/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include "material.h" using namespace std; namespace { // Values modified by Joona Kiiski const Value MidgameLimit = Value(15581); const Value EndgameLimit = Value(3998); // Scale factors used when one side has no more pawns const int NoPawnsSF[4] = { 6, 12, 32 }; // Polynomial material balance parameters const Value RedundantQueenPenalty = Value(320); const Value RedundantRookPenalty = Value(554); const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 }; const int QuadraticCoefficientsSameColor[][8] = { { 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 }, { 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } }; const int QuadraticCoefficientsOppositeColor[][8] = { { 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 }, { 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } }; // Endgame evaluation and scaling functions accessed direcly and not through // the function maps because correspond to more then one material hash key. Endgame EvaluateKmmKm[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame EvaluateKXK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKBPsK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKQKRPs[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKPsK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKPKP[] = { Endgame(WHITE), Endgame(BLACK) }; // Helper templates used to detect a given material distribution template bool is_KXK(const Position& pos) { const Color Them = (Us == WHITE ? BLACK : WHITE); return pos.non_pawn_material(Them) == VALUE_ZERO && pos.piece_count(Them, PAWN) == 0 && pos.non_pawn_material(Us) >= RookValueMg; } template bool is_KBPsKs(const Position& pos) { return pos.non_pawn_material(Us) == BishopValueMg && pos.piece_count(Us, BISHOP) == 1 && pos.piece_count(Us, PAWN) >= 1; } template bool is_KQKRPs(const Position& pos) { const Color Them = (Us == WHITE ? BLACK : WHITE); return pos.piece_count(Us, PAWN) == 0 && pos.non_pawn_material(Us) == QueenValueMg && pos.piece_count(Us, QUEEN) == 1 && pos.piece_count(Them, ROOK) == 1 && pos.piece_count(Them, PAWN) >= 1; } } // namespace /// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry /// object, and returns a pointer to it. If the material configuration is not /// already present in the table, it is computed and stored there, so we don't /// have to recompute everything when the same material configuration occurs again. MaterialEntry* MaterialTable::probe(const Position& pos) { Key key = pos.material_key(); MaterialEntry* e = entries[key]; // If e->key matches the position's material hash key, it means that we // have analysed this material configuration before, and we can simply // return the information we found the last time instead of recomputing it. if (e->key == key) return e; memset(e, 0, sizeof(MaterialEntry)); e->key = key; e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL; e->gamePhase = MaterialTable::game_phase(pos); // Let's look if we have a specialized evaluation function for this // particular material configuration. First we look for a fixed // configuration one, then a generic one if previous search failed. if (endgames.probe(key, e->evaluationFunction)) return e; if (is_KXK(pos)) { e->evaluationFunction = &EvaluateKXK[WHITE]; return e; } if (is_KXK(pos)) { e->evaluationFunction = &EvaluateKXK[BLACK]; return e; } if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN)) { // Minor piece endgame with at least one minor piece per side and // no pawns. Note that the case KmmK is already handled by KXK. assert((pos.pieces(WHITE, KNIGHT) | pos.pieces(WHITE, BISHOP))); assert((pos.pieces(BLACK, KNIGHT) | pos.pieces(BLACK, BISHOP))); if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2 && pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2) { e->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()]; return e; } } // OK, we didn't find any special evaluation function for the current // material configuration. Is there a suitable scaling function? // // We face problems when there are several conflicting applicable // scaling functions and we need to decide which one to use. EndgameBase* sf; if (endgames.probe(key, sf)) { e->scalingFunction[sf->color()] = sf; return e; } // Generic scaling functions that refer to more then one material // distribution. Should be probed after the specialized ones. // Note that these ones don't return after setting the function. if (is_KBPsKs(pos)) e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE]; if (is_KBPsKs(pos)) e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK]; if (is_KQKRPs(pos)) e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE]; else if (is_KQKRPs(pos)) e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK]; Value npm_w = pos.non_pawn_material(WHITE); Value npm_b = pos.non_pawn_material(BLACK); if (npm_w + npm_b == VALUE_ZERO) { if (pos.piece_count(BLACK, PAWN) == 0) { assert(pos.piece_count(WHITE, PAWN) >= 2); e->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; } else if (pos.piece_count(WHITE, PAWN) == 0) { assert(pos.piece_count(BLACK, PAWN) >= 2); e->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; } else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1) { // This is a special case because we set scaling functions // for both colors instead of only one. e->scalingFunction[WHITE] = &ScaleKPKP[WHITE]; e->scalingFunction[BLACK] = &ScaleKPKP[BLACK]; } } // No pawns makes it difficult to win, even with a material advantage if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMg) { e->factor[WHITE] = (uint8_t) (npm_w == npm_b || npm_w < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]); } if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMg) { e->factor[BLACK] = (uint8_t) (npm_w == npm_b || npm_b < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]); } // Compute the space weight if (npm_w + npm_b >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg) { int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(WHITE, BISHOP) + pos.piece_count(BLACK, KNIGHT) + pos.piece_count(BLACK, BISHOP); e->spaceWeight = minorPieceCount * minorPieceCount; } // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder // for the bishop pair "extended piece", this allow us to be more flexible // in defining bishop pair bonuses. const int pieceCount[2][8] = { { pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT), pos.piece_count(WHITE, BISHOP) , pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) }, { pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT), pos.piece_count(BLACK, BISHOP) , pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } }; e->value = (int16_t)((imbalance(pieceCount) - imbalance(pieceCount)) / 16); return e; } /// MaterialTable::imbalance() calculates imbalance comparing piece count of each /// piece type for both colors. template int MaterialTable::imbalance(const int pieceCount[][8]) { const Color Them = (Us == WHITE ? BLACK : WHITE); int pt1, pt2, pc, v; int value = 0; // Redundancy of major pieces, formula based on Kaufman's paper // "The Evaluation of Material Imbalances in Chess" if (pieceCount[Us][ROOK] > 0) value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1) + RedundantQueenPenalty * pieceCount[Us][QUEEN]; // Second-degree polynomial material imbalance by Tord Romstad for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++) { pc = pieceCount[Us][pt1]; if (!pc) continue; v = LinearCoefficients[pt1]; for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++) v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2] + QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2]; value += pc * v; } return value; } /// MaterialTable::game_phase() calculates the phase given the current /// position. Because the phase is strictly a function of the material, it /// is stored in MaterialEntry. Phase MaterialTable::game_phase(const Position& pos) { Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK); return npm >= MidgameLimit ? PHASE_MIDGAME : npm <= EndgameLimit ? PHASE_ENDGAME : Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit)); }