/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef POSITION_H_INCLUDED #define POSITION_H_INCLUDED #include #include #include "bitboard.h" #include "types.h" /// The checkInfo struct is initialized at c'tor time and keeps info used /// to detect if a move gives check. class Position; struct Thread; struct CheckInfo { explicit CheckInfo(const Position&); Bitboard dcCandidates; Bitboard pinned; Bitboard checkSq[PIECE_TYPE_NB]; Square ksq; }; /// The StateInfo struct stores information needed to restore a Position /// object to its previous state when we retract a move. Whenever a move /// is made on the board (by calling Position::do_move), a StateInfo /// object must be passed as a parameter. struct StateInfo { Key pawnKey, materialKey; Value npMaterial[COLOR_NB]; int castlingRights, rule50, pliesFromNull; Score psq; Square epSquare; Key key; Bitboard checkersBB; PieceType capturedType; StateInfo* previous; }; /// When making a move the current StateInfo up to 'key' excluded is copied to /// the new one. Here we calculate the quad words (64bits) needed to be copied. const size_t StateCopySize64 = offsetof(StateInfo, key) / sizeof(uint64_t) + 1; /// The Position class stores the information regarding the board representation /// like pieces, side to move, hash keys, castling info, etc. The most important /// methods are do_move() and undo_move(), used by the search to update node info /// when traversing the search tree. class Position { public: Position() {} Position(const Position& pos, Thread* t) { *this = pos; thisThread = t; } Position(const std::string& f, bool c960, Thread* t) { set(f, c960, t); } Position& operator=(const Position&); static void init(); // Text input/output void set(const std::string& fenStr, bool isChess960, Thread* th); const std::string fen() const; const std::string pretty(Move m = MOVE_NONE) const; // Position representation Bitboard pieces() const; Bitboard pieces(PieceType pt) const; Bitboard pieces(PieceType pt1, PieceType pt2) const; Bitboard pieces(Color c) const; Bitboard pieces(Color c, PieceType pt) const; Bitboard pieces(Color c, PieceType pt1, PieceType pt2) const; Piece piece_on(Square s) const; Square king_square(Color c) const; Square ep_square() const; bool empty(Square s) const; template int count(Color c) const; template const Square* list(Color c) const; // Castling int can_castle(Color c) const; int can_castle(CastlingRight cr) const; bool castling_impeded(CastlingRight cr) const; Square castling_rook_square(CastlingRight cr) const; // Checking Bitboard checkers() const; Bitboard discovered_check_candidates() const; Bitboard pinned_pieces(Color c) const; // Attacks to/from a given square Bitboard attackers_to(Square s) const; Bitboard attackers_to(Square s, Bitboard occ) const; Bitboard attacks_from(Piece pc, Square s) const; template Bitboard attacks_from(Square s) const; template Bitboard attacks_from(Square s, Color c) const; // Properties of moves bool legal(Move m, Bitboard pinned) const; bool pseudo_legal(const Move m) const; bool capture(Move m) const; bool capture_or_promotion(Move m) const; bool gives_check(Move m, const CheckInfo& ci) const; bool advanced_pawn_push(Move m) const; Piece moved_piece(Move m) const; PieceType captured_piece_type() const; // Piece specific bool pawn_passed(Color c, Square s) const; bool pawn_on_7th(Color c) const; bool bishop_pair(Color c) const; bool opposite_bishops() const; // Doing and undoing moves void do_move(Move m, StateInfo& st); void do_move(Move m, StateInfo& st, const CheckInfo& ci, bool moveIsCheck); void undo_move(Move m); void do_null_move(StateInfo& st); void undo_null_move(); // Static exchange evaluation Value see(Move m) const; Value see_sign(Move m) const; // Accessing hash keys Key key() const; Key exclusion_key() const; Key pawn_key() const; Key material_key() const; // Incremental piece-square evaluation Score psq_score() const; Value non_pawn_material(Color c) const; // Other properties of the position Color side_to_move() const; int game_ply() const; bool is_chess960() const; Thread* this_thread() const; uint64_t nodes_searched() const; void set_nodes_searched(uint64_t n); bool is_draw() const; // Position consistency check, for debugging bool pos_is_ok(int* step = NULL) const; void flip(); private: // Initialization helpers (used while setting up a position) void clear(); void set_castling_right(Color c, Square rfrom); void set_state(StateInfo* si) const; // Helper functions Bitboard check_blockers(Color c, Color kingColor) const; void put_piece(Square s, Color c, PieceType pt); void remove_piece(Square s, Color c, PieceType pt); void move_piece(Square from, Square to, Color c, PieceType pt); template void do_castling(Square from, Square& to, Square& rfrom, Square& rto); // Board and pieces Piece board[SQUARE_NB]; Bitboard byTypeBB[PIECE_TYPE_NB]; Bitboard byColorBB[COLOR_NB]; int pieceCount[COLOR_NB][PIECE_TYPE_NB]; Square pieceList[COLOR_NB][PIECE_TYPE_NB][16]; int index[SQUARE_NB]; // Other info int castlingRightsMask[SQUARE_NB]; Square castlingRookSquare[CASTLING_RIGHT_NB]; Bitboard castlingPath[CASTLING_RIGHT_NB]; StateInfo startState; uint64_t nodes; int gamePly; Color sideToMove; Thread* thisThread; StateInfo* st; bool chess960; }; inline uint64_t Position::nodes_searched() const { return nodes; } inline void Position::set_nodes_searched(uint64_t n) { nodes = n; } inline Piece Position::piece_on(Square s) const { return board[s]; } inline Piece Position::moved_piece(Move m) const { return board[from_sq(m)]; } inline bool Position::empty(Square s) const { return board[s] == NO_PIECE; } inline Color Position::side_to_move() const { return sideToMove; } inline Bitboard Position::pieces() const { return byTypeBB[ALL_PIECES]; } inline Bitboard Position::pieces(PieceType pt) const { return byTypeBB[pt]; } inline Bitboard Position::pieces(PieceType pt1, PieceType pt2) const { return byTypeBB[pt1] | byTypeBB[pt2]; } inline Bitboard Position::pieces(Color c) const { return byColorBB[c]; } inline Bitboard Position::pieces(Color c, PieceType pt) const { return byColorBB[c] & byTypeBB[pt]; } inline Bitboard Position::pieces(Color c, PieceType pt1, PieceType pt2) const { return byColorBB[c] & (byTypeBB[pt1] | byTypeBB[pt2]); } template inline int Position::count(Color c) const { return pieceCount[c][Pt]; } template inline const Square* Position::list(Color c) const { return pieceList[c][Pt]; } inline Square Position::ep_square() const { return st->epSquare; } inline Square Position::king_square(Color c) const { return pieceList[c][KING][0]; } inline int Position::can_castle(CastlingRight cr) const { return st->castlingRights & cr; } inline int Position::can_castle(Color c) const { return st->castlingRights & ((WHITE_OO | WHITE_OOO) << (2 * c)); } inline bool Position::castling_impeded(CastlingRight cr) const { return byTypeBB[ALL_PIECES] & castlingPath[cr]; } inline Square Position::castling_rook_square(CastlingRight cr) const { return castlingRookSquare[cr]; } template inline Bitboard Position::attacks_from(Square s) const { return Pt == BISHOP || Pt == ROOK ? attacks_bb(s, byTypeBB[ALL_PIECES]) : Pt == QUEEN ? attacks_from(s) | attacks_from(s) : StepAttacksBB[Pt][s]; } template<> inline Bitboard Position::attacks_from(Square s, Color c) const { return StepAttacksBB[make_piece(c, PAWN)][s]; } inline Bitboard Position::attacks_from(Piece pc, Square s) const { return attacks_bb(pc, s, byTypeBB[ALL_PIECES]); } inline Bitboard Position::attackers_to(Square s) const { return attackers_to(s, byTypeBB[ALL_PIECES]); } inline Bitboard Position::checkers() const { return st->checkersBB; } inline Bitboard Position::discovered_check_candidates() const { return check_blockers(sideToMove, ~sideToMove); } inline Bitboard Position::pinned_pieces(Color c) const { return check_blockers(c, c); } inline bool Position::pawn_passed(Color c, Square s) const { return !(pieces(~c, PAWN) & passed_pawn_mask(c, s)); } inline bool Position::advanced_pawn_push(Move m) const { return type_of(moved_piece(m)) == PAWN && relative_rank(sideToMove, from_sq(m)) > RANK_4; } inline Key Position::key() const { return st->key; } inline Key Position::pawn_key() const { return st->pawnKey; } inline Key Position::material_key() const { return st->materialKey; } inline Score Position::psq_score() const { return st->psq; } inline Value Position::non_pawn_material(Color c) const { return st->npMaterial[c]; } inline int Position::game_ply() const { return gamePly; } inline bool Position::opposite_bishops() const { return pieceCount[WHITE][BISHOP] == 1 && pieceCount[BLACK][BISHOP] == 1 && opposite_colors(pieceList[WHITE][BISHOP][0], pieceList[BLACK][BISHOP][0]); } inline bool Position::bishop_pair(Color c) const { return pieceCount[c][BISHOP] >= 2 && opposite_colors(pieceList[c][BISHOP][0], pieceList[c][BISHOP][1]); } inline bool Position::pawn_on_7th(Color c) const { return pieces(c, PAWN) & rank_bb(relative_rank(c, RANK_7)); } inline bool Position::is_chess960() const { return chess960; } inline bool Position::capture_or_promotion(Move m) const { assert(is_ok(m)); return type_of(m) != NORMAL ? type_of(m) != CASTLING : !empty(to_sq(m)); } inline bool Position::capture(Move m) const { // Note that castling is encoded as "king captures the rook" assert(is_ok(m)); return (!empty(to_sq(m)) && type_of(m) != CASTLING) || type_of(m) == ENPASSANT; } inline PieceType Position::captured_piece_type() const { return st->capturedType; } inline Thread* Position::this_thread() const { return thisThread; } inline void Position::put_piece(Square s, Color c, PieceType pt) { board[s] = make_piece(c, pt); byTypeBB[ALL_PIECES] |= s; byTypeBB[pt] |= s; byColorBB[c] |= s; index[s] = pieceCount[c][pt]++; pieceList[c][pt][index[s]] = s; } inline void Position::move_piece(Square from, Square to, Color c, PieceType pt) { // index[from] is not updated and becomes stale. This works as long // as index[] is accessed just by known occupied squares. Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to]; byTypeBB[ALL_PIECES] ^= from_to_bb; byTypeBB[pt] ^= from_to_bb; byColorBB[c] ^= from_to_bb; board[from] = NO_PIECE; board[to] = make_piece(c, pt); index[to] = index[from]; pieceList[c][pt][index[to]] = to; } inline void Position::remove_piece(Square s, Color c, PieceType pt) { // WARNING: This is not a reversible operation. If we remove a piece in // do_move() and then replace it in undo_move() we will put it at the end of // the list and not in its original place, it means index[] and pieceList[] // are not guaranteed to be invariant to a do_move() + undo_move() sequence. byTypeBB[ALL_PIECES] ^= s; byTypeBB[pt] ^= s; byColorBB[c] ^= s; /* board[s] = NO_PIECE; */ // Not needed, will be overwritten by capturing Square lastSquare = pieceList[c][pt][--pieceCount[c][pt]]; index[lastSquare] = index[s]; pieceList[c][pt][index[lastSquare]] = lastSquare; pieceList[c][pt][pieceCount[c][pt]] = SQ_NONE; } #endif // #ifndef POSITION_H_INCLUDED