mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-01-08 08:17:01 +01:00
277 lines
10 KiB
C++
277 lines
10 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
|
|
#include "material.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace {
|
|
|
|
// Values modified by Joona Kiiski
|
|
const Value MidgameLimit = Value(15581);
|
|
const Value EndgameLimit = Value(3998);
|
|
|
|
// Scale factors used when one side has no more pawns
|
|
const int NoPawnsSF[4] = { 6, 12, 32 };
|
|
|
|
// Polynomial material balance parameters
|
|
const Value RedundantQueenPenalty = Value(320);
|
|
const Value RedundantRookPenalty = Value(554);
|
|
|
|
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
|
|
|
|
const int QuadraticCoefficientsSameColor[][8] = {
|
|
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
|
|
{ 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } };
|
|
|
|
const int QuadraticCoefficientsOppositeColor[][8] = {
|
|
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
|
|
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
|
|
|
|
// Endgame evaluation and scaling functions accessed direcly and not through
|
|
// the function maps because correspond to more then one material hash key.
|
|
Endgame<KmmKm> EvaluateKmmKm[] = { Endgame<KmmKm>(WHITE), Endgame<KmmKm>(BLACK) };
|
|
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
|
|
|
|
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
|
|
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
|
|
Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
|
|
Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
|
|
|
|
// Helper templates used to detect a given material distribution
|
|
template<Color Us> bool is_KXK(const Position& pos) {
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
return pos.non_pawn_material(Them) == VALUE_ZERO
|
|
&& pos.piece_count(Them, PAWN) == 0
|
|
&& pos.non_pawn_material(Us) >= RookValueMg;
|
|
}
|
|
|
|
template<Color Us> bool is_KBPsKs(const Position& pos) {
|
|
return pos.non_pawn_material(Us) == BishopValueMg
|
|
&& pos.piece_count(Us, BISHOP) == 1
|
|
&& pos.piece_count(Us, PAWN) >= 1;
|
|
}
|
|
|
|
template<Color Us> bool is_KQKRPs(const Position& pos) {
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
return pos.piece_count(Us, PAWN) == 0
|
|
&& pos.non_pawn_material(Us) == QueenValueMg
|
|
&& pos.piece_count(Us, QUEEN) == 1
|
|
&& pos.piece_count(Them, ROOK) == 1
|
|
&& pos.piece_count(Them, PAWN) >= 1;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry
|
|
/// object, and returns a pointer to it. If the material configuration is not
|
|
/// already present in the table, it is computed and stored there, so we don't
|
|
/// have to recompute everything when the same material configuration occurs again.
|
|
|
|
MaterialEntry* MaterialTable::probe(const Position& pos) {
|
|
|
|
Key key = pos.material_key();
|
|
MaterialEntry* e = entries[key];
|
|
|
|
// If e->key matches the position's material hash key, it means that we
|
|
// have analysed this material configuration before, and we can simply
|
|
// return the information we found the last time instead of recomputing it.
|
|
if (e->key == key)
|
|
return e;
|
|
|
|
memset(e, 0, sizeof(MaterialEntry));
|
|
e->key = key;
|
|
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
|
e->gamePhase = MaterialTable::game_phase(pos);
|
|
|
|
// Let's look if we have a specialized evaluation function for this
|
|
// particular material configuration. First we look for a fixed
|
|
// configuration one, then a generic one if previous search failed.
|
|
if (endgames.probe(key, e->evaluationFunction))
|
|
return e;
|
|
|
|
if (is_KXK<WHITE>(pos))
|
|
{
|
|
e->evaluationFunction = &EvaluateKXK[WHITE];
|
|
return e;
|
|
}
|
|
|
|
if (is_KXK<BLACK>(pos))
|
|
{
|
|
e->evaluationFunction = &EvaluateKXK[BLACK];
|
|
return e;
|
|
}
|
|
|
|
if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN))
|
|
{
|
|
// Minor piece endgame with at least one minor piece per side and
|
|
// no pawns. Note that the case KmmK is already handled by KXK.
|
|
assert((pos.pieces(WHITE, KNIGHT) | pos.pieces(WHITE, BISHOP)));
|
|
assert((pos.pieces(BLACK, KNIGHT) | pos.pieces(BLACK, BISHOP)));
|
|
|
|
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
|
|
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
|
|
{
|
|
e->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
|
|
return e;
|
|
}
|
|
}
|
|
|
|
// OK, we didn't find any special evaluation function for the current
|
|
// material configuration. Is there a suitable scaling function?
|
|
//
|
|
// We face problems when there are several conflicting applicable
|
|
// scaling functions and we need to decide which one to use.
|
|
EndgameBase<ScaleFactor>* sf;
|
|
|
|
if (endgames.probe(key, sf))
|
|
{
|
|
e->scalingFunction[sf->color()] = sf;
|
|
return e;
|
|
}
|
|
|
|
// Generic scaling functions that refer to more then one material
|
|
// distribution. Should be probed after the specialized ones.
|
|
// Note that these ones don't return after setting the function.
|
|
if (is_KBPsKs<WHITE>(pos))
|
|
e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
|
|
|
|
if (is_KBPsKs<BLACK>(pos))
|
|
e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
|
|
|
|
if (is_KQKRPs<WHITE>(pos))
|
|
e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
|
|
|
|
else if (is_KQKRPs<BLACK>(pos))
|
|
e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
|
|
|
|
Value npm_w = pos.non_pawn_material(WHITE);
|
|
Value npm_b = pos.non_pawn_material(BLACK);
|
|
|
|
if (npm_w + npm_b == VALUE_ZERO)
|
|
{
|
|
if (pos.piece_count(BLACK, PAWN) == 0)
|
|
{
|
|
assert(pos.piece_count(WHITE, PAWN) >= 2);
|
|
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
|
|
}
|
|
else if (pos.piece_count(WHITE, PAWN) == 0)
|
|
{
|
|
assert(pos.piece_count(BLACK, PAWN) >= 2);
|
|
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
|
|
}
|
|
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
|
|
{
|
|
// This is a special case because we set scaling functions
|
|
// for both colors instead of only one.
|
|
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
|
|
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
|
|
}
|
|
}
|
|
|
|
// No pawns makes it difficult to win, even with a material advantage
|
|
if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMg)
|
|
{
|
|
e->factor[WHITE] = (uint8_t)
|
|
(npm_w == npm_b || npm_w < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]);
|
|
}
|
|
|
|
if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMg)
|
|
{
|
|
e->factor[BLACK] = (uint8_t)
|
|
(npm_w == npm_b || npm_b < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]);
|
|
}
|
|
|
|
// Compute the space weight
|
|
if (npm_w + npm_b >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg)
|
|
{
|
|
int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(WHITE, BISHOP)
|
|
+ pos.piece_count(BLACK, KNIGHT) + pos.piece_count(BLACK, BISHOP);
|
|
|
|
e->spaceWeight = minorPieceCount * minorPieceCount;
|
|
}
|
|
|
|
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
|
|
// for the bishop pair "extended piece", this allow us to be more flexible
|
|
// in defining bishop pair bonuses.
|
|
const int pieceCount[2][8] = {
|
|
{ pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
|
|
pos.piece_count(WHITE, BISHOP) , pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
|
|
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
|
|
pos.piece_count(BLACK, BISHOP) , pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
|
|
|
|
e->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
|
|
return e;
|
|
}
|
|
|
|
|
|
/// MaterialTable::imbalance() calculates imbalance comparing piece count of each
|
|
/// piece type for both colors.
|
|
|
|
template<Color Us>
|
|
int MaterialTable::imbalance(const int pieceCount[][8]) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
int pt1, pt2, pc, v;
|
|
int value = 0;
|
|
|
|
// Redundancy of major pieces, formula based on Kaufman's paper
|
|
// "The Evaluation of Material Imbalances in Chess"
|
|
if (pieceCount[Us][ROOK] > 0)
|
|
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
|
|
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
|
|
|
|
// Second-degree polynomial material imbalance by Tord Romstad
|
|
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
|
{
|
|
pc = pieceCount[Us][pt1];
|
|
if (!pc)
|
|
continue;
|
|
|
|
v = LinearCoefficients[pt1];
|
|
|
|
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
|
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
|
|
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
|
|
|
|
value += pc * v;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
/// MaterialTable::game_phase() calculates the phase given the current
|
|
/// position. Because the phase is strictly a function of the material, it
|
|
/// is stored in MaterialEntry.
|
|
|
|
Phase MaterialTable::game_phase(const Position& pos) {
|
|
|
|
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
|
|
|
|
return npm >= MidgameLimit ? PHASE_MIDGAME
|
|
: npm <= EndgameLimit ? PHASE_ENDGAME
|
|
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
|
|
}
|