droidfish/DroidFish/jni/stockfish/material.cpp
2014-05-31 12:23:03 +00:00

266 lines
9.7 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm> // For std::min
#include <cassert>
#include <cstring>
#include "material.h"
using namespace std;
namespace {
// Polynomial material balance parameters
// pair pawn knight bishop rook queen
const int LinearCoefficients[6] = { 1852, -162, -1122, -183, 249, -154 };
const int QuadraticCoefficientsSameSide[][PIECE_TYPE_NB] = {
// OUR PIECES
// pair pawn knight bishop rook queen
{ 0 }, // Bishop pair
{ 39, 2 }, // Pawn
{ 35, 271, -4 }, // knight OUR PIECES
{ 0, 105, 4, 0 }, // Bishop
{ -27, -2, 46, 100, -141 }, // Rook
{-177, 25, 129, 142, -137, 0 } // Queen
};
const int QuadraticCoefficientsOppositeSide[][PIECE_TYPE_NB] = {
// THEIR PIECES
// pair pawn knight bishop rook queen
{ 0 }, // Bishop pair
{ 37, 0 }, // Pawn
{ 10, 62, 0 }, // Knight OUR PIECES
{ 57, 64, 39, 0 }, // Bishop
{ 50, 40, 23, -22, 0 }, // Rook
{ 98, 105, -39, 141, 274, 0 } // Queen
};
// Endgame evaluation and scaling functions are accessed directly and not through
// the function maps because they correspond to more than one material hash key.
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
// Helper templates used to detect a given material distribution
template<Color Us> bool is_KXK(const Position& pos) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
return !pos.count<PAWN>(Them)
&& pos.non_pawn_material(Them) == VALUE_ZERO
&& pos.non_pawn_material(Us) >= RookValueMg;
}
template<Color Us> bool is_KBPsKs(const Position& pos) {
return pos.non_pawn_material(Us) == BishopValueMg
&& pos.count<BISHOP>(Us) == 1
&& pos.count<PAWN >(Us) >= 1;
}
template<Color Us> bool is_KQKRPs(const Position& pos) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
return !pos.count<PAWN>(Us)
&& pos.non_pawn_material(Us) == QueenValueMg
&& pos.count<QUEEN>(Us) == 1
&& pos.count<ROOK>(Them) == 1
&& pos.count<PAWN>(Them) >= 1;
}
/// imbalance() calculates the imbalance by comparing the piece count of each
/// piece type for both colors.
template<Color Us>
int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
int pt1, pt2, pc, v;
int value = 0;
// Second-degree polynomial material imbalance by Tord Romstad
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
{
pc = pieceCount[Us][pt1];
if (!pc)
continue;
v = LinearCoefficients[pt1];
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
v += QuadraticCoefficientsSameSide[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticCoefficientsOppositeSide[pt1][pt2] * pieceCount[Them][pt2];
value += pc * v;
}
return value;
}
} // namespace
namespace Material {
/// Material::probe() takes a position object as input, looks up a MaterialEntry
/// object, and returns a pointer to it. If the material configuration is not
/// already present in the table, it is computed and stored there, so we don't
/// have to recompute everything when the same material configuration occurs again.
Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
Key key = pos.material_key();
Entry* e = entries[key];
// If e->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (e->key == key)
return e;
std::memset(e, 0, sizeof(Entry));
e->key = key;
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
e->gamePhase = game_phase(pos);
// Let's look if we have a specialized evaluation function for this particular
// material configuration. Firstly we look for a fixed configuration one, then
// for a generic one if the previous search failed.
if (endgames.probe(key, e->evaluationFunction))
return e;
if (is_KXK<WHITE>(pos))
{
e->evaluationFunction = &EvaluateKXK[WHITE];
return e;
}
if (is_KXK<BLACK>(pos))
{
e->evaluationFunction = &EvaluateKXK[BLACK];
return e;
}
// OK, we didn't find any special evaluation function for the current
// material configuration. Is there a suitable scaling function?
//
// We face problems when there are several conflicting applicable
// scaling functions and we need to decide which one to use.
EndgameBase<ScaleFactor>* sf;
if (endgames.probe(key, sf))
{
e->scalingFunction[sf->color()] = sf;
return e;
}
// Generic scaling functions that refer to more than one material
// distribution. They should be probed after the specialized ones.
// Note that these ones don't return after setting the function.
if (is_KBPsKs<WHITE>(pos))
e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
if (is_KBPsKs<BLACK>(pos))
e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
if (is_KQKRPs<WHITE>(pos))
e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
else if (is_KQKRPs<BLACK>(pos))
e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
Value npm_w = pos.non_pawn_material(WHITE);
Value npm_b = pos.non_pawn_material(BLACK);
if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN))
{
if (!pos.count<PAWN>(BLACK))
{
assert(pos.count<PAWN>(WHITE) >= 2);
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
}
else if (!pos.count<PAWN>(WHITE))
{
assert(pos.count<PAWN>(BLACK) >= 2);
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
}
else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
{
// This is a special case because we set scaling functions
// for both colors instead of only one.
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
}
}
// No pawns makes it difficult to win, even with a material advantage. This
// catches some trivial draws like KK, KBK and KNK and gives a very drawish
// scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : npm_b <= BishopValueMg ? 4 : 12);
if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : npm_w <= BishopValueMg ? 4 : 12);
if (pos.count<PAWN>(WHITE) == 1 && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN;
if (pos.count<PAWN>(BLACK) == 1 && npm_b - npm_w <= BishopValueMg)
e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN;
// Compute the space weight
if (npm_w + npm_b >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg)
{
int minorPieceCount = pos.count<KNIGHT>(WHITE) + pos.count<BISHOP>(WHITE)
+ pos.count<KNIGHT>(BLACK) + pos.count<BISHOP>(BLACK);
e->spaceWeight = make_score(minorPieceCount * minorPieceCount, 0);
}
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
// for the bishop pair "extended piece", which allows us to be more flexible
// in defining bishop pair bonuses.
const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = {
{ pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
{ pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
e->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
return e;
}
/// Material::game_phase() calculates the phase given the current
/// position. Because the phase is strictly a function of the material, it
/// is stored in MaterialEntry.
Phase game_phase(const Position& pos) {
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
return npm >= MidgameLimit ? PHASE_MIDGAME
: npm <= EndgameLimit ? PHASE_ENDGAME
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
}
} // namespace Material