mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2024-12-04 17:30:56 +01:00
228 lines
8.3 KiB
C++
228 lines
8.3 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm> // For std::min
|
|
#include <cassert>
|
|
#include <cstring> // For std::memset
|
|
|
|
#include "material.h"
|
|
#include "thread.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace {
|
|
|
|
// Polynomial material imbalance parameters
|
|
|
|
// pair pawn knight bishop rook queen
|
|
const int Linear[6] = { 1667, -168, -1027, -166, 238, -138 };
|
|
|
|
const int QuadraticOurs[][PIECE_TYPE_NB] = {
|
|
// OUR PIECES
|
|
// pair pawn knight bishop rook queen
|
|
{ 0 }, // Bishop pair
|
|
{ 40, 2 }, // Pawn
|
|
{ 32, 255, -3 }, // Knight OUR PIECES
|
|
{ 0, 104, 4, 0 }, // Bishop
|
|
{ -26, -2, 47, 105, -149 }, // Rook
|
|
{-185, 24, 122, 137, -134, 0 } // Queen
|
|
};
|
|
|
|
const int QuadraticTheirs[][PIECE_TYPE_NB] = {
|
|
// THEIR PIECES
|
|
// pair pawn knight bishop rook queen
|
|
{ 0 }, // Bishop pair
|
|
{ 36, 0 }, // Pawn
|
|
{ 9, 63, 0 }, // Knight OUR PIECES
|
|
{ 59, 65, 42, 0 }, // Bishop
|
|
{ 46, 39, 24, -24, 0 }, // Rook
|
|
{ 101, 100, -37, 141, 268, 0 } // Queen
|
|
};
|
|
|
|
// Endgame evaluation and scaling functions are accessed directly and not through
|
|
// the function maps because they correspond to more than one material hash key.
|
|
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
|
|
|
|
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
|
|
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
|
|
Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
|
|
Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
|
|
|
|
// Helper used to detect a given material distribution
|
|
bool is_KXK(const Position& pos, Color us) {
|
|
return !more_than_one(pos.pieces(~us))
|
|
&& pos.non_pawn_material(us) >= RookValueMg;
|
|
}
|
|
|
|
bool is_KBPsKs(const Position& pos, Color us) {
|
|
return pos.non_pawn_material(us) == BishopValueMg
|
|
&& pos.count<BISHOP>(us) == 1
|
|
&& pos.count<PAWN >(us) >= 1;
|
|
}
|
|
|
|
bool is_KQKRPs(const Position& pos, Color us) {
|
|
return !pos.count<PAWN>(us)
|
|
&& pos.non_pawn_material(us) == QueenValueMg
|
|
&& pos.count<QUEEN>(us) == 1
|
|
&& pos.count<ROOK>(~us) == 1
|
|
&& pos.count<PAWN>(~us) >= 1;
|
|
}
|
|
|
|
/// imbalance() calculates the imbalance by comparing the piece count of each
|
|
/// piece type for both colors.
|
|
template<Color Us>
|
|
int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
int bonus = 0;
|
|
|
|
// Second-degree polynomial material imbalance by Tord Romstad
|
|
for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
|
|
{
|
|
if (!pieceCount[Us][pt1])
|
|
continue;
|
|
|
|
int v = Linear[pt1];
|
|
|
|
for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
|
|
v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
|
|
+ QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
|
|
|
|
bonus += pieceCount[Us][pt1] * v;
|
|
}
|
|
|
|
return bonus;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace Material {
|
|
|
|
/// Material::probe() looks up the current position's material configuration in
|
|
/// the material hash table. It returns a pointer to the Entry if the position
|
|
/// is found. Otherwise a new Entry is computed and stored there, so we don't
|
|
/// have to recompute all when the same material configuration occurs again.
|
|
|
|
Entry* probe(const Position& pos) {
|
|
|
|
Key key = pos.material_key();
|
|
Entry* e = pos.this_thread()->materialTable[key];
|
|
|
|
if (e->key == key)
|
|
return e;
|
|
|
|
std::memset(e, 0, sizeof(Entry));
|
|
e->key = key;
|
|
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
|
e->gamePhase = pos.game_phase();
|
|
|
|
// Let's look if we have a specialized evaluation function for this particular
|
|
// material configuration. Firstly we look for a fixed configuration one, then
|
|
// for a generic one if the previous search failed.
|
|
if ((e->evaluationFunction = pos.this_thread()->endgames.probe<Value>(key)) != nullptr)
|
|
return e;
|
|
|
|
for (Color c = WHITE; c <= BLACK; ++c)
|
|
if (is_KXK(pos, c))
|
|
{
|
|
e->evaluationFunction = &EvaluateKXK[c];
|
|
return e;
|
|
}
|
|
|
|
// OK, we didn't find any special evaluation function for the current material
|
|
// configuration. Is there a suitable specialized scaling function?
|
|
EndgameBase<ScaleFactor>* sf;
|
|
|
|
if ((sf = pos.this_thread()->endgames.probe<ScaleFactor>(key)) != nullptr)
|
|
{
|
|
e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned
|
|
return e;
|
|
}
|
|
|
|
// We didn't find any specialized scaling function, so fall back on generic
|
|
// ones that refer to more than one material distribution. Note that in this
|
|
// case we don't return after setting the function.
|
|
for (Color c = WHITE; c <= BLACK; ++c)
|
|
{
|
|
if (is_KBPsKs(pos, c))
|
|
e->scalingFunction[c] = &ScaleKBPsK[c];
|
|
|
|
else if (is_KQKRPs(pos, c))
|
|
e->scalingFunction[c] = &ScaleKQKRPs[c];
|
|
}
|
|
|
|
Value npm_w = pos.non_pawn_material(WHITE);
|
|
Value npm_b = pos.non_pawn_material(BLACK);
|
|
|
|
if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
|
|
{
|
|
if (!pos.count<PAWN>(BLACK))
|
|
{
|
|
assert(pos.count<PAWN>(WHITE) >= 2);
|
|
|
|
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
|
|
}
|
|
else if (!pos.count<PAWN>(WHITE))
|
|
{
|
|
assert(pos.count<PAWN>(BLACK) >= 2);
|
|
|
|
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
|
|
}
|
|
else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
|
|
{
|
|
// This is a special case because we set scaling functions
|
|
// for both colors instead of only one.
|
|
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
|
|
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
|
|
}
|
|
}
|
|
|
|
// Zero or just one pawn makes it difficult to win, even with a small material
|
|
// advantage. This catches some trivial draws like KK, KBK and KNK and gives a
|
|
// drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
|
|
if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
|
|
e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW :
|
|
npm_b <= BishopValueMg ? 4 : 14);
|
|
|
|
if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
|
|
e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW :
|
|
npm_w <= BishopValueMg ? 4 : 14);
|
|
|
|
if (pos.count<PAWN>(WHITE) == 1 && npm_w - npm_b <= BishopValueMg)
|
|
e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN;
|
|
|
|
if (pos.count<PAWN>(BLACK) == 1 && npm_b - npm_w <= BishopValueMg)
|
|
e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN;
|
|
|
|
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
|
|
// for the bishop pair "extended piece", which allows us to be more flexible
|
|
// in defining bishop pair bonuses.
|
|
const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = {
|
|
{ pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
|
|
pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
|
|
{ pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
|
|
pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
|
|
|
|
e->value = int16_t((imbalance<WHITE>(PieceCount) - imbalance<BLACK>(PieceCount)) / 16);
|
|
return e;
|
|
}
|
|
|
|
} // namespace Material
|