droidfish/DroidFish/jni/stockfish/position.h
2014-05-31 12:23:03 +00:00

434 lines
12 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef POSITION_H_INCLUDED
#define POSITION_H_INCLUDED
#include <cassert>
#include <cstddef>
#include "bitboard.h"
#include "types.h"
/// The checkInfo struct is initialized at c'tor time and keeps info used
/// to detect if a move gives check.
class Position;
struct Thread;
struct CheckInfo {
explicit CheckInfo(const Position&);
Bitboard dcCandidates;
Bitboard pinned;
Bitboard checkSq[PIECE_TYPE_NB];
Square ksq;
};
/// The StateInfo struct stores information needed to restore a Position
/// object to its previous state when we retract a move. Whenever a move
/// is made on the board (by calling Position::do_move), a StateInfo
/// object must be passed as a parameter.
struct StateInfo {
Key pawnKey, materialKey;
Value npMaterial[COLOR_NB];
int castlingRights, rule50, pliesFromNull;
Score psq;
Square epSquare;
Key key;
Bitboard checkersBB;
PieceType capturedType;
StateInfo* previous;
};
/// When making a move the current StateInfo up to 'key' excluded is copied to
/// the new one. Here we calculate the quad words (64bits) needed to be copied.
const size_t StateCopySize64 = offsetof(StateInfo, key) / sizeof(uint64_t) + 1;
/// The Position class stores the information regarding the board representation
/// like pieces, side to move, hash keys, castling info, etc. The most important
/// methods are do_move() and undo_move(), used by the search to update node info
/// when traversing the search tree.
class Position {
public:
Position() {}
Position(const Position& pos, Thread* t) { *this = pos; thisThread = t; }
Position(const std::string& f, bool c960, Thread* t) { set(f, c960, t); }
Position& operator=(const Position&);
static void init();
// Text input/output
void set(const std::string& fenStr, bool isChess960, Thread* th);
const std::string fen() const;
const std::string pretty(Move m = MOVE_NONE) const;
// Position representation
Bitboard pieces() const;
Bitboard pieces(PieceType pt) const;
Bitboard pieces(PieceType pt1, PieceType pt2) const;
Bitboard pieces(Color c) const;
Bitboard pieces(Color c, PieceType pt) const;
Bitboard pieces(Color c, PieceType pt1, PieceType pt2) const;
Piece piece_on(Square s) const;
Square king_square(Color c) const;
Square ep_square() const;
bool empty(Square s) const;
template<PieceType Pt> int count(Color c) const;
template<PieceType Pt> const Square* list(Color c) const;
// Castling
int can_castle(Color c) const;
int can_castle(CastlingRight cr) const;
bool castling_impeded(CastlingRight cr) const;
Square castling_rook_square(CastlingRight cr) const;
// Checking
Bitboard checkers() const;
Bitboard discovered_check_candidates() const;
Bitboard pinned_pieces(Color c) const;
// Attacks to/from a given square
Bitboard attackers_to(Square s) const;
Bitboard attackers_to(Square s, Bitboard occ) const;
Bitboard attacks_from(Piece pc, Square s) const;
template<PieceType> Bitboard attacks_from(Square s) const;
template<PieceType> Bitboard attacks_from(Square s, Color c) const;
// Properties of moves
bool legal(Move m, Bitboard pinned) const;
bool pseudo_legal(const Move m) const;
bool capture(Move m) const;
bool capture_or_promotion(Move m) const;
bool gives_check(Move m, const CheckInfo& ci) const;
bool advanced_pawn_push(Move m) const;
Piece moved_piece(Move m) const;
PieceType captured_piece_type() const;
// Piece specific
bool pawn_passed(Color c, Square s) const;
bool pawn_on_7th(Color c) const;
bool bishop_pair(Color c) const;
bool opposite_bishops() const;
// Doing and undoing moves
void do_move(Move m, StateInfo& st);
void do_move(Move m, StateInfo& st, const CheckInfo& ci, bool moveIsCheck);
void undo_move(Move m);
void do_null_move(StateInfo& st);
void undo_null_move();
// Static exchange evaluation
Value see(Move m) const;
Value see_sign(Move m) const;
// Accessing hash keys
Key key() const;
Key exclusion_key() const;
Key pawn_key() const;
Key material_key() const;
// Incremental piece-square evaluation
Score psq_score() const;
Value non_pawn_material(Color c) const;
// Other properties of the position
Color side_to_move() const;
int game_ply() const;
bool is_chess960() const;
Thread* this_thread() const;
uint64_t nodes_searched() const;
void set_nodes_searched(uint64_t n);
bool is_draw() const;
// Position consistency check, for debugging
bool pos_is_ok(int* step = NULL) const;
void flip();
private:
// Initialization helpers (used while setting up a position)
void clear();
void set_castling_right(Color c, Square rfrom);
void set_state(StateInfo* si) const;
// Helper functions
Bitboard check_blockers(Color c, Color kingColor) const;
void put_piece(Square s, Color c, PieceType pt);
void remove_piece(Square s, Color c, PieceType pt);
void move_piece(Square from, Square to, Color c, PieceType pt);
template<bool Do>
void do_castling(Square from, Square& to, Square& rfrom, Square& rto);
// Board and pieces
Piece board[SQUARE_NB];
Bitboard byTypeBB[PIECE_TYPE_NB];
Bitboard byColorBB[COLOR_NB];
int pieceCount[COLOR_NB][PIECE_TYPE_NB];
Square pieceList[COLOR_NB][PIECE_TYPE_NB][16];
int index[SQUARE_NB];
// Other info
int castlingRightsMask[SQUARE_NB];
Square castlingRookSquare[CASTLING_RIGHT_NB];
Bitboard castlingPath[CASTLING_RIGHT_NB];
StateInfo startState;
uint64_t nodes;
int gamePly;
Color sideToMove;
Thread* thisThread;
StateInfo* st;
bool chess960;
};
inline uint64_t Position::nodes_searched() const {
return nodes;
}
inline void Position::set_nodes_searched(uint64_t n) {
nodes = n;
}
inline Piece Position::piece_on(Square s) const {
return board[s];
}
inline Piece Position::moved_piece(Move m) const {
return board[from_sq(m)];
}
inline bool Position::empty(Square s) const {
return board[s] == NO_PIECE;
}
inline Color Position::side_to_move() const {
return sideToMove;
}
inline Bitboard Position::pieces() const {
return byTypeBB[ALL_PIECES];
}
inline Bitboard Position::pieces(PieceType pt) const {
return byTypeBB[pt];
}
inline Bitboard Position::pieces(PieceType pt1, PieceType pt2) const {
return byTypeBB[pt1] | byTypeBB[pt2];
}
inline Bitboard Position::pieces(Color c) const {
return byColorBB[c];
}
inline Bitboard Position::pieces(Color c, PieceType pt) const {
return byColorBB[c] & byTypeBB[pt];
}
inline Bitboard Position::pieces(Color c, PieceType pt1, PieceType pt2) const {
return byColorBB[c] & (byTypeBB[pt1] | byTypeBB[pt2]);
}
template<PieceType Pt> inline int Position::count(Color c) const {
return pieceCount[c][Pt];
}
template<PieceType Pt> inline const Square* Position::list(Color c) const {
return pieceList[c][Pt];
}
inline Square Position::ep_square() const {
return st->epSquare;
}
inline Square Position::king_square(Color c) const {
return pieceList[c][KING][0];
}
inline int Position::can_castle(CastlingRight cr) const {
return st->castlingRights & cr;
}
inline int Position::can_castle(Color c) const {
return st->castlingRights & ((WHITE_OO | WHITE_OOO) << (2 * c));
}
inline bool Position::castling_impeded(CastlingRight cr) const {
return byTypeBB[ALL_PIECES] & castlingPath[cr];
}
inline Square Position::castling_rook_square(CastlingRight cr) const {
return castlingRookSquare[cr];
}
template<PieceType Pt>
inline Bitboard Position::attacks_from(Square s) const {
return Pt == BISHOP || Pt == ROOK ? attacks_bb<Pt>(s, byTypeBB[ALL_PIECES])
: Pt == QUEEN ? attacks_from<ROOK>(s) | attacks_from<BISHOP>(s)
: StepAttacksBB[Pt][s];
}
template<>
inline Bitboard Position::attacks_from<PAWN>(Square s, Color c) const {
return StepAttacksBB[make_piece(c, PAWN)][s];
}
inline Bitboard Position::attacks_from(Piece pc, Square s) const {
return attacks_bb(pc, s, byTypeBB[ALL_PIECES]);
}
inline Bitboard Position::attackers_to(Square s) const {
return attackers_to(s, byTypeBB[ALL_PIECES]);
}
inline Bitboard Position::checkers() const {
return st->checkersBB;
}
inline Bitboard Position::discovered_check_candidates() const {
return check_blockers(sideToMove, ~sideToMove);
}
inline Bitboard Position::pinned_pieces(Color c) const {
return check_blockers(c, c);
}
inline bool Position::pawn_passed(Color c, Square s) const {
return !(pieces(~c, PAWN) & passed_pawn_mask(c, s));
}
inline bool Position::advanced_pawn_push(Move m) const {
return type_of(moved_piece(m)) == PAWN
&& relative_rank(sideToMove, from_sq(m)) > RANK_4;
}
inline Key Position::key() const {
return st->key;
}
inline Key Position::pawn_key() const {
return st->pawnKey;
}
inline Key Position::material_key() const {
return st->materialKey;
}
inline Score Position::psq_score() const {
return st->psq;
}
inline Value Position::non_pawn_material(Color c) const {
return st->npMaterial[c];
}
inline int Position::game_ply() const {
return gamePly;
}
inline bool Position::opposite_bishops() const {
return pieceCount[WHITE][BISHOP] == 1
&& pieceCount[BLACK][BISHOP] == 1
&& opposite_colors(pieceList[WHITE][BISHOP][0], pieceList[BLACK][BISHOP][0]);
}
inline bool Position::bishop_pair(Color c) const {
return pieceCount[c][BISHOP] >= 2
&& opposite_colors(pieceList[c][BISHOP][0], pieceList[c][BISHOP][1]);
}
inline bool Position::pawn_on_7th(Color c) const {
return pieces(c, PAWN) & rank_bb(relative_rank(c, RANK_7));
}
inline bool Position::is_chess960() const {
return chess960;
}
inline bool Position::capture_or_promotion(Move m) const {
assert(is_ok(m));
return type_of(m) != NORMAL ? type_of(m) != CASTLING : !empty(to_sq(m));
}
inline bool Position::capture(Move m) const {
// Note that castling is encoded as "king captures the rook"
assert(is_ok(m));
return (!empty(to_sq(m)) && type_of(m) != CASTLING) || type_of(m) == ENPASSANT;
}
inline PieceType Position::captured_piece_type() const {
return st->capturedType;
}
inline Thread* Position::this_thread() const {
return thisThread;
}
inline void Position::put_piece(Square s, Color c, PieceType pt) {
board[s] = make_piece(c, pt);
byTypeBB[ALL_PIECES] |= s;
byTypeBB[pt] |= s;
byColorBB[c] |= s;
index[s] = pieceCount[c][pt]++;
pieceList[c][pt][index[s]] = s;
}
inline void Position::move_piece(Square from, Square to, Color c, PieceType pt) {
// index[from] is not updated and becomes stale. This works as long
// as index[] is accessed just by known occupied squares.
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
byTypeBB[ALL_PIECES] ^= from_to_bb;
byTypeBB[pt] ^= from_to_bb;
byColorBB[c] ^= from_to_bb;
board[from] = NO_PIECE;
board[to] = make_piece(c, pt);
index[to] = index[from];
pieceList[c][pt][index[to]] = to;
}
inline void Position::remove_piece(Square s, Color c, PieceType pt) {
// WARNING: This is not a reversible operation. If we remove a piece in
// do_move() and then replace it in undo_move() we will put it at the end of
// the list and not in its original place, it means index[] and pieceList[]
// are not guaranteed to be invariant to a do_move() + undo_move() sequence.
byTypeBB[ALL_PIECES] ^= s;
byTypeBB[pt] ^= s;
byColorBB[c] ^= s;
/* board[s] = NO_PIECE; */ // Not needed, will be overwritten by capturing
Square lastSquare = pieceList[c][pt][--pieceCount[c][pt]];
index[lastSquare] = index[s];
pieceList[c][pt][index[lastSquare]] = lastSquare;
pieceList[c][pt][pieceCount[c][pt]] = SQ_NONE;
}
#endif // #ifndef POSITION_H_INCLUDED