droidfish/DroidFish/jni/stockfish/pawns.cpp
2012-09-16 15:16:15 +00:00

288 lines
10 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include "bitboard.h"
#include "bitcount.h"
#include "pawns.h"
#include "position.h"
namespace {
#define V Value
#define S(mg, eg) make_score(mg, eg)
// Doubled pawn penalty by opposed flag and file
const Score DoubledPawnPenalty[2][8] = {
{ S(13, 43), S(20, 48), S(23, 48), S(23, 48),
S(23, 48), S(23, 48), S(20, 48), S(13, 43) },
{ S(13, 43), S(20, 48), S(23, 48), S(23, 48),
S(23, 48), S(23, 48), S(20, 48), S(13, 43) }};
// Isolated pawn penalty by opposed flag and file
const Score IsolatedPawnPenalty[2][8] = {
{ S(37, 45), S(54, 52), S(60, 52), S(60, 52),
S(60, 52), S(60, 52), S(54, 52), S(37, 45) },
{ S(25, 30), S(36, 35), S(40, 35), S(40, 35),
S(40, 35), S(40, 35), S(36, 35), S(25, 30) }};
// Backward pawn penalty by opposed flag and file
const Score BackwardPawnPenalty[2][8] = {
{ S(30, 42), S(43, 46), S(49, 46), S(49, 46),
S(49, 46), S(49, 46), S(43, 46), S(30, 42) },
{ S(20, 28), S(29, 31), S(33, 31), S(33, 31),
S(33, 31), S(33, 31), S(29, 31), S(20, 28) }};
// Pawn chain membership bonus by file
const Score ChainBonus[8] = {
S(11,-1), S(13,-1), S(13,-1), S(14,-1),
S(14,-1), S(13,-1), S(13,-1), S(11,-1)
};
// Candidate passed pawn bonus by rank
const Score CandidateBonus[8] = {
S( 0, 0), S( 6, 13), S(6,13), S(14,29),
S(34,68), S(83,166), S(0, 0), S( 0, 0)
};
const Score PawnStructureWeight = S(233, 201);
// Weakness of our pawn shelter in front of the king indexed by [king pawn][rank]
const Value ShelterWeakness[2][8] =
{ { V(141), V(0), V(38), V(102), V(128), V(141), V(141) },
{ V( 61), V(0), V(16), V( 44), V( 56), V( 61), V( 61) } };
// Danger of enemy pawns moving toward our king indexed by [pawn blocked][rank]
const Value StormDanger[2][8] =
{ { V(26), V(0), V(128), V(51), V(26) },
{ V(13), V(0), V( 64), V(25), V(13) } };
// Max bonus for king safety. Corresponds to start position with all the pawns
// in front of the king and no enemy pawn on the horizont.
const Value MaxSafetyBonus = V(263);
#undef S
#undef V
}
/// PawnTable::probe() takes a position object as input, computes a PawnEntry
/// object, and returns a pointer to it. The result is also stored in a hash
/// table, so we don't have to recompute everything when the same pawn structure
/// occurs again.
PawnEntry* PawnTable::probe(const Position& pos) {
Key key = pos.pawn_key();
PawnEntry* e = entries[key];
// If e->key matches the position's pawn hash key, it means that we
// have analysed this pawn structure before, and we can simply return
// the information we found the last time instead of recomputing it.
if (e->key == key)
return e;
e->key = key;
e->passedPawns[WHITE] = e->passedPawns[BLACK] = 0;
e->kingSquares[WHITE] = e->kingSquares[BLACK] = SQ_NONE;
e->halfOpenFiles[WHITE] = e->halfOpenFiles[BLACK] = 0xFF;
Bitboard wPawns = pos.pieces(WHITE, PAWN);
Bitboard bPawns = pos.pieces(BLACK, PAWN);
e->pawnAttacks[WHITE] = ((wPawns & ~FileHBB) << 9) | ((wPawns & ~FileABB) << 7);
e->pawnAttacks[BLACK] = ((bPawns & ~FileHBB) >> 7) | ((bPawns & ~FileABB) >> 9);
e->value = evaluate_pawns<WHITE>(pos, wPawns, bPawns, e)
- evaluate_pawns<BLACK>(pos, bPawns, wPawns, e);
e->value = apply_weight(e->value, PawnStructureWeight);
return e;
}
/// PawnTable::evaluate_pawns() evaluates each pawn of the given color
template<Color Us>
Score PawnTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
Bitboard theirPawns, PawnEntry* e) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
Bitboard b;
Square s;
File f;
Rank r;
bool passed, isolated, doubled, opposed, chain, backward, candidate;
Score value = SCORE_ZERO;
const Square* pl = pos.piece_list(Us, PAWN);
// Loop through all pawns of the current color and score each pawn
while ((s = *pl++) != SQ_NONE)
{
assert(pos.piece_on(s) == make_piece(Us, PAWN));
f = file_of(s);
r = rank_of(s);
// This file cannot be half open
e->halfOpenFiles[Us] &= ~(1 << f);
// Our rank plus previous one. Used for chain detection
b = rank_bb(r) | rank_bb(Us == WHITE ? r - Rank(1) : r + Rank(1));
// Flag the pawn as passed, isolated, doubled or member of a pawn
// chain (but not the backward one).
chain = ourPawns & adjacent_files_bb(f) & b;
isolated = !(ourPawns & adjacent_files_bb(f));
doubled = ourPawns & forward_bb(Us, s);
opposed = theirPawns & forward_bb(Us, s);
passed = !(theirPawns & passed_pawn_mask(Us, s));
// Test for backward pawn
backward = false;
// If the pawn is passed, isolated, or member of a pawn chain it cannot
// be backward. If there are friendly pawns behind on adjacent files
// or if can capture an enemy pawn it cannot be backward either.
if ( !(passed | isolated | chain)
&& !(ourPawns & attack_span_mask(Them, s))
&& !(pos.attacks_from<PAWN>(s, Us) & theirPawns))
{
// We now know that there are no friendly pawns beside or behind this
// pawn on adjacent files. We now check whether the pawn is
// backward by looking in the forward direction on the adjacent
// files, and seeing whether we meet a friendly or an enemy pawn first.
b = pos.attacks_from<PAWN>(s, Us);
// Note that we are sure to find something because pawn is not passed
// nor isolated, so loop is potentially infinite, but it isn't.
while (!(b & (ourPawns | theirPawns)))
Us == WHITE ? b <<= 8 : b >>= 8;
// The friendly pawn needs to be at least two ranks closer than the
// enemy pawn in order to help the potentially backward pawn advance.
backward = (b | (Us == WHITE ? b << 8 : b >> 8)) & theirPawns;
}
assert(opposed | passed | (attack_span_mask(Us, s) & theirPawns));
// A not passed pawn is a candidate to become passed if it is free to
// advance and if the number of friendly pawns beside or behind this
// pawn on adjacent files is higher or equal than the number of
// enemy pawns in the forward direction on the adjacent files.
candidate = !(opposed | passed | backward | isolated)
&& (b = attack_span_mask(Them, s + pawn_push(Us)) & ourPawns) != 0
&& popcount<Max15>(b) >= popcount<Max15>(attack_span_mask(Us, s) & theirPawns);
// Passed pawns will be properly scored in evaluation because we need
// full attack info to evaluate passed pawns. Only the frontmost passed
// pawn on each file is considered a true passed pawn.
if (passed && !doubled)
e->passedPawns[Us] |= s;
// Score this pawn
if (isolated)
value -= IsolatedPawnPenalty[opposed][f];
if (doubled)
value -= DoubledPawnPenalty[opposed][f];
if (backward)
value -= BackwardPawnPenalty[opposed][f];
if (chain)
value += ChainBonus[f];
if (candidate)
value += CandidateBonus[relative_rank(Us, s)];
}
return value;
}
/// PawnEntry::shelter_storm() calculates shelter and storm penalties for the file
/// the king is on, as well as the two adjacent files.
template<Color Us>
Value PawnEntry::shelter_storm(const Position& pos, Square ksq) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
Value safety = MaxSafetyBonus;
Bitboard b = pos.pieces(PAWN) & (in_front_bb(Us, ksq) | rank_bb(ksq));
Bitboard ourPawns = b & pos.pieces(Us) & ~rank_bb(ksq);
Bitboard theirPawns = b & pos.pieces(Them);
Rank rkUs, rkThem;
File kf = file_of(ksq);
kf = (kf == FILE_A) ? kf++ : (kf == FILE_H) ? kf-- : kf;
for (int f = kf - 1; f <= kf + 1; f++)
{
// Shelter penalty is higher for the pawn in front of the king
b = ourPawns & FileBB[f];
rkUs = b ? rank_of(Us == WHITE ? lsb(b) : ~msb(b)) : RANK_1;
safety -= ShelterWeakness[f != kf][rkUs];
// Storm danger is smaller if enemy pawn is blocked
b = theirPawns & FileBB[f];
rkThem = b ? rank_of(Us == WHITE ? lsb(b) : ~msb(b)) : RANK_1;
safety -= StormDanger[rkThem == rkUs + 1][rkThem];
}
return safety;
}
/// PawnEntry::update_safety() calculates and caches a bonus for king safety. It is
/// called only when king square changes, about 20% of total king_safety() calls.
template<Color Us>
Score PawnEntry::update_safety(const Position& pos, Square ksq) {
kingSquares[Us] = ksq;
castleRights[Us] = pos.can_castle(Us);
minKPdistance[Us] = 0;
Bitboard pawns = pos.pieces(Us, PAWN);
if (pawns)
while (!(DistanceRingsBB[ksq][minKPdistance[Us]++] & pawns)) {}
if (relative_rank(Us, ksq) > RANK_4)
return kingSafety[Us] = make_score(0, -16 * minKPdistance[Us]);
Value bonus = shelter_storm<Us>(pos, ksq);
// If we can castle use the bonus after the castle if is bigger
if (pos.can_castle(make_castle_right(Us, KING_SIDE)))
bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_G1)));
if (pos.can_castle(make_castle_right(Us, QUEEN_SIDE)))
bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_C1)));
return kingSafety[Us] = make_score(bonus, -16 * minKPdistance[Us]);
}
// Explicit template instantiation
template Score PawnEntry::update_safety<WHITE>(const Position& pos, Square ksq);
template Score PawnEntry::update_safety<BLACK>(const Position& pos, Square ksq);