/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include // For std::min #include #include // For std::memset #include "material.h" #include "thread.h" using namespace std; namespace { // Polynomial material imbalance parameters // pair pawn knight bishop rook queen const int Linear[6] = { 1667, -168, -1027, -166, 238, -138 }; const int QuadraticOurs[][PIECE_TYPE_NB] = { // OUR PIECES // pair pawn knight bishop rook queen { 0 }, // Bishop pair { 40, 2 }, // Pawn { 32, 255, -3 }, // Knight OUR PIECES { 0, 104, 4, 0 }, // Bishop { -26, -2, 47, 105, -149 }, // Rook {-185, 24, 122, 137, -134, 0 } // Queen }; const int QuadraticTheirs[][PIECE_TYPE_NB] = { // THEIR PIECES // pair pawn knight bishop rook queen { 0 }, // Bishop pair { 36, 0 }, // Pawn { 9, 63, 0 }, // Knight OUR PIECES { 59, 65, 42, 0 }, // Bishop { 46, 39, 24, -24, 0 }, // Rook { 101, 100, -37, 141, 268, 0 } // Queen }; // Endgame evaluation and scaling functions are accessed directly and not through // the function maps because they correspond to more than one material hash key. Endgame EvaluateKXK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKBPsK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKQKRPs[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKPsK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKPKP[] = { Endgame(WHITE), Endgame(BLACK) }; // Helper used to detect a given material distribution bool is_KXK(const Position& pos, Color us) { return !more_than_one(pos.pieces(~us)) && pos.non_pawn_material(us) >= RookValueMg; } bool is_KBPsKs(const Position& pos, Color us) { return pos.non_pawn_material(us) == BishopValueMg && pos.count(us) == 1 && pos.count(us) >= 1; } bool is_KQKRPs(const Position& pos, Color us) { return !pos.count(us) && pos.non_pawn_material(us) == QueenValueMg && pos.count(us) == 1 && pos.count(~us) == 1 && pos.count(~us) >= 1; } /// imbalance() calculates the imbalance by comparing the piece count of each /// piece type for both colors. template int imbalance(const int pieceCount[][PIECE_TYPE_NB]) { const Color Them = (Us == WHITE ? BLACK : WHITE); int bonus = 0; // Second-degree polynomial material imbalance by Tord Romstad for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1) { if (!pieceCount[Us][pt1]) continue; int v = Linear[pt1]; for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2) v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2] + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2]; bonus += pieceCount[Us][pt1] * v; } return bonus; } } // namespace namespace Material { /// Material::probe() looks up the current position's material configuration in /// the material hash table. It returns a pointer to the Entry if the position /// is found. Otherwise a new Entry is computed and stored there, so we don't /// have to recompute all when the same material configuration occurs again. Entry* probe(const Position& pos) { Key key = pos.material_key(); Entry* e = pos.this_thread()->materialTable[key]; if (e->key == key) return e; std::memset(e, 0, sizeof(Entry)); e->key = key; e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL; e->gamePhase = pos.game_phase(); // Let's look if we have a specialized evaluation function for this particular // material configuration. Firstly we look for a fixed configuration one, then // for a generic one if the previous search failed. if ((e->evaluationFunction = pos.this_thread()->endgames.probe(key)) != nullptr) return e; for (Color c = WHITE; c <= BLACK; ++c) if (is_KXK(pos, c)) { e->evaluationFunction = &EvaluateKXK[c]; return e; } // OK, we didn't find any special evaluation function for the current material // configuration. Is there a suitable specialized scaling function? EndgameBase* sf; if ((sf = pos.this_thread()->endgames.probe(key)) != nullptr) { e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned return e; } // We didn't find any specialized scaling function, so fall back on generic // ones that refer to more than one material distribution. Note that in this // case we don't return after setting the function. for (Color c = WHITE; c <= BLACK; ++c) { if (is_KBPsKs(pos, c)) e->scalingFunction[c] = &ScaleKBPsK[c]; else if (is_KQKRPs(pos, c)) e->scalingFunction[c] = &ScaleKQKRPs[c]; } Value npm_w = pos.non_pawn_material(WHITE); Value npm_b = pos.non_pawn_material(BLACK); if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board { if (!pos.count(BLACK)) { assert(pos.count(WHITE) >= 2); e->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; } else if (!pos.count(WHITE)) { assert(pos.count(BLACK) >= 2); e->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; } else if (pos.count(WHITE) == 1 && pos.count(BLACK) == 1) { // This is a special case because we set scaling functions // for both colors instead of only one. e->scalingFunction[WHITE] = &ScaleKPKP[WHITE]; e->scalingFunction[BLACK] = &ScaleKPKP[BLACK]; } } // Zero or just one pawn makes it difficult to win, even with a small material // advantage. This catches some trivial draws like KK, KBK and KNK and gives a // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN). if (!pos.count(WHITE) && npm_w - npm_b <= BishopValueMg) e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : npm_b <= BishopValueMg ? 4 : 14); if (!pos.count(BLACK) && npm_b - npm_w <= BishopValueMg) e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : npm_w <= BishopValueMg ? 4 : 14); if (pos.count(WHITE) == 1 && npm_w - npm_b <= BishopValueMg) e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN; if (pos.count(BLACK) == 1 && npm_b - npm_w <= BishopValueMg) e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN; // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder // for the bishop pair "extended piece", which allows us to be more flexible // in defining bishop pair bonuses. const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = { { pos.count(WHITE) > 1, pos.count(WHITE), pos.count(WHITE), pos.count(WHITE) , pos.count(WHITE), pos.count(WHITE) }, { pos.count(BLACK) > 1, pos.count(BLACK), pos.count(BLACK), pos.count(BLACK) , pos.count(BLACK), pos.count(BLACK) } }; e->value = int16_t((imbalance(PieceCount) - imbalance(PieceCount)) / 16); return e; } } // namespace Material