/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "bitboard.h" #include "bitcount.h" #include "pawns.h" #include "position.h" namespace { #define V Value #define S(mg, eg) make_score(mg, eg) // Doubled pawn penalty by opposed flag and file const Score DoubledPawnPenalty[2][8] = { { S(13, 43), S(20, 48), S(23, 48), S(23, 48), S(23, 48), S(23, 48), S(20, 48), S(13, 43) }, { S(13, 43), S(20, 48), S(23, 48), S(23, 48), S(23, 48), S(23, 48), S(20, 48), S(13, 43) }}; // Isolated pawn penalty by opposed flag and file const Score IsolatedPawnPenalty[2][8] = { { S(37, 45), S(54, 52), S(60, 52), S(60, 52), S(60, 52), S(60, 52), S(54, 52), S(37, 45) }, { S(25, 30), S(36, 35), S(40, 35), S(40, 35), S(40, 35), S(40, 35), S(36, 35), S(25, 30) }}; // Backward pawn penalty by opposed flag and file const Score BackwardPawnPenalty[2][8] = { { S(30, 42), S(43, 46), S(49, 46), S(49, 46), S(49, 46), S(49, 46), S(43, 46), S(30, 42) }, { S(20, 28), S(29, 31), S(33, 31), S(33, 31), S(33, 31), S(33, 31), S(29, 31), S(20, 28) }}; // Pawn chain membership bonus by file const Score ChainBonus[8] = { S(11,-1), S(13,-1), S(13,-1), S(14,-1), S(14,-1), S(13,-1), S(13,-1), S(11,-1) }; // Candidate passed pawn bonus by rank const Score CandidateBonus[8] = { S( 0, 0), S( 6, 13), S(6,13), S(14,29), S(34,68), S(83,166), S(0, 0), S( 0, 0) }; const Score PawnStructureWeight = S(233, 201); // Weakness of our pawn shelter in front of the king indexed by [king pawn][rank] const Value ShelterWeakness[2][8] = { { V(141), V(0), V(38), V(102), V(128), V(141), V(141) }, { V( 61), V(0), V(16), V( 44), V( 56), V( 61), V( 61) } }; // Danger of enemy pawns moving toward our king indexed by [pawn blocked][rank] const Value StormDanger[2][8] = { { V(26), V(0), V(128), V(51), V(26) }, { V(13), V(0), V( 64), V(25), V(13) } }; // Max bonus for king safety. Corresponds to start position with all the pawns // in front of the king and no enemy pawn on the horizont. const Value MaxSafetyBonus = V(263); #undef S #undef V } /// PawnTable::probe() takes a position object as input, computes a PawnEntry /// object, and returns a pointer to it. The result is also stored in a hash /// table, so we don't have to recompute everything when the same pawn structure /// occurs again. PawnEntry* PawnTable::probe(const Position& pos) { Key key = pos.pawn_key(); PawnEntry* e = entries[key]; // If e->key matches the position's pawn hash key, it means that we // have analysed this pawn structure before, and we can simply return // the information we found the last time instead of recomputing it. if (e->key == key) return e; e->key = key; e->passedPawns[WHITE] = e->passedPawns[BLACK] = 0; e->kingSquares[WHITE] = e->kingSquares[BLACK] = SQ_NONE; e->halfOpenFiles[WHITE] = e->halfOpenFiles[BLACK] = 0xFF; Bitboard wPawns = pos.pieces(WHITE, PAWN); Bitboard bPawns = pos.pieces(BLACK, PAWN); e->pawnAttacks[WHITE] = ((wPawns & ~FileHBB) << 9) | ((wPawns & ~FileABB) << 7); e->pawnAttacks[BLACK] = ((bPawns & ~FileHBB) >> 7) | ((bPawns & ~FileABB) >> 9); e->value = evaluate_pawns(pos, wPawns, bPawns, e) - evaluate_pawns(pos, bPawns, wPawns, e); e->value = apply_weight(e->value, PawnStructureWeight); return e; } /// PawnTable::evaluate_pawns() evaluates each pawn of the given color template Score PawnTable::evaluate_pawns(const Position& pos, Bitboard ourPawns, Bitboard theirPawns, PawnEntry* e) { const Color Them = (Us == WHITE ? BLACK : WHITE); Bitboard b; Square s; File f; Rank r; bool passed, isolated, doubled, opposed, chain, backward, candidate; Score value = SCORE_ZERO; const Square* pl = pos.piece_list(Us, PAWN); // Loop through all pawns of the current color and score each pawn while ((s = *pl++) != SQ_NONE) { assert(pos.piece_on(s) == make_piece(Us, PAWN)); f = file_of(s); r = rank_of(s); // This file cannot be half open e->halfOpenFiles[Us] &= ~(1 << f); // Our rank plus previous one. Used for chain detection b = rank_bb(r) | rank_bb(Us == WHITE ? r - Rank(1) : r + Rank(1)); // Flag the pawn as passed, isolated, doubled or member of a pawn // chain (but not the backward one). chain = ourPawns & adjacent_files_bb(f) & b; isolated = !(ourPawns & adjacent_files_bb(f)); doubled = ourPawns & forward_bb(Us, s); opposed = theirPawns & forward_bb(Us, s); passed = !(theirPawns & passed_pawn_mask(Us, s)); // Test for backward pawn backward = false; // If the pawn is passed, isolated, or member of a pawn chain it cannot // be backward. If there are friendly pawns behind on adjacent files // or if can capture an enemy pawn it cannot be backward either. if ( !(passed | isolated | chain) && !(ourPawns & attack_span_mask(Them, s)) && !(pos.attacks_from(s, Us) & theirPawns)) { // We now know that there are no friendly pawns beside or behind this // pawn on adjacent files. We now check whether the pawn is // backward by looking in the forward direction on the adjacent // files, and seeing whether we meet a friendly or an enemy pawn first. b = pos.attacks_from(s, Us); // Note that we are sure to find something because pawn is not passed // nor isolated, so loop is potentially infinite, but it isn't. while (!(b & (ourPawns | theirPawns))) Us == WHITE ? b <<= 8 : b >>= 8; // The friendly pawn needs to be at least two ranks closer than the // enemy pawn in order to help the potentially backward pawn advance. backward = (b | (Us == WHITE ? b << 8 : b >> 8)) & theirPawns; } assert(opposed | passed | (attack_span_mask(Us, s) & theirPawns)); // A not passed pawn is a candidate to become passed if it is free to // advance and if the number of friendly pawns beside or behind this // pawn on adjacent files is higher or equal than the number of // enemy pawns in the forward direction on the adjacent files. candidate = !(opposed | passed | backward | isolated) && (b = attack_span_mask(Them, s + pawn_push(Us)) & ourPawns) != 0 && popcount(b) >= popcount(attack_span_mask(Us, s) & theirPawns); // Passed pawns will be properly scored in evaluation because we need // full attack info to evaluate passed pawns. Only the frontmost passed // pawn on each file is considered a true passed pawn. if (passed && !doubled) e->passedPawns[Us] |= s; // Score this pawn if (isolated) value -= IsolatedPawnPenalty[opposed][f]; if (doubled) value -= DoubledPawnPenalty[opposed][f]; if (backward) value -= BackwardPawnPenalty[opposed][f]; if (chain) value += ChainBonus[f]; if (candidate) value += CandidateBonus[relative_rank(Us, s)]; } return value; } /// PawnEntry::shelter_storm() calculates shelter and storm penalties for the file /// the king is on, as well as the two adjacent files. template Value PawnEntry::shelter_storm(const Position& pos, Square ksq) { const Color Them = (Us == WHITE ? BLACK : WHITE); Value safety = MaxSafetyBonus; Bitboard b = pos.pieces(PAWN) & (in_front_bb(Us, ksq) | rank_bb(ksq)); Bitboard ourPawns = b & pos.pieces(Us) & ~rank_bb(ksq); Bitboard theirPawns = b & pos.pieces(Them); Rank rkUs, rkThem; File kf = file_of(ksq); kf = (kf == FILE_A) ? kf++ : (kf == FILE_H) ? kf-- : kf; for (int f = kf - 1; f <= kf + 1; f++) { // Shelter penalty is higher for the pawn in front of the king b = ourPawns & FileBB[f]; rkUs = b ? rank_of(Us == WHITE ? lsb(b) : ~msb(b)) : RANK_1; safety -= ShelterWeakness[f != kf][rkUs]; // Storm danger is smaller if enemy pawn is blocked b = theirPawns & FileBB[f]; rkThem = b ? rank_of(Us == WHITE ? lsb(b) : ~msb(b)) : RANK_1; safety -= StormDanger[rkThem == rkUs + 1][rkThem]; } return safety; } /// PawnEntry::update_safety() calculates and caches a bonus for king safety. It is /// called only when king square changes, about 20% of total king_safety() calls. template Score PawnEntry::update_safety(const Position& pos, Square ksq) { kingSquares[Us] = ksq; castleRights[Us] = pos.can_castle(Us); minKPdistance[Us] = 0; Bitboard pawns = pos.pieces(Us, PAWN); if (pawns) while (!(DistanceRingsBB[ksq][minKPdistance[Us]++] & pawns)) {} if (relative_rank(Us, ksq) > RANK_4) return kingSafety[Us] = make_score(0, -16 * minKPdistance[Us]); Value bonus = shelter_storm(pos, ksq); // If we can castle use the bonus after the castle if is bigger if (pos.can_castle(make_castle_right(Us, KING_SIDE))) bonus = std::max(bonus, shelter_storm(pos, relative_square(Us, SQ_G1))); if (pos.can_castle(make_castle_right(Us, QUEEN_SIDE))) bonus = std::max(bonus, shelter_storm(pos, relative_square(Us, SQ_C1))); return kingSafety[Us] = make_score(bonus, -16 * minKPdistance[Us]); } // Explicit template instantiation template Score PawnEntry::update_safety(const Position& pos, Square ksq); template Score PawnEntry::update_safety(const Position& pos, Square ksq);