/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include "bitboard.h" #include "bitcount.h" #include "misc.h" #include "rkiss.h" CACHE_LINE_ALIGNMENT Bitboard RMasks[64]; Bitboard RMagics[64]; Bitboard* RAttacks[64]; unsigned RShifts[64]; Bitboard BMasks[64]; Bitboard BMagics[64]; Bitboard* BAttacks[64]; unsigned BShifts[64]; Bitboard SquareBB[64]; Bitboard FileBB[8]; Bitboard RankBB[8]; Bitboard AdjacentFilesBB[8]; Bitboard ThisAndAdjacentFilesBB[8]; Bitboard InFrontBB[2][8]; Bitboard StepAttacksBB[16][64]; Bitboard BetweenBB[64][64]; Bitboard DistanceRingsBB[64][8]; Bitboard ForwardBB[2][64]; Bitboard PassedPawnMask[2][64]; Bitboard AttackSpanMask[2][64]; Bitboard PseudoAttacks[6][64]; int SquareDistance[64][64]; namespace { // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan const uint64_t DeBruijn_64 = 0x218A392CD3D5DBFULL; const uint32_t DeBruijn_32 = 0x783A9B23; CACHE_LINE_ALIGNMENT int MS1BTable[256]; Square BSFTable[64]; Bitboard RTable[0x19000]; // Storage space for rook attacks Bitboard BTable[0x1480]; // Storage space for bishop attacks uint8_t BitCount8Bit[256]; typedef unsigned (Fn)(Square, Bitboard); void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], Bitboard masks[], unsigned shifts[], Square deltas[], Fn index); FORCE_INLINE unsigned bsf_index(Bitboard b) { if (Is64Bit) return ((b & -b) * DeBruijn_64) >> 58; // Use Matt Taylor's folding trick for 32 bit systems b ^= (b - 1); return ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn_32) >> 26; } } /// lsb()/msb() finds the least/most significant bit in a nonzero bitboard. /// pop_lsb() finds and clears the least significant bit in a nonzero bitboard. #if !defined(USE_BSFQ) Square lsb(Bitboard b) { return BSFTable[bsf_index(b)]; } Square pop_lsb(Bitboard* b) { Bitboard bb = *b; *b = bb & (bb - 1); return BSFTable[bsf_index(bb)]; } Square msb(Bitboard b) { unsigned b32; int result = 0; if (b > 0xFFFFFFFF) { b >>= 32; result = 32; } b32 = unsigned(b); if (b32 > 0xFFFF) { b32 >>= 16; result += 16; } if (b32 > 0xFF) { b32 >>= 8; result += 8; } return (Square)(result + MS1BTable[b32]); } #endif // !defined(USE_BSFQ) /// Bitboards::print() prints a bitboard in an easily readable format to the /// standard output. This is sometimes useful for debugging. void Bitboards::print(Bitboard b) { sync_cout; for (Rank rank = RANK_8; rank >= RANK_1; rank--) { std::cout << "+---+---+---+---+---+---+---+---+" << '\n'; for (File file = FILE_A; file <= FILE_H; file++) std::cout << "| " << (b & (file | rank) ? "X " : " "); std::cout << "|\n"; } std::cout << "+---+---+---+---+---+---+---+---+" << sync_endl; } /// Bitboards::init() initializes various bitboard arrays. It is called during /// program initialization. void Bitboards::init() { for (int k = 0, i = 0; i < 8; i++) while (k < (2 << i)) MS1BTable[k++] = i; for (int i = 0; i < 64; i++) BSFTable[bsf_index(1ULL << i)] = Square(i); for (Bitboard b = 0; b < 256; b++) BitCount8Bit[b] = (uint8_t)popcount(b); for (Square s = SQ_A1; s <= SQ_H8; s++) SquareBB[s] = 1ULL << s; FileBB[FILE_A] = FileABB; RankBB[RANK_1] = Rank1BB; for (int i = 1; i < 8; i++) { FileBB[i] = FileBB[i - 1] << 1; RankBB[i] = RankBB[i - 1] << 8; } for (File f = FILE_A; f <= FILE_H; f++) { AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); ThisAndAdjacentFilesBB[f] = FileBB[f] | AdjacentFilesBB[f]; } for (Rank r = RANK_1; r < RANK_8; r++) InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]); for (Color c = WHITE; c <= BLACK; c++) for (Square s = SQ_A1; s <= SQ_H8; s++) { ForwardBB[c][s] = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)]; PassedPawnMask[c][s] = InFrontBB[c][rank_of(s)] & ThisAndAdjacentFilesBB[file_of(s)]; AttackSpanMask[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; } for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) for (int d = 1; d < 8; d++) for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) if (SquareDistance[s1][s2] == d) DistanceRingsBB[s1][d - 1] |= s2; int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 }, {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } }; for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) for (Square s = SQ_A1; s <= SQ_H8; s++) for (int k = 0; steps[pt][k]; k++) { Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]); if (is_ok(to) && square_distance(s, to) < 3) StepAttacksBB[make_piece(c, pt)][s] |= to; } Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index); init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index); for (Square s = SQ_A1; s <= SQ_H8; s++) { PseudoAttacks[QUEEN][s] = PseudoAttacks[BISHOP][s] = attacks_bb(s, 0); PseudoAttacks[QUEEN][s] |= PseudoAttacks[ ROOK][s] = attacks_bb< ROOK>(s, 0); } for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) if (PseudoAttacks[QUEEN][s1] & s2) { Square delta = (s2 - s1) / square_distance(s1, s2); for (Square s = s1 + delta; s != s2; s += delta) BetweenBB[s1][s2] |= s; } } namespace { Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) { Bitboard attack = 0; for (int i = 0; i < 4; i++) for (Square s = sq + deltas[i]; is_ok(s) && square_distance(s, s - deltas[i]) == 1; s += deltas[i]) { attack |= s; if (occupied & s) break; } return attack; } Bitboard pick_random(RKISS& rk, int booster) { // Values s1 and s2 are used to rotate the candidate magic of a // quantity known to be the optimal to quickly find the magics. int s1 = booster & 63, s2 = (booster >> 6) & 63; Bitboard m = rk.rand(); m = (m >> s1) | (m << (64 - s1)); m &= rk.rand(); m = (m >> s2) | (m << (64 - s2)); return m & rk.rand(); } // init_magics() computes all rook and bishop attacks at startup. Magic // bitboards are used to look up attacks of sliding pieces. As a reference see // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we // use the so called "fancy" approach. void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) { int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; RKISS rk; Bitboard occupancy[4096], reference[4096], edges, b; int i, size, booster; // attacks[s] is a pointer to the beginning of the attacks table for square 's' attacks[SQ_A1] = table; for (Square s = SQ_A1; s <= SQ_H8; s++) { // Board edges are not considered in the relevant occupancies edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); // Given a square 's', the mask is the bitboard of sliding attacks from // 's' computed on an empty board. The index must be big enough to contain // all the attacks for each possible subset of the mask and so is 2 power // the number of 1s of the mask. Hence we deduce the size of the shift to // apply to the 64 or 32 bits word to get the index. masks[s] = sliding_attack(deltas, s, 0) & ~edges; shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]); // Use Carry-Rippler trick to enumerate all subsets of masks[s] and // store the corresponding sliding attack bitboard in reference[]. b = size = 0; do { occupancy[size] = b; reference[size++] = sliding_attack(deltas, s, b); b = (b - masks[s]) & masks[s]; } while (b); // Set the offset for the table of the next square. We have individual // table sizes for each square with "Fancy Magic Bitboards". if (s < SQ_H8) attacks[s + 1] = attacks[s] + size; booster = MagicBoosters[Is64Bit][rank_of(s)]; // Find a magic for square 's' picking up an (almost) random number // until we find the one that passes the verification test. do { do magics[s] = pick_random(rk, booster); while (BitCount8Bit[(magics[s] * masks[s]) >> 56] < 6); memset(attacks[s], 0, size * sizeof(Bitboard)); // A good magic must map every possible occupancy to an index that // looks up the correct sliding attack in the attacks[s] database. // Note that we build up the database for square 's' as a side // effect of verifying the magic. for (i = 0; i < size; i++) { Bitboard& attack = attacks[s][index(s, occupancy[i])]; if (attack && attack != reference[i]) break; assert(reference[i] != 0); attack = reference[i]; } } while (i != size); } } }