->type() & BOUND_UPPER) && v < defaultEval)) return v; return defaultEval; } // When playing with strength handicap choose best move among the MultiPV set // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen. Move do_skill_level() { assert(MultiPV > 1); static RKISS rk; // PRNG sequence should be not deterministic for (int i = Time::now() % 50; i > 0; i--) rk.rand(); // RootMoves are already sorted by score in descending order size_t size = std::min(MultiPV, RootMoves.size()); int variance = std::min(RootMoves[0].score - RootMoves[size - 1].score, PawnValueMg); int weakness = 120 - 2 * SkillLevel; int max_s = -VALUE_INFINITE; Move best = MOVE_NONE; // Choose best move. For each move score we add two terms both dependent on // weakness, one deterministic and bigger for weaker moves, and one random, // then we choose the move with the resulting highest score. for (size_t i = 0; i < size; i++) { int s = RootMoves[i].score; // Don't allow crazy blunders even at very low skills if (i > 0 && RootMoves[i-1].score > s + EasyMoveMargin) break; // This is our magic formula s += ( weakness * int(RootMoves[0].score - s) + variance * (rk.rand() % weakness)) / 128; if (s > max_s) { max_s = s; best = RootMoves[i].pv[0]; } } return best; } // uci_pv() formats PV information according to UCI protocol. UCI requires // to send all the PV lines also if are still to be searched and so refer to // the previous search score. string uci_pv(const Position& pos, int depth, Value alpha, Value beta) { std::stringstream s; Time::point elaspsed = Time::now() - SearchTime + 1; int selDepth = 0; for (size_t i = 0; i < Threads.size(); i++) if (Threads[i].maxPly > selDepth) selDepth = Threads[i].maxPly; for (size_t i = 0; i < std::min(UCIMultiPV, RootMoves.size()); i++) { bool updated = (i <= PVIdx); if (depth == 1 && !updated) continue; int d = (updated ? depth : depth - 1); Value v = (updated ? RootMoves[i].score : RootMoves[i].prevScore); if (s.rdbuf()->in_avail()) s << "\n"; s << "info depth " << d << " seldepth " << selDepth << " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v)) << " nodes " << pos.nodes_searched() << " nps " << pos.nodes_searched() * 1000 / elaspsed << " time " << elaspsed << " multipv " << i + 1 << " pv"; for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; j++) s << " " << move_to_uci(RootMoves[i].pv[j], Chess960); } return s.str(); } } // namespace /// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table. /// We consider also failing high nodes and not only BOUND_EXACT nodes so to /// allow to always have a ponder move even when we fail high at root, and a /// long PV to print that is important for position analysis. void RootMove::extract_pv_from_tt(Position& pos) { StateInfo state[MAX_PLY_PLUS_2], *st = state; TTEntry* tte; int ply = 1; Move m = pv[0]; assert(m != MOVE_NONE && pos.is_pseudo_legal(m)); pv.clear(); pv.push_back(m); pos.do_move(m, *st++); while ( (tte = TT.probe(pos.key())) != NULL && (m = tte->move()) != MOVE_NONE // Local copy, TT entry could change && pos.is_pseudo_legal(m) && pos.pl_move_is_legal(m, pos.pinned_pieces()) && ply < MAX_PLY && (!pos.is_draw() || ply < 2)) { pv.push_back(m); pos.do_move(m, *st++); ply++; } pv.push_back(MOVE_NONE); do pos.undo_move(pv[--ply]); while (ply); } /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and /// inserts the PV back into the TT. This makes sure the old PV moves are searched /// first, even if the old TT entries have been overwritten. void RootMove::insert_pv_in_tt(Position& pos) { StateInfo state[MAX_PLY_PLUS_2], *st = state; TTEntry* tte; Key k; Value v, m = VALUE_NONE; int ply = 0; assert(pv[ply] != MOVE_NONE && pos.is_pseudo_legal(pv[ply])); do { k = pos.key(); tte = TT.probe(k); // Don't overwrite existing correct entries if (!tte || tte->move() != pv[ply]) { v = (pos.in_check() ? VALUE_NONE : evaluate(pos, m)); TT.store(k, VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[ply], v, m); } pos.do_move(pv[ply], *st++); } while (pv[++ply] != MOVE_NONE); do pos.undo_move(pv[--ply]); while (ply); } /// Thread::idle_loop() is where the thread is parked when it has no work to do void Thread::idle_loop() { // Pointer 'sp_master', if non-NULL, points to the active SplitPoint // object for which the thread is the master. const SplitPoint* sp_master = splitPointsCnt ? curSplitPoint : NULL; assert(!sp_master || (sp_master->master == this && is_searching)); // If this thread is the master of a split point and all slaves have // finished their work at this split point, return from the idle loop. while (!sp_master || sp_master->slavesMask) { // If we are not searching, wait for a condition to be signaled // instead of wasting CPU time polling for work. while ( do_sleep || do_exit || (!is_searching && Threads.use_sleeping_threads())) { if (do_exit) { assert(!sp_master); return; } // Grab the lock to avoid races with Thread::wake_up() mutex.lock(); // If we are master and all slaves have finished don't go to sleep if (sp_master && !sp_master->slavesMask) { mutex.unlock(); break; } // Do sleep after retesting sleep conditions under lock protection, in // particular we need to avoid a deadlock in case a master thread has, // in the meanwhile, allocated us and sent the wake_up() call before we // had the chance to grab the lock. if (do_sleep || !is_searching) sleepCondition.wait(mutex); mutex.unlock(); } // If this thread has been assigned work, launch a search if (is_searching) { assert(!do_sleep && !do_exit); Threads.mutex.lock(); assert(is_searching); SplitPoint* sp = curSplitPoint; Threads.mutex.unlock(); Stack ss[MAX_PLY_PLUS_2]; Position pos(*sp->pos, this); memcpy(ss, sp->ss - 1, 4 * sizeof(Stack)); (ss+1)->sp = sp; sp->mutex.lock(); if (sp->nodeType == Root) search(pos, ss+1, sp->alpha, sp->beta, sp->depth); else if (sp->nodeType == PV) search(pos, ss+1, sp->alpha, sp->beta, sp->depth); else if (sp->nodeType == NonPV) search(pos, ss+1, sp->alpha, sp->beta, sp->depth); else assert(false); assert(is_searching); is_searching = false; sp->slavesMask &= ~(1ULL << idx); sp->nodes += pos.nodes_searched(); // Wake up master thread so to allow it to return from the idle loop in // case we are the last slave of the split point. if ( Threads.use_sleeping_threads() && this != sp->master && !sp->slavesMask) { assert(!sp->master->is_searching); sp->master->wake_up(); } // After releasing the lock we cannot access anymore any SplitPoint // related data in a safe way becuase it could have been released under // our feet by the sp master. Also accessing other Thread objects is // unsafe because if we are exiting there is a chance are already freed. sp->mutex.unlock(); } } } /// check_time() is called by the timer thread when the timer triggers. It is /// used to print debug info and, more important, to detect when we are out of /// available time and so stop the search. void check_time() { static Time::point lastInfoTime = Time::now(); if (Time::now() - lastInfoTime >= 1000) { lastInfoTime = Time::now(); dbg_print(); } if (Limits.ponder) return; Time::point elapsed = Time::now() - SearchTime; bool stillAtFirstMove = Signals.firstRootMove && !Signals.failedLowAtRoot && elapsed > TimeMgr.available_time(); bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerResolution || stillAtFirstMove; if ( (Limits.use_time_management() && noMoreTime) || (Limits.movetime && elapsed >= Limits.movetime)) Signals.stop = true; }