droidfish/DroidFish/jni/stockfish/material.cpp
2015-10-23 22:58:14 +02:00

228 lines
8.3 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm> // For std::min
#include <cassert>
#include <cstring> // For std::memset
#include "material.h"
#include "thread.h"
using namespace std;
namespace {
// Polynomial material imbalance parameters
// pair pawn knight bishop rook queen
const int Linear[6] = { 1667, -168, -1027, -166, 238, -138 };
const int QuadraticOurs[][PIECE_TYPE_NB] = {
// OUR PIECES
// pair pawn knight bishop rook queen
{ 0 }, // Bishop pair
{ 40, 2 }, // Pawn
{ 32, 255, -3 }, // Knight OUR PIECES
{ 0, 104, 4, 0 }, // Bishop
{ -26, -2, 47, 105, -149 }, // Rook
{-185, 24, 122, 137, -134, 0 } // Queen
};
const int QuadraticTheirs[][PIECE_TYPE_NB] = {
// THEIR PIECES
// pair pawn knight bishop rook queen
{ 0 }, // Bishop pair
{ 36, 0 }, // Pawn
{ 9, 63, 0 }, // Knight OUR PIECES
{ 59, 65, 42, 0 }, // Bishop
{ 46, 39, 24, -24, 0 }, // Rook
{ 101, 100, -37, 141, 268, 0 } // Queen
};
// Endgame evaluation and scaling functions are accessed directly and not through
// the function maps because they correspond to more than one material hash key.
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
// Helper used to detect a given material distribution
bool is_KXK(const Position& pos, Color us) {
return !more_than_one(pos.pieces(~us))
&& pos.non_pawn_material(us) >= RookValueMg;
}
bool is_KBPsKs(const Position& pos, Color us) {
return pos.non_pawn_material(us) == BishopValueMg
&& pos.count<BISHOP>(us) == 1
&& pos.count<PAWN >(us) >= 1;
}
bool is_KQKRPs(const Position& pos, Color us) {
return !pos.count<PAWN>(us)
&& pos.non_pawn_material(us) == QueenValueMg
&& pos.count<QUEEN>(us) == 1
&& pos.count<ROOK>(~us) == 1
&& pos.count<PAWN>(~us) >= 1;
}
/// imbalance() calculates the imbalance by comparing the piece count of each
/// piece type for both colors.
template<Color Us>
int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
int bonus = 0;
// Second-degree polynomial material imbalance by Tord Romstad
for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
{
if (!pieceCount[Us][pt1])
continue;
int v = Linear[pt1];
for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
bonus += pieceCount[Us][pt1] * v;
}
return bonus;
}
} // namespace
namespace Material {
/// Material::probe() looks up the current position's material configuration in
/// the material hash table. It returns a pointer to the Entry if the position
/// is found. Otherwise a new Entry is computed and stored there, so we don't
/// have to recompute all when the same material configuration occurs again.
Entry* probe(const Position& pos) {
Key key = pos.material_key();
Entry* e = pos.this_thread()->materialTable[key];
if (e->key == key)
return e;
std::memset(e, 0, sizeof(Entry));
e->key = key;
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
e->gamePhase = pos.game_phase();
// Let's look if we have a specialized evaluation function for this particular
// material configuration. Firstly we look for a fixed configuration one, then
// for a generic one if the previous search failed.
if ((e->evaluationFunction = pos.this_thread()->endgames.probe<Value>(key)) != nullptr)
return e;
for (Color c = WHITE; c <= BLACK; ++c)
if (is_KXK(pos, c))
{
e->evaluationFunction = &EvaluateKXK[c];
return e;
}
// OK, we didn't find any special evaluation function for the current material
// configuration. Is there a suitable specialized scaling function?
EndgameBase<ScaleFactor>* sf;
if ((sf = pos.this_thread()->endgames.probe<ScaleFactor>(key)) != nullptr)
{
e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned
return e;
}
// We didn't find any specialized scaling function, so fall back on generic
// ones that refer to more than one material distribution. Note that in this
// case we don't return after setting the function.
for (Color c = WHITE; c <= BLACK; ++c)
{
if (is_KBPsKs(pos, c))
e->scalingFunction[c] = &ScaleKBPsK[c];
else if (is_KQKRPs(pos, c))
e->scalingFunction[c] = &ScaleKQKRPs[c];
}
Value npm_w = pos.non_pawn_material(WHITE);
Value npm_b = pos.non_pawn_material(BLACK);
if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
{
if (!pos.count<PAWN>(BLACK))
{
assert(pos.count<PAWN>(WHITE) >= 2);
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
}
else if (!pos.count<PAWN>(WHITE))
{
assert(pos.count<PAWN>(BLACK) >= 2);
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
}
else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
{
// This is a special case because we set scaling functions
// for both colors instead of only one.
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
}
}
// Zero or just one pawn makes it difficult to win, even with a small material
// advantage. This catches some trivial draws like KK, KBK and KNK and gives a
// drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW :
npm_b <= BishopValueMg ? 4 : 14);
if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW :
npm_w <= BishopValueMg ? 4 : 14);
if (pos.count<PAWN>(WHITE) == 1 && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN;
if (pos.count<PAWN>(BLACK) == 1 && npm_b - npm_w <= BishopValueMg)
e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN;
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
// for the bishop pair "extended piece", which allows us to be more flexible
// in defining bishop pair bonuses.
const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = {
{ pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
{ pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
e->value = int16_t((imbalance<WHITE>(PieceCount) - imbalance<BLACK>(PieceCount)) / 16);
return e;
}
} // namespace Material