droidfish/DroidFish/jni/stockfish/bitboard.cpp
2012-09-23 08:13:11 +00:00

352 lines
11 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cstring>
#include <iostream>
#include "bitboard.h"
#include "bitcount.h"
#include "misc.h"
#include "rkiss.h"
CACHE_LINE_ALIGNMENT
Bitboard RMasks[64];
Bitboard RMagics[64];
Bitboard* RAttacks[64];
unsigned RShifts[64];
Bitboard BMasks[64];
Bitboard BMagics[64];
Bitboard* BAttacks[64];
unsigned BShifts[64];
Bitboard SquareBB[64];
Bitboard FileBB[8];
Bitboard RankBB[8];
Bitboard AdjacentFilesBB[8];
Bitboard ThisAndAdjacentFilesBB[8];
Bitboard InFrontBB[2][8];
Bitboard StepAttacksBB[16][64];
Bitboard BetweenBB[64][64];
Bitboard DistanceRingsBB[64][8];
Bitboard ForwardBB[2][64];
Bitboard PassedPawnMask[2][64];
Bitboard AttackSpanMask[2][64];
Bitboard PseudoAttacks[6][64];
int SquareDistance[64][64];
namespace {
// De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
const uint64_t DeBruijn_64 = 0x218A392CD3D5DBFULL;
const uint32_t DeBruijn_32 = 0x783A9B23;
CACHE_LINE_ALIGNMENT
int MS1BTable[256];
Square BSFTable[64];
Bitboard RTable[0x19000]; // Storage space for rook attacks
Bitboard BTable[0x1480]; // Storage space for bishop attacks
uint8_t BitCount8Bit[256];
typedef unsigned (Fn)(Square, Bitboard);
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
FORCE_INLINE unsigned bsf_index(Bitboard b) {
if (Is64Bit)
return ((b & -b) * DeBruijn_64) >> 58;
// Use Matt Taylor's folding trick for 32 bit systems
b ^= (b - 1);
return ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn_32) >> 26;
}
}
/// lsb()/msb() finds the least/most significant bit in a nonzero bitboard.
/// pop_lsb() finds and clears the least significant bit in a nonzero bitboard.
#if !defined(USE_BSFQ)
Square lsb(Bitboard b) { return BSFTable[bsf_index(b)]; }
Square pop_lsb(Bitboard* b) {
Bitboard bb = *b;
*b = bb & (bb - 1);
return BSFTable[bsf_index(bb)];
}
Square msb(Bitboard b) {
unsigned b32;
int result = 0;
if (b > 0xFFFFFFFF)
{
b >>= 32;
result = 32;
}
b32 = unsigned(b);
if (b32 > 0xFFFF)
{
b32 >>= 16;
result += 16;
}
if (b32 > 0xFF)
{
b32 >>= 8;
result += 8;
}
return (Square)(result + MS1BTable[b32]);
}
#endif // !defined(USE_BSFQ)
/// Bitboards::print() prints a bitboard in an easily readable format to the
/// standard output. This is sometimes useful for debugging.
void Bitboards::print(Bitboard b) {
sync_cout;
for (Rank rank = RANK_8; rank >= RANK_1; rank--)
{
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
for (File file = FILE_A; file <= FILE_H; file++)
std::cout << "| " << (b & (file | rank) ? "X " : " ");
std::cout << "|\n";
}
std::cout << "+---+---+---+---+---+---+---+---+" << sync_endl;
}
/// Bitboards::init() initializes various bitboard arrays. It is called during
/// program initialization.
void Bitboards::init() {
for (int k = 0, i = 0; i < 8; i++)
while (k < (2 << i))
MS1BTable[k++] = i;
for (int i = 0; i < 64; i++)
BSFTable[bsf_index(1ULL << i)] = Square(i);
for (Bitboard b = 0; b < 256; b++)
BitCount8Bit[b] = (uint8_t)popcount<Max15>(b);
for (Square s = SQ_A1; s <= SQ_H8; s++)
SquareBB[s] = 1ULL << s;
FileBB[FILE_A] = FileABB;
RankBB[RANK_1] = Rank1BB;
for (int i = 1; i < 8; i++)
{
FileBB[i] = FileBB[i - 1] << 1;
RankBB[i] = RankBB[i - 1] << 8;
}
for (File f = FILE_A; f <= FILE_H; f++)
{
AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
ThisAndAdjacentFilesBB[f] = FileBB[f] | AdjacentFilesBB[f];
}
for (Rank r = RANK_1; r < RANK_8; r++)
InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]);
for (Color c = WHITE; c <= BLACK; c++)
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
ForwardBB[c][s] = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)];
PassedPawnMask[c][s] = InFrontBB[c][rank_of(s)] & ThisAndAdjacentFilesBB[file_of(s)];
AttackSpanMask[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
}
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2));
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
for (int d = 1; d < 8; d++)
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
if (SquareDistance[s1][s2] == d)
DistanceRingsBB[s1][d - 1] |= s2;
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
{}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
for (Square s = SQ_A1; s <= SQ_H8; s++)
for (int k = 0; steps[pt][k]; k++)
{
Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]);
if (is_ok(to) && square_distance(s, to) < 3)
StepAttacksBB[make_piece(c, pt)][s] |= to;
}
Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W };
Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index<ROOK>);
init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index<BISHOP>);
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
PseudoAttacks[QUEEN][s] = PseudoAttacks[BISHOP][s] = attacks_bb<BISHOP>(s, 0);
PseudoAttacks[QUEEN][s] |= PseudoAttacks[ ROOK][s] = attacks_bb< ROOK>(s, 0);
}
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
if (PseudoAttacks[QUEEN][s1] & s2)
{
Square delta = (s2 - s1) / square_distance(s1, s2);
for (Square s = s1 + delta; s != s2; s += delta)
BetweenBB[s1][s2] |= s;
}
}
namespace {
Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) {
Bitboard attack = 0;
for (int i = 0; i < 4; i++)
for (Square s = sq + deltas[i];
is_ok(s) && square_distance(s, s - deltas[i]) == 1;
s += deltas[i])
{
attack |= s;
if (occupied & s)
break;
}
return attack;
}
Bitboard pick_random(RKISS& rk, int booster) {
// Values s1 and s2 are used to rotate the candidate magic of a
// quantity known to be the optimal to quickly find the magics.
int s1 = booster & 63, s2 = (booster >> 6) & 63;
Bitboard m = rk.rand<Bitboard>();
m = (m >> s1) | (m << (64 - s1));
m &= rk.rand<Bitboard>();
m = (m >> s2) | (m << (64 - s2));
return m & rk.rand<Bitboard>();
}
// init_magics() computes all rook and bishop attacks at startup. Magic
// bitboards are used to look up attacks of sliding pieces. As a reference see
// chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
// use the so called "fancy" approach.
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 },
{ 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } };
RKISS rk;
Bitboard occupancy[4096], reference[4096], edges, b;
int i, size, booster;
// attacks[s] is a pointer to the beginning of the attacks table for square 's'
attacks[SQ_A1] = table;
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
// Board edges are not considered in the relevant occupancies
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
// Given a square 's', the mask is the bitboard of sliding attacks from
// 's' computed on an empty board. The index must be big enough to contain
// all the attacks for each possible subset of the mask and so is 2 power
// the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index.
masks[s] = sliding_attack(deltas, s, 0) & ~edges;
shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attack bitboard in reference[].
b = size = 0;
do {
occupancy[size] = b;
reference[size++] = sliding_attack(deltas, s, b);
b = (b - masks[s]) & masks[s];
} while (b);
// Set the offset for the table of the next square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
if (s < SQ_H8)
attacks[s + 1] = attacks[s] + size;
booster = MagicBoosters[Is64Bit][rank_of(s)];
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
do {
do magics[s] = pick_random(rk, booster);
while (BitCount8Bit[(magics[s] * masks[s]) >> 56] < 6);
memset(attacks[s], 0, size * sizeof(Bitboard));
// A good magic must map every possible occupancy to an index that
// looks up the correct sliding attack in the attacks[s] database.
// Note that we build up the database for square 's' as a side
// effect of verifying the magic.
for (i = 0; i < size; i++)
{
Bitboard& attack = attacks[s][index(s, occupancy[i])];
if (attack && attack != reference[i])
break;
assert(reference[i] != 0);
attack = reference[i];
}
} while (i != size);
}
}
}