/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include // For std::min #include #include #include "material.h" using namespace std; namespace { // Polynomial material balance parameters // pair pawn knight bishop rook queen const int LinearCoefficients[6] = { 1852, -162, -1122, -183, 249, -154 }; const int QuadraticCoefficientsSameSide[][PIECE_TYPE_NB] = { // OUR PIECES // pair pawn knight bishop rook queen { 0 }, // Bishop pair { 39, 2 }, // Pawn { 35, 271, -4 }, // knight OUR PIECES { 0, 105, 4, 0 }, // Bishop { -27, -2, 46, 100, -141 }, // Rook {-177, 25, 129, 142, -137, 0 } // Queen }; const int QuadraticCoefficientsOppositeSide[][PIECE_TYPE_NB] = { // THEIR PIECES // pair pawn knight bishop rook queen { 0 }, // Bishop pair { 37, 0 }, // Pawn { 10, 62, 0 }, // Knight OUR PIECES { 57, 64, 39, 0 }, // Bishop { 50, 40, 23, -22, 0 }, // Rook { 98, 105, -39, 141, 274, 0 } // Queen }; // Endgame evaluation and scaling functions are accessed directly and not through // the function maps because they correspond to more than one material hash key. Endgame EvaluateKXK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKBPsK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKQKRPs[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKPsK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKPKP[] = { Endgame(WHITE), Endgame(BLACK) }; // Helper templates used to detect a given material distribution template bool is_KXK(const Position& pos) { const Color Them = (Us == WHITE ? BLACK : WHITE); return !pos.count(Them) && pos.non_pawn_material(Them) == VALUE_ZERO && pos.non_pawn_material(Us) >= RookValueMg; } template bool is_KBPsKs(const Position& pos) { return pos.non_pawn_material(Us) == BishopValueMg && pos.count(Us) == 1 && pos.count(Us) >= 1; } template bool is_KQKRPs(const Position& pos) { const Color Them = (Us == WHITE ? BLACK : WHITE); return !pos.count(Us) && pos.non_pawn_material(Us) == QueenValueMg && pos.count(Us) == 1 && pos.count(Them) == 1 && pos.count(Them) >= 1; } /// imbalance() calculates the imbalance by comparing the piece count of each /// piece type for both colors. template int imbalance(const int pieceCount[][PIECE_TYPE_NB]) { const Color Them = (Us == WHITE ? BLACK : WHITE); int pt1, pt2, pc, v; int value = 0; // Second-degree polynomial material imbalance by Tord Romstad for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1) { pc = pieceCount[Us][pt1]; if (!pc) continue; v = LinearCoefficients[pt1]; for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2) v += QuadraticCoefficientsSameSide[pt1][pt2] * pieceCount[Us][pt2] + QuadraticCoefficientsOppositeSide[pt1][pt2] * pieceCount[Them][pt2]; value += pc * v; } return value; } } // namespace namespace Material { /// Material::probe() takes a position object as input, looks up a MaterialEntry /// object, and returns a pointer to it. If the material configuration is not /// already present in the table, it is computed and stored there, so we don't /// have to recompute everything when the same material configuration occurs again. Entry* probe(const Position& pos, Table& entries, Endgames& endgames) { Key key = pos.material_key(); Entry* e = entries[key]; // If e->key matches the position's material hash key, it means that we // have analysed this material configuration before, and we can simply // return the information we found the last time instead of recomputing it. if (e->key == key) return e; std::memset(e, 0, sizeof(Entry)); e->key = key; e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL; e->gamePhase = game_phase(pos); // Let's look if we have a specialized evaluation function for this particular // material configuration. Firstly we look for a fixed configuration one, then // for a generic one if the previous search failed. if (endgames.probe(key, e->evaluationFunction)) return e; if (is_KXK(pos)) { e->evaluationFunction = &EvaluateKXK[WHITE]; return e; } if (is_KXK(pos)) { e->evaluationFunction = &EvaluateKXK[BLACK]; return e; } // OK, we didn't find any special evaluation function for the current // material configuration. Is there a suitable scaling function? // // We face problems when there are several conflicting applicable // scaling functions and we need to decide which one to use. EndgameBase* sf; if (endgames.probe(key, sf)) { e->scalingFunction[sf->color()] = sf; return e; } // Generic scaling functions that refer to more than one material // distribution. They should be probed after the specialized ones. // Note that these ones don't return after setting the function. if (is_KBPsKs(pos)) e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE]; if (is_KBPsKs(pos)) e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK]; if (is_KQKRPs(pos)) e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE]; else if (is_KQKRPs(pos)) e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK]; Value npm_w = pos.non_pawn_material(WHITE); Value npm_b = pos.non_pawn_material(BLACK); if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) { if (!pos.count(BLACK)) { assert(pos.count(WHITE) >= 2); e->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; } else if (!pos.count(WHITE)) { assert(pos.count(BLACK) >= 2); e->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; } else if (pos.count(WHITE) == 1 && pos.count(BLACK) == 1) { // This is a special case because we set scaling functions // for both colors instead of only one. e->scalingFunction[WHITE] = &ScaleKPKP[WHITE]; e->scalingFunction[BLACK] = &ScaleKPKP[BLACK]; } } // No pawns makes it difficult to win, even with a material advantage. This // catches some trivial draws like KK, KBK and KNK and gives a very drawish // scale factor for cases such as KRKBP and KmmKm (except for KBBKN). if (!pos.count(WHITE) && npm_w - npm_b <= BishopValueMg) e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : npm_b <= BishopValueMg ? 4 : 12); if (!pos.count(BLACK) && npm_b - npm_w <= BishopValueMg) e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : npm_w <= BishopValueMg ? 4 : 12); if (pos.count(WHITE) == 1 && npm_w - npm_b <= BishopValueMg) e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN; if (pos.count(BLACK) == 1 && npm_b - npm_w <= BishopValueMg) e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN; // Compute the space weight if (npm_w + npm_b >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg) { int minorPieceCount = pos.count(WHITE) + pos.count(WHITE) + pos.count(BLACK) + pos.count(BLACK); e->spaceWeight = make_score(minorPieceCount * minorPieceCount, 0); } // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder // for the bishop pair "extended piece", which allows us to be more flexible // in defining bishop pair bonuses. const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = { { pos.count(WHITE) > 1, pos.count(WHITE), pos.count(WHITE), pos.count(WHITE) , pos.count(WHITE), pos.count(WHITE) }, { pos.count(BLACK) > 1, pos.count(BLACK), pos.count(BLACK), pos.count(BLACK) , pos.count(BLACK), pos.count(BLACK) } }; e->value = (int16_t)((imbalance(pieceCount) - imbalance(pieceCount)) / 16); return e; } /// Material::game_phase() calculates the phase given the current /// position. Because the phase is strictly a function of the material, it /// is stored in MaterialEntry. Phase game_phase(const Position& pos) { Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK); return npm >= MidgameLimit ? PHASE_MIDGAME : npm <= EndgameLimit ? PHASE_ENDGAME : Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit)); } } // namespace Material