droidfish/DroidFish/jni/stockfish/material.cpp
2012-09-16 15:16:15 +00:00

277 lines
10 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include <cstring>
#include "material.h"
using namespace std;
namespace {
// Values modified by Joona Kiiski
const Value MidgameLimit = Value(15581);
const Value EndgameLimit = Value(3998);
// Scale factors used when one side has no more pawns
const int NoPawnsSF[4] = { 6, 12, 32 };
// Polynomial material balance parameters
const Value RedundantQueenPenalty = Value(320);
const Value RedundantRookPenalty = Value(554);
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
const int QuadraticCoefficientsSameColor[][8] = {
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
{ 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } };
const int QuadraticCoefficientsOppositeColor[][8] = {
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
// Endgame evaluation and scaling functions accessed direcly and not through
// the function maps because correspond to more then one material hash key.
Endgame<KmmKm> EvaluateKmmKm[] = { Endgame<KmmKm>(WHITE), Endgame<KmmKm>(BLACK) };
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
// Helper templates used to detect a given material distribution
template<Color Us> bool is_KXK(const Position& pos) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
return pos.non_pawn_material(Them) == VALUE_ZERO
&& pos.piece_count(Them, PAWN) == 0
&& pos.non_pawn_material(Us) >= RookValueMg;
}
template<Color Us> bool is_KBPsKs(const Position& pos) {
return pos.non_pawn_material(Us) == BishopValueMg
&& pos.piece_count(Us, BISHOP) == 1
&& pos.piece_count(Us, PAWN) >= 1;
}
template<Color Us> bool is_KQKRPs(const Position& pos) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
return pos.piece_count(Us, PAWN) == 0
&& pos.non_pawn_material(Us) == QueenValueMg
&& pos.piece_count(Us, QUEEN) == 1
&& pos.piece_count(Them, ROOK) == 1
&& pos.piece_count(Them, PAWN) >= 1;
}
} // namespace
/// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry
/// object, and returns a pointer to it. If the material configuration is not
/// already present in the table, it is computed and stored there, so we don't
/// have to recompute everything when the same material configuration occurs again.
MaterialEntry* MaterialTable::probe(const Position& pos) {
Key key = pos.material_key();
MaterialEntry* e = entries[key];
// If e->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (e->key == key)
return e;
memset(e, 0, sizeof(MaterialEntry));
e->key = key;
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
e->gamePhase = MaterialTable::game_phase(pos);
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
// configuration one, then a generic one if previous search failed.
if (endgames.probe(key, e->evaluationFunction))
return e;
if (is_KXK<WHITE>(pos))
{
e->evaluationFunction = &EvaluateKXK[WHITE];
return e;
}
if (is_KXK<BLACK>(pos))
{
e->evaluationFunction = &EvaluateKXK[BLACK];
return e;
}
if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN))
{
// Minor piece endgame with at least one minor piece per side and
// no pawns. Note that the case KmmK is already handled by KXK.
assert((pos.pieces(WHITE, KNIGHT) | pos.pieces(WHITE, BISHOP)));
assert((pos.pieces(BLACK, KNIGHT) | pos.pieces(BLACK, BISHOP)));
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
{
e->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
return e;
}
}
// OK, we didn't find any special evaluation function for the current
// material configuration. Is there a suitable scaling function?
//
// We face problems when there are several conflicting applicable
// scaling functions and we need to decide which one to use.
EndgameBase<ScaleFactor>* sf;
if (endgames.probe(key, sf))
{
e->scalingFunction[sf->color()] = sf;
return e;
}
// Generic scaling functions that refer to more then one material
// distribution. Should be probed after the specialized ones.
// Note that these ones don't return after setting the function.
if (is_KBPsKs<WHITE>(pos))
e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
if (is_KBPsKs<BLACK>(pos))
e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
if (is_KQKRPs<WHITE>(pos))
e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
else if (is_KQKRPs<BLACK>(pos))
e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
Value npm_w = pos.non_pawn_material(WHITE);
Value npm_b = pos.non_pawn_material(BLACK);
if (npm_w + npm_b == VALUE_ZERO)
{
if (pos.piece_count(BLACK, PAWN) == 0)
{
assert(pos.piece_count(WHITE, PAWN) >= 2);
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
}
else if (pos.piece_count(WHITE, PAWN) == 0)
{
assert(pos.piece_count(BLACK, PAWN) >= 2);
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
}
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
{
// This is a special case because we set scaling functions
// for both colors instead of only one.
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
}
}
// No pawns makes it difficult to win, even with a material advantage
if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMg)
{
e->factor[WHITE] = (uint8_t)
(npm_w == npm_b || npm_w < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]);
}
if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMg)
{
e->factor[BLACK] = (uint8_t)
(npm_w == npm_b || npm_b < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]);
}
// Compute the space weight
if (npm_w + npm_b >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg)
{
int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(WHITE, BISHOP)
+ pos.piece_count(BLACK, KNIGHT) + pos.piece_count(BLACK, BISHOP);
e->spaceWeight = minorPieceCount * minorPieceCount;
}
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
// for the bishop pair "extended piece", this allow us to be more flexible
// in defining bishop pair bonuses.
const int pieceCount[2][8] = {
{ pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
pos.piece_count(WHITE, BISHOP) , pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
pos.piece_count(BLACK, BISHOP) , pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
e->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
return e;
}
/// MaterialTable::imbalance() calculates imbalance comparing piece count of each
/// piece type for both colors.
template<Color Us>
int MaterialTable::imbalance(const int pieceCount[][8]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
int pt1, pt2, pc, v;
int value = 0;
// Redundancy of major pieces, formula based on Kaufman's paper
// "The Evaluation of Material Imbalances in Chess"
if (pieceCount[Us][ROOK] > 0)
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
// Second-degree polynomial material imbalance by Tord Romstad
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
{
pc = pieceCount[Us][pt1];
if (!pc)
continue;
v = LinearCoefficients[pt1];
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
value += pc * v;
}
return value;
}
/// MaterialTable::game_phase() calculates the phase given the current
/// position. Because the phase is strictly a function of the material, it
/// is stored in MaterialEntry.
Phase MaterialTable::game_phase(const Position& pos) {
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
return npm >= MidgameLimit ? PHASE_MIDGAME
: npm <= EndgameLimit ? PHASE_ENDGAME
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
}