mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-02-07 20:59:13 +01:00
2085 lines
63 KiB
C++
2085 lines
63 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
#include "bitcount.h"
|
|
#include "movegen.h"
|
|
#include "position.h"
|
|
#include "psqtab.h"
|
|
#include "rkiss.h"
|
|
#include "thread.h"
|
|
#include "tt.h"
|
|
#include "ucioption.h"
|
|
|
|
using std::string;
|
|
using std::cout;
|
|
using std::endl;
|
|
|
|
Key Position::zobrist[2][8][64];
|
|
Key Position::zobEp[64];
|
|
Key Position::zobCastle[16];
|
|
Key Position::zobSideToMove;
|
|
Key Position::zobExclusion;
|
|
|
|
Score Position::PieceSquareTable[16][64];
|
|
|
|
// Material values arrays, indexed by Piece
|
|
const Value Position::PieceValueMidgame[17] = {
|
|
VALUE_ZERO,
|
|
PawnValueMidgame, KnightValueMidgame, BishopValueMidgame,
|
|
RookValueMidgame, QueenValueMidgame, VALUE_ZERO,
|
|
VALUE_ZERO, VALUE_ZERO,
|
|
PawnValueMidgame, KnightValueMidgame, BishopValueMidgame,
|
|
RookValueMidgame, QueenValueMidgame
|
|
};
|
|
|
|
const Value Position::PieceValueEndgame[17] = {
|
|
VALUE_ZERO,
|
|
PawnValueEndgame, KnightValueEndgame, BishopValueEndgame,
|
|
RookValueEndgame, QueenValueEndgame, VALUE_ZERO,
|
|
VALUE_ZERO, VALUE_ZERO,
|
|
PawnValueEndgame, KnightValueEndgame, BishopValueEndgame,
|
|
RookValueEndgame, QueenValueEndgame
|
|
};
|
|
|
|
// Material values array used by SEE, indexed by PieceType
|
|
const Value Position::seeValues[] = {
|
|
VALUE_ZERO,
|
|
PawnValueMidgame, KnightValueMidgame, BishopValueMidgame,
|
|
RookValueMidgame, QueenValueMidgame, QueenValueMidgame*10
|
|
};
|
|
|
|
|
|
namespace {
|
|
|
|
// Bonus for having the side to move (modified by Joona Kiiski)
|
|
const Score TempoValue = make_score(48, 22);
|
|
|
|
struct PieceLetters : public std::map<char, Piece> {
|
|
|
|
PieceLetters() {
|
|
|
|
operator[]('K') = WK; operator[]('k') = BK;
|
|
operator[]('Q') = WQ; operator[]('q') = BQ;
|
|
operator[]('R') = WR; operator[]('r') = BR;
|
|
operator[]('B') = WB; operator[]('b') = BB;
|
|
operator[]('N') = WN; operator[]('n') = BN;
|
|
operator[]('P') = WP; operator[]('p') = BP;
|
|
operator[](' ') = PIECE_NONE;
|
|
operator[]('.') = PIECE_NONE_DARK_SQ;
|
|
}
|
|
|
|
char from_piece(Piece p) const {
|
|
|
|
std::map<char, Piece>::const_iterator it;
|
|
for (it = begin(); it != end(); ++it)
|
|
if (it->second == p)
|
|
return it->first;
|
|
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
PieceLetters pieceLetters;
|
|
}
|
|
|
|
|
|
/// CheckInfo c'tor
|
|
|
|
CheckInfo::CheckInfo(const Position& pos) {
|
|
|
|
Color us = pos.side_to_move();
|
|
Color them = opposite_color(us);
|
|
|
|
ksq = pos.king_square(them);
|
|
dcCandidates = pos.discovered_check_candidates(us);
|
|
|
|
checkSq[PAWN] = pos.attacks_from<PAWN>(ksq, them);
|
|
checkSq[KNIGHT] = pos.attacks_from<KNIGHT>(ksq);
|
|
checkSq[BISHOP] = pos.attacks_from<BISHOP>(ksq);
|
|
checkSq[ROOK] = pos.attacks_from<ROOK>(ksq);
|
|
checkSq[QUEEN] = checkSq[BISHOP] | checkSq[ROOK];
|
|
checkSq[KING] = EmptyBoardBB;
|
|
}
|
|
|
|
|
|
/// Position c'tors. Here we always create a copy of the original position
|
|
/// or the FEN string, we want the new born Position object do not depend
|
|
/// on any external data so we detach state pointer from the source one.
|
|
|
|
Position::Position(const Position& pos, int th) {
|
|
|
|
memcpy(this, &pos, sizeof(Position));
|
|
detach(); // Always detach() in copy c'tor to avoid surprises
|
|
threadID = th;
|
|
nodes = 0;
|
|
}
|
|
|
|
Position::Position(const string& fen, bool isChess960, int th) {
|
|
|
|
from_fen(fen, isChess960);
|
|
threadID = th;
|
|
}
|
|
|
|
|
|
/// Position::detach() copies the content of the current state and castling
|
|
/// masks inside the position itself. This is needed when the st pointee could
|
|
/// become stale, as example because the caller is about to going out of scope.
|
|
|
|
void Position::detach() {
|
|
|
|
startState = *st;
|
|
st = &startState;
|
|
st->previous = NULL; // as a safe guard
|
|
}
|
|
|
|
|
|
/// Position::from_fen() initializes the position object with the given FEN
|
|
/// string. This function is not very robust - make sure that input FENs are
|
|
/// correct (this is assumed to be the responsibility of the GUI).
|
|
|
|
void Position::from_fen(const string& fen, bool isChess960) {
|
|
/*
|
|
A FEN string defines a particular position using only the ASCII character set.
|
|
|
|
A FEN string contains six fields. The separator between fields is a space. The fields are:
|
|
|
|
1) Piece placement (from white's perspective). Each rank is described, starting with rank 8 and ending
|
|
with rank 1; within each rank, the contents of each square are described from file A through file H.
|
|
Following the Standard Algebraic Notation (SAN), each piece is identified by a single letter taken
|
|
from the standard English names. White pieces are designated using upper-case letters ("PNBRQK")
|
|
while Black take lowercase ("pnbrqk"). Blank squares are noted using digits 1 through 8 (the number
|
|
of blank squares), and "/" separate ranks.
|
|
|
|
2) Active color. "w" means white moves next, "b" means black.
|
|
|
|
3) Castling availability. If neither side can castle, this is "-". Otherwise, this has one or more
|
|
letters: "K" (White can castle kingside), "Q" (White can castle queenside), "k" (Black can castle
|
|
kingside), and/or "q" (Black can castle queenside).
|
|
|
|
4) En passant target square in algebraic notation. If there's no en passant target square, this is "-".
|
|
If a pawn has just made a 2-square move, this is the position "behind" the pawn. This is recorded
|
|
regardless of whether there is a pawn in position to make an en passant capture.
|
|
|
|
5) Halfmove clock: This is the number of halfmoves since the last pawn advance or capture. This is used
|
|
to determine if a draw can be claimed under the fifty-move rule.
|
|
|
|
6) Fullmove number: The number of the full move. It starts at 1, and is incremented after Black's move.
|
|
*/
|
|
|
|
char token;
|
|
int hmc, fmn;
|
|
std::istringstream ss(fen);
|
|
Square sq = SQ_A8;
|
|
|
|
clear();
|
|
|
|
// 1. Piece placement field
|
|
while (ss.get(token) && token != ' ')
|
|
{
|
|
if (pieceLetters.find(token) != pieceLetters.end())
|
|
{
|
|
put_piece(pieceLetters[token], sq);
|
|
sq++;
|
|
}
|
|
else if (isdigit(token))
|
|
sq += Square(token - '0'); // Skip the given number of files
|
|
else if (token == '/')
|
|
sq -= SQ_A3; // Jump back of 2 rows
|
|
else
|
|
goto incorrect_fen;
|
|
}
|
|
|
|
// 2. Active color
|
|
if (!ss.get(token) || (token != 'w' && token != 'b'))
|
|
goto incorrect_fen;
|
|
|
|
sideToMove = (token == 'w' ? WHITE : BLACK);
|
|
|
|
if (!ss.get(token) || token != ' ')
|
|
goto incorrect_fen;
|
|
|
|
// 3. Castling availability
|
|
while (ss.get(token) && token != ' ')
|
|
if (!set_castling_rights(token))
|
|
goto incorrect_fen;
|
|
|
|
// 4. En passant square
|
|
char col, row;
|
|
if ( (ss.get(col) && (col >= 'a' && col <= 'h'))
|
|
&& (ss.get(row) && (row == '3' || row == '6')))
|
|
{
|
|
st->epSquare = make_square(file_from_char(col), rank_from_char(row));
|
|
|
|
// Ignore if no capture is possible
|
|
Color them = opposite_color(sideToMove);
|
|
if (!(attacks_from<PAWN>(st->epSquare, them) & pieces(PAWN, sideToMove)))
|
|
st->epSquare = SQ_NONE;
|
|
}
|
|
|
|
// 5. Halfmove clock
|
|
if (ss >> hmc)
|
|
st->rule50 = hmc;
|
|
|
|
// 6. Fullmove number
|
|
if (ss >> fmn)
|
|
startPosPlyCounter = (fmn - 1) * 2 + int(sideToMove == BLACK);
|
|
|
|
// Various initialisations
|
|
castleRightsMask[make_square(initialKFile, RANK_1)] ^= WHITE_OO | WHITE_OOO;
|
|
castleRightsMask[make_square(initialKFile, RANK_8)] ^= BLACK_OO | BLACK_OOO;
|
|
castleRightsMask[make_square(initialKRFile, RANK_1)] ^= WHITE_OO;
|
|
castleRightsMask[make_square(initialKRFile, RANK_8)] ^= BLACK_OO;
|
|
castleRightsMask[make_square(initialQRFile, RANK_1)] ^= WHITE_OOO;
|
|
castleRightsMask[make_square(initialQRFile, RANK_8)] ^= BLACK_OOO;
|
|
|
|
chess960 = isChess960;
|
|
find_checkers();
|
|
|
|
st->key = compute_key();
|
|
st->pawnKey = compute_pawn_key();
|
|
st->materialKey = compute_material_key();
|
|
st->value = compute_value();
|
|
st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
|
|
st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
|
|
return;
|
|
|
|
incorrect_fen:
|
|
cout << "Error in FEN string: " << fen << endl;
|
|
}
|
|
|
|
|
|
/// Position::set_castling_rights() sets castling parameters castling avaiability.
|
|
/// This function is compatible with 3 standards: Normal FEN standard, Shredder-FEN
|
|
/// that uses the letters of the columns on which the rooks began the game instead
|
|
/// of KQkq and also X-FEN standard that, in case of Chess960, if an inner Rook is
|
|
/// associated with the castling right, the traditional castling tag will be replaced
|
|
/// by the file letter of the involved rook as for the Shredder-FEN.
|
|
|
|
bool Position::set_castling_rights(char token) {
|
|
|
|
Color c = token >= 'a' ? BLACK : WHITE;
|
|
Square sqA = (c == WHITE ? SQ_A1 : SQ_A8);
|
|
Square sqH = (c == WHITE ? SQ_H1 : SQ_H8);
|
|
Piece rook = (c == WHITE ? WR : BR);
|
|
|
|
initialKFile = square_file(king_square(c));
|
|
token = char(toupper(token));
|
|
|
|
if (token == 'K')
|
|
{
|
|
for (Square sq = sqH; sq >= sqA; sq--)
|
|
if (piece_on(sq) == rook)
|
|
{
|
|
do_allow_oo(c);
|
|
initialKRFile = square_file(sq);
|
|
break;
|
|
}
|
|
}
|
|
else if (token == 'Q')
|
|
{
|
|
for (Square sq = sqA; sq <= sqH; sq++)
|
|
if (piece_on(sq) == rook)
|
|
{
|
|
do_allow_ooo(c);
|
|
initialQRFile = square_file(sq);
|
|
break;
|
|
}
|
|
}
|
|
else if (token >= 'A' && token <= 'H')
|
|
{
|
|
File rookFile = File(token - 'A') + FILE_A;
|
|
if (rookFile < initialKFile)
|
|
{
|
|
do_allow_ooo(c);
|
|
initialQRFile = rookFile;
|
|
}
|
|
else
|
|
{
|
|
do_allow_oo(c);
|
|
initialKRFile = rookFile;
|
|
}
|
|
}
|
|
else
|
|
return token == '-';
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Position::to_fen() returns a FEN representation of the position. In case
|
|
/// of Chess960 the Shredder-FEN notation is used. Mainly a debugging function.
|
|
|
|
const string Position::to_fen() const {
|
|
|
|
string fen;
|
|
Square sq;
|
|
char emptyCnt = '0';
|
|
|
|
for (Rank rank = RANK_8; rank >= RANK_1; rank--, fen += '/')
|
|
{
|
|
for (File file = FILE_A; file <= FILE_H; file++)
|
|
{
|
|
sq = make_square(file, rank);
|
|
|
|
if (square_is_occupied(sq))
|
|
{
|
|
if (emptyCnt != '0')
|
|
{
|
|
fen += emptyCnt;
|
|
emptyCnt = '0';
|
|
}
|
|
fen += pieceLetters.from_piece(piece_on(sq));
|
|
} else
|
|
emptyCnt++;
|
|
}
|
|
|
|
if (emptyCnt != '0')
|
|
{
|
|
fen += emptyCnt;
|
|
emptyCnt = '0';
|
|
}
|
|
}
|
|
|
|
fen += (sideToMove == WHITE ? " w " : " b ");
|
|
|
|
if (st->castleRights != CASTLES_NONE)
|
|
{
|
|
if (can_castle_kingside(WHITE))
|
|
fen += chess960 ? char(toupper(file_to_char(initialKRFile))) : 'K';
|
|
|
|
if (can_castle_queenside(WHITE))
|
|
fen += chess960 ? char(toupper(file_to_char(initialQRFile))) : 'Q';
|
|
|
|
if (can_castle_kingside(BLACK))
|
|
fen += chess960 ? file_to_char(initialKRFile) : 'k';
|
|
|
|
if (can_castle_queenside(BLACK))
|
|
fen += chess960 ? file_to_char(initialQRFile) : 'q';
|
|
} else
|
|
fen += '-';
|
|
|
|
fen += (ep_square() == SQ_NONE ? " -" : " " + square_to_string(ep_square()));
|
|
return fen;
|
|
}
|
|
|
|
|
|
/// Position::print() prints an ASCII representation of the position to
|
|
/// the standard output. If a move is given then also the san is printed.
|
|
|
|
void Position::print(Move move) const {
|
|
|
|
const char* dottedLine = "\n+---+---+---+---+---+---+---+---+\n";
|
|
|
|
if (move)
|
|
{
|
|
Position p(*this, thread());
|
|
string dd = (color_of_piece_on(move_from(move)) == BLACK ? ".." : "");
|
|
cout << "\nMove is: " << dd << move_to_san(p, move);
|
|
}
|
|
|
|
for (Rank rank = RANK_8; rank >= RANK_1; rank--)
|
|
{
|
|
cout << dottedLine << '|';
|
|
for (File file = FILE_A; file <= FILE_H; file++)
|
|
{
|
|
Square sq = make_square(file, rank);
|
|
Piece piece = piece_on(sq);
|
|
|
|
if (piece == PIECE_NONE && square_color(sq) == DARK)
|
|
piece = PIECE_NONE_DARK_SQ;
|
|
|
|
char c = (color_of_piece_on(sq) == BLACK ? '=' : ' ');
|
|
cout << c << pieceLetters.from_piece(piece) << c << '|';
|
|
}
|
|
}
|
|
cout << dottedLine << "Fen is: " << to_fen() << "\nKey is: " << st->key << endl;
|
|
}
|
|
|
|
|
|
/// Position:hidden_checkers<>() returns a bitboard of all pinned (against the
|
|
/// king) pieces for the given color and for the given pinner type. Or, when
|
|
/// template parameter FindPinned is false, the pieces of the given color
|
|
/// candidate for a discovery check against the enemy king.
|
|
/// Bitboard checkersBB must be already updated when looking for pinners.
|
|
|
|
template<bool FindPinned>
|
|
Bitboard Position::hidden_checkers(Color c) const {
|
|
|
|
Bitboard result = EmptyBoardBB;
|
|
Bitboard pinners = pieces_of_color(FindPinned ? opposite_color(c) : c);
|
|
|
|
// Pinned pieces protect our king, dicovery checks attack
|
|
// the enemy king.
|
|
Square ksq = king_square(FindPinned ? c : opposite_color(c));
|
|
|
|
// Pinners are sliders, not checkers, that give check when candidate pinned is removed
|
|
pinners &= (pieces(ROOK, QUEEN) & RookPseudoAttacks[ksq]) | (pieces(BISHOP, QUEEN) & BishopPseudoAttacks[ksq]);
|
|
|
|
if (FindPinned && pinners)
|
|
pinners &= ~st->checkersBB;
|
|
|
|
while (pinners)
|
|
{
|
|
Square s = pop_1st_bit(&pinners);
|
|
Bitboard b = squares_between(s, ksq) & occupied_squares();
|
|
|
|
assert(b);
|
|
|
|
if ( !(b & (b - 1)) // Only one bit set?
|
|
&& (b & pieces_of_color(c))) // Is an our piece?
|
|
result |= b;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Position:pinned_pieces() returns a bitboard of all pinned (against the
|
|
/// king) pieces for the given color. Note that checkersBB bitboard must
|
|
/// be already updated.
|
|
|
|
Bitboard Position::pinned_pieces(Color c) const {
|
|
|
|
return hidden_checkers<true>(c);
|
|
}
|
|
|
|
|
|
/// Position:discovered_check_candidates() returns a bitboard containing all
|
|
/// pieces for the given side which are candidates for giving a discovered
|
|
/// check. Contrary to pinned_pieces() here there is no need of checkersBB
|
|
/// to be already updated.
|
|
|
|
Bitboard Position::discovered_check_candidates(Color c) const {
|
|
|
|
return hidden_checkers<false>(c);
|
|
}
|
|
|
|
/// Position::attackers_to() computes a bitboard containing all pieces which
|
|
/// attacks a given square.
|
|
|
|
Bitboard Position::attackers_to(Square s) const {
|
|
|
|
return (attacks_from<PAWN>(s, BLACK) & pieces(PAWN, WHITE))
|
|
| (attacks_from<PAWN>(s, WHITE) & pieces(PAWN, BLACK))
|
|
| (attacks_from<KNIGHT>(s) & pieces(KNIGHT))
|
|
| (attacks_from<ROOK>(s) & pieces(ROOK, QUEEN))
|
|
| (attacks_from<BISHOP>(s) & pieces(BISHOP, QUEEN))
|
|
| (attacks_from<KING>(s) & pieces(KING));
|
|
}
|
|
|
|
/// Position::attacks_from() computes a bitboard of all attacks
|
|
/// of a given piece put in a given square.
|
|
|
|
Bitboard Position::attacks_from(Piece p, Square s) const {
|
|
|
|
assert(square_is_ok(s));
|
|
|
|
switch (p)
|
|
{
|
|
case WB: case BB: return attacks_from<BISHOP>(s);
|
|
case WR: case BR: return attacks_from<ROOK>(s);
|
|
case WQ: case BQ: return attacks_from<QUEEN>(s);
|
|
default: return StepAttacksBB[p][s];
|
|
}
|
|
}
|
|
|
|
Bitboard Position::attacks_from(Piece p, Square s, Bitboard occ) {
|
|
|
|
assert(square_is_ok(s));
|
|
|
|
switch (p)
|
|
{
|
|
case WB: case BB: return bishop_attacks_bb(s, occ);
|
|
case WR: case BR: return rook_attacks_bb(s, occ);
|
|
case WQ: case BQ: return bishop_attacks_bb(s, occ) | rook_attacks_bb(s, occ);
|
|
default: return StepAttacksBB[p][s];
|
|
}
|
|
}
|
|
|
|
|
|
/// Position::move_attacks_square() tests whether a move from the current
|
|
/// position attacks a given square.
|
|
|
|
bool Position::move_attacks_square(Move m, Square s) const {
|
|
|
|
assert(move_is_ok(m));
|
|
assert(square_is_ok(s));
|
|
|
|
Bitboard occ, xray;
|
|
Square f = move_from(m), t = move_to(m);
|
|
|
|
assert(square_is_occupied(f));
|
|
|
|
if (bit_is_set(attacks_from(piece_on(f), t), s))
|
|
return true;
|
|
|
|
// Move the piece and scan for X-ray attacks behind it
|
|
occ = occupied_squares();
|
|
do_move_bb(&occ, make_move_bb(f, t));
|
|
xray = ( (rook_attacks_bb(s, occ) & pieces(ROOK, QUEEN))
|
|
|(bishop_attacks_bb(s, occ) & pieces(BISHOP, QUEEN)))
|
|
& pieces_of_color(color_of_piece_on(f));
|
|
|
|
// If we have attacks we need to verify that are caused by our move
|
|
// and are not already existent ones.
|
|
return xray && (xray ^ (xray & attacks_from<QUEEN>(s)));
|
|
}
|
|
|
|
|
|
/// Position::find_checkers() computes the checkersBB bitboard, which
|
|
/// contains a nonzero bit for each checking piece (0, 1 or 2). It
|
|
/// currently works by calling Position::attackers_to, which is probably
|
|
/// inefficient. Consider rewriting this function to use the last move
|
|
/// played, like in non-bitboard versions of Glaurung.
|
|
|
|
void Position::find_checkers() {
|
|
|
|
Color us = side_to_move();
|
|
st->checkersBB = attackers_to(king_square(us)) & pieces_of_color(opposite_color(us));
|
|
}
|
|
|
|
|
|
/// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal
|
|
|
|
bool Position::pl_move_is_legal(Move m, Bitboard pinned) const {
|
|
|
|
assert(is_ok());
|
|
assert(move_is_ok(m));
|
|
assert(pinned == pinned_pieces(side_to_move()));
|
|
|
|
// Castling moves are checked for legality during move generation.
|
|
if (move_is_castle(m))
|
|
return true;
|
|
|
|
// En passant captures are a tricky special case. Because they are
|
|
// rather uncommon, we do it simply by testing whether the king is attacked
|
|
// after the move is made
|
|
if (move_is_ep(m))
|
|
{
|
|
Color us = side_to_move();
|
|
Color them = opposite_color(us);
|
|
Square from = move_from(m);
|
|
Square to = move_to(m);
|
|
Square capsq = make_square(square_file(to), square_rank(from));
|
|
Square ksq = king_square(us);
|
|
Bitboard b = occupied_squares();
|
|
|
|
assert(to == ep_square());
|
|
assert(piece_on(from) == make_piece(us, PAWN));
|
|
assert(piece_on(capsq) == make_piece(them, PAWN));
|
|
assert(piece_on(to) == PIECE_NONE);
|
|
|
|
clear_bit(&b, from);
|
|
clear_bit(&b, capsq);
|
|
set_bit(&b, to);
|
|
|
|
return !(rook_attacks_bb(ksq, b) & pieces(ROOK, QUEEN, them))
|
|
&& !(bishop_attacks_bb(ksq, b) & pieces(BISHOP, QUEEN, them));
|
|
}
|
|
|
|
Color us = side_to_move();
|
|
Square from = move_from(m);
|
|
|
|
assert(color_of_piece_on(from) == us);
|
|
assert(piece_on(king_square(us)) == make_piece(us, KING));
|
|
|
|
// If the moving piece is a king, check whether the destination
|
|
// square is attacked by the opponent.
|
|
if (type_of_piece_on(from) == KING)
|
|
return !(attackers_to(move_to(m)) & pieces_of_color(opposite_color(us)));
|
|
|
|
// A non-king move is legal if and only if it is not pinned or it
|
|
// is moving along the ray towards or away from the king.
|
|
return !pinned
|
|
|| !bit_is_set(pinned, from)
|
|
|| squares_aligned(from, move_to(m), king_square(us));
|
|
}
|
|
|
|
|
|
/// Position::pl_move_is_evasion() tests whether a pseudo-legal move is a legal evasion
|
|
|
|
bool Position::pl_move_is_evasion(Move m, Bitboard pinned) const
|
|
{
|
|
assert(in_check());
|
|
|
|
Color us = side_to_move();
|
|
Square from = move_from(m);
|
|
Square to = move_to(m);
|
|
|
|
// King moves and en-passant captures are verified in pl_move_is_legal()
|
|
if (type_of_piece_on(from) == KING || move_is_ep(m))
|
|
return pl_move_is_legal(m, pinned);
|
|
|
|
Bitboard target = checkers();
|
|
Square checksq = pop_1st_bit(&target);
|
|
|
|
if (target) // double check ?
|
|
return false;
|
|
|
|
// Our move must be a blocking evasion or a capture of the checking piece
|
|
target = squares_between(checksq, king_square(us)) | checkers();
|
|
return bit_is_set(target, to) && pl_move_is_legal(m, pinned);
|
|
}
|
|
|
|
/// Position::move_is_legal() takes a position and a (not necessarily pseudo-legal)
|
|
/// move and tests whether the move is legal. This version is not very fast and
|
|
/// should be used only in non time-critical paths.
|
|
|
|
bool Position::move_is_legal(const Move m) const {
|
|
|
|
MoveStack mlist[MAX_MOVES];
|
|
MoveStack *cur, *last = generate<MV_PSEUDO_LEGAL>(*this, mlist);
|
|
|
|
for (cur = mlist; cur != last; cur++)
|
|
if (cur->move == m)
|
|
return pl_move_is_legal(m, pinned_pieces(sideToMove));
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Fast version of Position::move_is_legal() that takes a position a move and
|
|
/// a bitboard of pinned pieces as input, and tests whether the move is legal.
|
|
|
|
bool Position::move_is_legal(const Move m, Bitboard pinned) const {
|
|
|
|
assert(is_ok());
|
|
assert(pinned == pinned_pieces(sideToMove));
|
|
|
|
Color us = sideToMove;
|
|
Color them = opposite_color(sideToMove);
|
|
Square from = move_from(m);
|
|
Square to = move_to(m);
|
|
Piece pc = piece_on(from);
|
|
|
|
// Use a slower but simpler function for uncommon cases
|
|
if (move_is_special(m))
|
|
return move_is_legal(m);
|
|
|
|
// If the from square is not occupied by a piece belonging to the side to
|
|
// move, the move is obviously not legal.
|
|
if (color_of_piece(pc) != us)
|
|
return false;
|
|
|
|
// The destination square cannot be occupied by a friendly piece
|
|
if (color_of_piece_on(to) == us)
|
|
return false;
|
|
|
|
// Handle the special case of a pawn move
|
|
if (type_of_piece(pc) == PAWN)
|
|
{
|
|
// Move direction must be compatible with pawn color
|
|
int direction = to - from;
|
|
if ((us == WHITE) != (direction > 0))
|
|
return false;
|
|
|
|
// We have already handled promotion moves, so destination
|
|
// cannot be on the 8/1th rank.
|
|
if (square_rank(to) == RANK_8 || square_rank(to) == RANK_1)
|
|
return false;
|
|
|
|
// Proceed according to the square delta between the origin and
|
|
// destination squares.
|
|
switch (direction)
|
|
{
|
|
case DELTA_NW:
|
|
case DELTA_NE:
|
|
case DELTA_SW:
|
|
case DELTA_SE:
|
|
// Capture. The destination square must be occupied by an enemy
|
|
// piece (en passant captures was handled earlier).
|
|
if (color_of_piece_on(to) != them)
|
|
return false;
|
|
break;
|
|
|
|
case DELTA_N:
|
|
case DELTA_S:
|
|
// Pawn push. The destination square must be empty.
|
|
if (!square_is_empty(to))
|
|
return false;
|
|
break;
|
|
|
|
case DELTA_NN:
|
|
// Double white pawn push. The destination square must be on the fourth
|
|
// rank, and both the destination square and the square between the
|
|
// source and destination squares must be empty.
|
|
if ( square_rank(to) != RANK_4
|
|
|| !square_is_empty(to)
|
|
|| !square_is_empty(from + DELTA_N))
|
|
return false;
|
|
break;
|
|
|
|
case DELTA_SS:
|
|
// Double black pawn push. The destination square must be on the fifth
|
|
// rank, and both the destination square and the square between the
|
|
// source and destination squares must be empty.
|
|
if ( square_rank(to) != RANK_5
|
|
|| !square_is_empty(to)
|
|
|| !square_is_empty(from + DELTA_S))
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
else if (!bit_is_set(attacks_from(pc, from), to))
|
|
return false;
|
|
|
|
// The move is pseudo-legal, check if it is also legal
|
|
return in_check() ? pl_move_is_evasion(m, pinned) : pl_move_is_legal(m, pinned);
|
|
}
|
|
|
|
|
|
/// Position::move_gives_check() tests whether a pseudo-legal move is a check
|
|
|
|
bool Position::move_gives_check(Move m) const {
|
|
|
|
return move_gives_check(m, CheckInfo(*this));
|
|
}
|
|
|
|
bool Position::move_gives_check(Move m, const CheckInfo& ci) const {
|
|
|
|
assert(is_ok());
|
|
assert(move_is_ok(m));
|
|
assert(ci.dcCandidates == discovered_check_candidates(side_to_move()));
|
|
assert(color_of_piece_on(move_from(m)) == side_to_move());
|
|
assert(piece_on(ci.ksq) == make_piece(opposite_color(side_to_move()), KING));
|
|
|
|
Square from = move_from(m);
|
|
Square to = move_to(m);
|
|
PieceType pt = type_of_piece_on(from);
|
|
|
|
// Direct check ?
|
|
if (bit_is_set(ci.checkSq[pt], to))
|
|
return true;
|
|
|
|
// Discovery check ?
|
|
if (ci.dcCandidates && bit_is_set(ci.dcCandidates, from))
|
|
{
|
|
// For pawn and king moves we need to verify also direction
|
|
if ( (pt != PAWN && pt != KING)
|
|
|| !squares_aligned(from, to, ci.ksq))
|
|
return true;
|
|
}
|
|
|
|
// Can we skip the ugly special cases ?
|
|
if (!move_is_special(m))
|
|
return false;
|
|
|
|
Color us = side_to_move();
|
|
Bitboard b = occupied_squares();
|
|
|
|
// Promotion with check ?
|
|
if (move_is_promotion(m))
|
|
{
|
|
clear_bit(&b, from);
|
|
|
|
switch (move_promotion_piece(m))
|
|
{
|
|
case KNIGHT:
|
|
return bit_is_set(attacks_from<KNIGHT>(to), ci.ksq);
|
|
case BISHOP:
|
|
return bit_is_set(bishop_attacks_bb(to, b), ci.ksq);
|
|
case ROOK:
|
|
return bit_is_set(rook_attacks_bb(to, b), ci.ksq);
|
|
case QUEEN:
|
|
return bit_is_set(queen_attacks_bb(to, b), ci.ksq);
|
|
default:
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
// En passant capture with check ? We have already handled the case
|
|
// of direct checks and ordinary discovered check, the only case we
|
|
// need to handle is the unusual case of a discovered check through
|
|
// the captured pawn.
|
|
if (move_is_ep(m))
|
|
{
|
|
Square capsq = make_square(square_file(to), square_rank(from));
|
|
clear_bit(&b, from);
|
|
clear_bit(&b, capsq);
|
|
set_bit(&b, to);
|
|
return (rook_attacks_bb(ci.ksq, b) & pieces(ROOK, QUEEN, us))
|
|
||(bishop_attacks_bb(ci.ksq, b) & pieces(BISHOP, QUEEN, us));
|
|
}
|
|
|
|
// Castling with check ?
|
|
if (move_is_castle(m))
|
|
{
|
|
Square kfrom, kto, rfrom, rto;
|
|
kfrom = from;
|
|
rfrom = to;
|
|
|
|
if (rfrom > kfrom)
|
|
{
|
|
kto = relative_square(us, SQ_G1);
|
|
rto = relative_square(us, SQ_F1);
|
|
} else {
|
|
kto = relative_square(us, SQ_C1);
|
|
rto = relative_square(us, SQ_D1);
|
|
}
|
|
clear_bit(&b, kfrom);
|
|
clear_bit(&b, rfrom);
|
|
set_bit(&b, rto);
|
|
set_bit(&b, kto);
|
|
return bit_is_set(rook_attacks_bb(rto, b), ci.ksq);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Position::do_setup_move() makes a permanent move on the board. It should
|
|
/// be used when setting up a position on board. You can't undo the move.
|
|
|
|
void Position::do_setup_move(Move m) {
|
|
|
|
StateInfo newSt;
|
|
|
|
do_move(m, newSt);
|
|
|
|
// Reset "game ply" in case we made a non-reversible move.
|
|
// "game ply" is used for repetition detection.
|
|
if (st->rule50 == 0)
|
|
st->gamePly = 0;
|
|
|
|
// Update the number of plies played from the starting position
|
|
startPosPlyCounter++;
|
|
|
|
// Our StateInfo newSt is about going out of scope so copy
|
|
// its content before it disappears.
|
|
detach();
|
|
}
|
|
|
|
|
|
/// Position::do_move() makes a move, and saves all information necessary
|
|
/// to a StateInfo object. The move is assumed to be legal. Pseudo-legal
|
|
/// moves should be filtered out before this function is called.
|
|
|
|
void Position::do_move(Move m, StateInfo& newSt) {
|
|
|
|
CheckInfo ci(*this);
|
|
do_move(m, newSt, ci, move_gives_check(m, ci));
|
|
}
|
|
|
|
void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveIsCheck) {
|
|
|
|
assert(is_ok());
|
|
assert(move_is_ok(m));
|
|
assert(&newSt != st);
|
|
|
|
nodes++;
|
|
Key key = st->key;
|
|
|
|
// Copy some fields of old state to our new StateInfo object except the
|
|
// ones which are recalculated from scratch anyway, then switch our state
|
|
// pointer to point to the new, ready to be updated, state.
|
|
struct ReducedStateInfo {
|
|
Key pawnKey, materialKey;
|
|
int castleRights, rule50, gamePly, pliesFromNull;
|
|
Square epSquare;
|
|
Score value;
|
|
Value npMaterial[2];
|
|
};
|
|
|
|
memcpy(&newSt, st, sizeof(ReducedStateInfo));
|
|
|
|
newSt.previous = st;
|
|
st = &newSt;
|
|
|
|
// Save the current key to the history[] array, in order to be able to
|
|
// detect repetition draws.
|
|
history[st->gamePly++] = key;
|
|
|
|
// Update side to move
|
|
key ^= zobSideToMove;
|
|
|
|
// Increment the 50 moves rule draw counter. Resetting it to zero in the
|
|
// case of non-reversible moves is taken care of later.
|
|
st->rule50++;
|
|
st->pliesFromNull++;
|
|
|
|
if (move_is_castle(m))
|
|
{
|
|
st->key = key;
|
|
do_castle_move(m);
|
|
return;
|
|
}
|
|
|
|
Color us = side_to_move();
|
|
Color them = opposite_color(us);
|
|
Square from = move_from(m);
|
|
Square to = move_to(m);
|
|
bool ep = move_is_ep(m);
|
|
bool pm = move_is_promotion(m);
|
|
|
|
Piece piece = piece_on(from);
|
|
PieceType pt = type_of_piece(piece);
|
|
PieceType capture = ep ? PAWN : type_of_piece_on(to);
|
|
|
|
assert(color_of_piece_on(from) == us);
|
|
assert(color_of_piece_on(to) == them || square_is_empty(to));
|
|
assert(!(ep || pm) || piece == make_piece(us, PAWN));
|
|
assert(!pm || relative_rank(us, to) == RANK_8);
|
|
|
|
if (capture)
|
|
do_capture_move(key, capture, them, to, ep);
|
|
|
|
// Update hash key
|
|
key ^= zobrist[us][pt][from] ^ zobrist[us][pt][to];
|
|
|
|
// Reset en passant square
|
|
if (st->epSquare != SQ_NONE)
|
|
{
|
|
key ^= zobEp[st->epSquare];
|
|
st->epSquare = SQ_NONE;
|
|
}
|
|
|
|
// Update castle rights, try to shortcut a common case
|
|
int cm = castleRightsMask[from] & castleRightsMask[to];
|
|
if (cm != ALL_CASTLES && ((cm & st->castleRights) != st->castleRights))
|
|
{
|
|
key ^= zobCastle[st->castleRights];
|
|
st->castleRights &= castleRightsMask[from];
|
|
st->castleRights &= castleRightsMask[to];
|
|
key ^= zobCastle[st->castleRights];
|
|
}
|
|
|
|
// Prefetch TT access as soon as we know key is updated
|
|
prefetch((char*)TT.first_entry(key));
|
|
|
|
// Move the piece
|
|
Bitboard move_bb = make_move_bb(from, to);
|
|
do_move_bb(&(byColorBB[us]), move_bb);
|
|
do_move_bb(&(byTypeBB[pt]), move_bb);
|
|
do_move_bb(&(byTypeBB[0]), move_bb); // HACK: byTypeBB[0] == occupied squares
|
|
|
|
board[to] = board[from];
|
|
board[from] = PIECE_NONE;
|
|
|
|
// Update piece lists, note that index[from] is not updated and
|
|
// becomes stale. This works as long as index[] is accessed just
|
|
// by known occupied squares.
|
|
index[to] = index[from];
|
|
pieceList[us][pt][index[to]] = to;
|
|
|
|
// If the moving piece was a pawn do some special extra work
|
|
if (pt == PAWN)
|
|
{
|
|
// Reset rule 50 draw counter
|
|
st->rule50 = 0;
|
|
|
|
// Update pawn hash key and prefetch in L1/L2 cache
|
|
st->pawnKey ^= zobrist[us][PAWN][from] ^ zobrist[us][PAWN][to];
|
|
|
|
// Set en passant square, only if moved pawn can be captured
|
|
if ((to ^ from) == 16)
|
|
{
|
|
if (attacks_from<PAWN>(from + (us == WHITE ? DELTA_N : DELTA_S), us) & pieces(PAWN, them))
|
|
{
|
|
st->epSquare = Square((int(from) + int(to)) / 2);
|
|
key ^= zobEp[st->epSquare];
|
|
}
|
|
}
|
|
|
|
if (pm) // promotion ?
|
|
{
|
|
PieceType promotion = move_promotion_piece(m);
|
|
|
|
assert(promotion >= KNIGHT && promotion <= QUEEN);
|
|
|
|
// Insert promoted piece instead of pawn
|
|
clear_bit(&(byTypeBB[PAWN]), to);
|
|
set_bit(&(byTypeBB[promotion]), to);
|
|
board[to] = make_piece(us, promotion);
|
|
|
|
// Update piece counts
|
|
pieceCount[us][promotion]++;
|
|
pieceCount[us][PAWN]--;
|
|
|
|
// Update material key
|
|
st->materialKey ^= zobrist[us][PAWN][pieceCount[us][PAWN]];
|
|
st->materialKey ^= zobrist[us][promotion][pieceCount[us][promotion]-1];
|
|
|
|
// Update piece lists, move the last pawn at index[to] position
|
|
// and shrink the list. Add a new promotion piece to the list.
|
|
Square lastPawnSquare = pieceList[us][PAWN][pieceCount[us][PAWN]];
|
|
index[lastPawnSquare] = index[to];
|
|
pieceList[us][PAWN][index[lastPawnSquare]] = lastPawnSquare;
|
|
pieceList[us][PAWN][pieceCount[us][PAWN]] = SQ_NONE;
|
|
index[to] = pieceCount[us][promotion] - 1;
|
|
pieceList[us][promotion][index[to]] = to;
|
|
|
|
// Partially revert hash keys update
|
|
key ^= zobrist[us][PAWN][to] ^ zobrist[us][promotion][to];
|
|
st->pawnKey ^= zobrist[us][PAWN][to];
|
|
|
|
// Partially revert and update incremental scores
|
|
st->value -= pst(us, PAWN, to);
|
|
st->value += pst(us, promotion, to);
|
|
|
|
// Update material
|
|
st->npMaterial[us] += PieceValueMidgame[promotion];
|
|
}
|
|
}
|
|
|
|
// Prefetch pawn and material hash tables
|
|
Threads[threadID].pawnTable.prefetch(st->pawnKey);
|
|
Threads[threadID].materialTable.prefetch(st->materialKey);
|
|
|
|
// Update incremental scores
|
|
st->value += pst_delta(piece, from, to);
|
|
|
|
// Set capture piece
|
|
st->capturedType = capture;
|
|
|
|
// Update the key with the final value
|
|
st->key = key;
|
|
|
|
// Update checkers bitboard, piece must be already moved
|
|
st->checkersBB = EmptyBoardBB;
|
|
|
|
if (moveIsCheck)
|
|
{
|
|
if (ep | pm)
|
|
st->checkersBB = attackers_to(king_square(them)) & pieces_of_color(us);
|
|
else
|
|
{
|
|
// Direct checks
|
|
if (bit_is_set(ci.checkSq[pt], to))
|
|
st->checkersBB = SetMaskBB[to];
|
|
|
|
// Discovery checks
|
|
if (ci.dcCandidates && bit_is_set(ci.dcCandidates, from))
|
|
{
|
|
if (pt != ROOK)
|
|
st->checkersBB |= (attacks_from<ROOK>(ci.ksq) & pieces(ROOK, QUEEN, us));
|
|
|
|
if (pt != BISHOP)
|
|
st->checkersBB |= (attacks_from<BISHOP>(ci.ksq) & pieces(BISHOP, QUEEN, us));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finish
|
|
sideToMove = opposite_color(sideToMove);
|
|
st->value += (sideToMove == WHITE ? TempoValue : -TempoValue);
|
|
|
|
assert(is_ok());
|
|
}
|
|
|
|
|
|
/// Position::do_capture_move() is a private method used to update captured
|
|
/// piece info. It is called from the main Position::do_move function.
|
|
|
|
void Position::do_capture_move(Key& key, PieceType capture, Color them, Square to, bool ep) {
|
|
|
|
assert(capture != KING);
|
|
|
|
Square capsq = to;
|
|
|
|
// If the captured piece was a pawn, update pawn hash key,
|
|
// otherwise update non-pawn material.
|
|
if (capture == PAWN)
|
|
{
|
|
if (ep) // en passant ?
|
|
{
|
|
capsq = (them == BLACK)? (to - DELTA_N) : (to - DELTA_S);
|
|
|
|
assert(to == st->epSquare);
|
|
assert(relative_rank(opposite_color(them), to) == RANK_6);
|
|
assert(piece_on(to) == PIECE_NONE);
|
|
assert(piece_on(capsq) == make_piece(them, PAWN));
|
|
|
|
board[capsq] = PIECE_NONE;
|
|
}
|
|
st->pawnKey ^= zobrist[them][PAWN][capsq];
|
|
}
|
|
else
|
|
st->npMaterial[them] -= PieceValueMidgame[capture];
|
|
|
|
// Remove captured piece
|
|
clear_bit(&(byColorBB[them]), capsq);
|
|
clear_bit(&(byTypeBB[capture]), capsq);
|
|
clear_bit(&(byTypeBB[0]), capsq);
|
|
|
|
// Update hash key
|
|
key ^= zobrist[them][capture][capsq];
|
|
|
|
// Update incremental scores
|
|
st->value -= pst(them, capture, capsq);
|
|
|
|
// Update piece count
|
|
pieceCount[them][capture]--;
|
|
|
|
// Update material hash key
|
|
st->materialKey ^= zobrist[them][capture][pieceCount[them][capture]];
|
|
|
|
// Update piece list, move the last piece at index[capsq] position
|
|
//
|
|
// WARNING: This is a not perfectly revresible operation. When we
|
|
// will reinsert the captured piece in undo_move() we will put it
|
|
// at the end of the list and not in its original place, it means
|
|
// index[] and pieceList[] are not guaranteed to be invariant to a
|
|
// do_move() + undo_move() sequence.
|
|
Square lastPieceSquare = pieceList[them][capture][pieceCount[them][capture]];
|
|
index[lastPieceSquare] = index[capsq];
|
|
pieceList[them][capture][index[lastPieceSquare]] = lastPieceSquare;
|
|
pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE;
|
|
|
|
// Reset rule 50 counter
|
|
st->rule50 = 0;
|
|
}
|
|
|
|
|
|
/// Position::do_castle_move() is a private method used to make a castling
|
|
/// move. It is called from the main Position::do_move function. Note that
|
|
/// castling moves are encoded as "king captures friendly rook" moves, for
|
|
/// instance white short castling in a non-Chess960 game is encoded as e1h1.
|
|
|
|
void Position::do_castle_move(Move m) {
|
|
|
|
assert(move_is_ok(m));
|
|
assert(move_is_castle(m));
|
|
|
|
Color us = side_to_move();
|
|
Color them = opposite_color(us);
|
|
|
|
// Reset capture field
|
|
st->capturedType = PIECE_TYPE_NONE;
|
|
|
|
// Find source squares for king and rook
|
|
Square kfrom = move_from(m);
|
|
Square rfrom = move_to(m); // HACK: See comment at beginning of function
|
|
Square kto, rto;
|
|
|
|
assert(piece_on(kfrom) == make_piece(us, KING));
|
|
assert(piece_on(rfrom) == make_piece(us, ROOK));
|
|
|
|
// Find destination squares for king and rook
|
|
if (rfrom > kfrom) // O-O
|
|
{
|
|
kto = relative_square(us, SQ_G1);
|
|
rto = relative_square(us, SQ_F1);
|
|
} else { // O-O-O
|
|
kto = relative_square(us, SQ_C1);
|
|
rto = relative_square(us, SQ_D1);
|
|
}
|
|
|
|
// Remove pieces from source squares:
|
|
clear_bit(&(byColorBB[us]), kfrom);
|
|
clear_bit(&(byTypeBB[KING]), kfrom);
|
|
clear_bit(&(byTypeBB[0]), kfrom); // HACK: byTypeBB[0] == occupied squares
|
|
clear_bit(&(byColorBB[us]), rfrom);
|
|
clear_bit(&(byTypeBB[ROOK]), rfrom);
|
|
clear_bit(&(byTypeBB[0]), rfrom); // HACK: byTypeBB[0] == occupied squares
|
|
|
|
// Put pieces on destination squares:
|
|
set_bit(&(byColorBB[us]), kto);
|
|
set_bit(&(byTypeBB[KING]), kto);
|
|
set_bit(&(byTypeBB[0]), kto); // HACK: byTypeBB[0] == occupied squares
|
|
set_bit(&(byColorBB[us]), rto);
|
|
set_bit(&(byTypeBB[ROOK]), rto);
|
|
set_bit(&(byTypeBB[0]), rto); // HACK: byTypeBB[0] == occupied squares
|
|
|
|
// Update board array
|
|
Piece king = make_piece(us, KING);
|
|
Piece rook = make_piece(us, ROOK);
|
|
board[kfrom] = board[rfrom] = PIECE_NONE;
|
|
board[kto] = king;
|
|
board[rto] = rook;
|
|
|
|
// Update piece lists
|
|
pieceList[us][KING][index[kfrom]] = kto;
|
|
pieceList[us][ROOK][index[rfrom]] = rto;
|
|
int tmp = index[rfrom]; // In Chess960 could be rto == kfrom
|
|
index[kto] = index[kfrom];
|
|
index[rto] = tmp;
|
|
|
|
// Update incremental scores
|
|
st->value += pst_delta(king, kfrom, kto);
|
|
st->value += pst_delta(rook, rfrom, rto);
|
|
|
|
// Update hash key
|
|
st->key ^= zobrist[us][KING][kfrom] ^ zobrist[us][KING][kto];
|
|
st->key ^= zobrist[us][ROOK][rfrom] ^ zobrist[us][ROOK][rto];
|
|
|
|
// Clear en passant square
|
|
if (st->epSquare != SQ_NONE)
|
|
{
|
|
st->key ^= zobEp[st->epSquare];
|
|
st->epSquare = SQ_NONE;
|
|
}
|
|
|
|
// Update castling rights
|
|
st->key ^= zobCastle[st->castleRights];
|
|
st->castleRights &= castleRightsMask[kfrom];
|
|
st->key ^= zobCastle[st->castleRights];
|
|
|
|
// Reset rule 50 counter
|
|
st->rule50 = 0;
|
|
|
|
// Update checkers BB
|
|
st->checkersBB = attackers_to(king_square(them)) & pieces_of_color(us);
|
|
|
|
// Finish
|
|
sideToMove = opposite_color(sideToMove);
|
|
st->value += (sideToMove == WHITE ? TempoValue : -TempoValue);
|
|
|
|
assert(is_ok());
|
|
}
|
|
|
|
|
|
/// Position::undo_move() unmakes a move. When it returns, the position should
|
|
/// be restored to exactly the same state as before the move was made.
|
|
|
|
void Position::undo_move(Move m) {
|
|
|
|
assert(is_ok());
|
|
assert(move_is_ok(m));
|
|
|
|
sideToMove = opposite_color(sideToMove);
|
|
|
|
if (move_is_castle(m))
|
|
{
|
|
undo_castle_move(m);
|
|
return;
|
|
}
|
|
|
|
Color us = side_to_move();
|
|
Color them = opposite_color(us);
|
|
Square from = move_from(m);
|
|
Square to = move_to(m);
|
|
bool ep = move_is_ep(m);
|
|
bool pm = move_is_promotion(m);
|
|
|
|
PieceType pt = type_of_piece_on(to);
|
|
|
|
assert(square_is_empty(from));
|
|
assert(color_of_piece_on(to) == us);
|
|
assert(!pm || relative_rank(us, to) == RANK_8);
|
|
assert(!ep || to == st->previous->epSquare);
|
|
assert(!ep || relative_rank(us, to) == RANK_6);
|
|
assert(!ep || piece_on(to) == make_piece(us, PAWN));
|
|
|
|
if (pm) // promotion ?
|
|
{
|
|
PieceType promotion = move_promotion_piece(m);
|
|
pt = PAWN;
|
|
|
|
assert(promotion >= KNIGHT && promotion <= QUEEN);
|
|
assert(piece_on(to) == make_piece(us, promotion));
|
|
|
|
// Replace promoted piece with a pawn
|
|
clear_bit(&(byTypeBB[promotion]), to);
|
|
set_bit(&(byTypeBB[PAWN]), to);
|
|
|
|
// Update piece counts
|
|
pieceCount[us][promotion]--;
|
|
pieceCount[us][PAWN]++;
|
|
|
|
// Update piece list replacing promotion piece with a pawn
|
|
Square lastPromotionSquare = pieceList[us][promotion][pieceCount[us][promotion]];
|
|
index[lastPromotionSquare] = index[to];
|
|
pieceList[us][promotion][index[lastPromotionSquare]] = lastPromotionSquare;
|
|
pieceList[us][promotion][pieceCount[us][promotion]] = SQ_NONE;
|
|
index[to] = pieceCount[us][PAWN] - 1;
|
|
pieceList[us][PAWN][index[to]] = to;
|
|
}
|
|
|
|
// Put the piece back at the source square
|
|
Bitboard move_bb = make_move_bb(to, from);
|
|
do_move_bb(&(byColorBB[us]), move_bb);
|
|
do_move_bb(&(byTypeBB[pt]), move_bb);
|
|
do_move_bb(&(byTypeBB[0]), move_bb); // HACK: byTypeBB[0] == occupied squares
|
|
|
|
board[from] = make_piece(us, pt);
|
|
board[to] = PIECE_NONE;
|
|
|
|
// Update piece list
|
|
index[from] = index[to];
|
|
pieceList[us][pt][index[from]] = from;
|
|
|
|
if (st->capturedType)
|
|
{
|
|
Square capsq = to;
|
|
|
|
if (ep)
|
|
capsq = (us == WHITE)? (to - DELTA_N) : (to - DELTA_S);
|
|
|
|
assert(st->capturedType != KING);
|
|
assert(!ep || square_is_empty(capsq));
|
|
|
|
// Restore the captured piece
|
|
set_bit(&(byColorBB[them]), capsq);
|
|
set_bit(&(byTypeBB[st->capturedType]), capsq);
|
|
set_bit(&(byTypeBB[0]), capsq);
|
|
|
|
board[capsq] = make_piece(them, st->capturedType);
|
|
|
|
// Update piece count
|
|
pieceCount[them][st->capturedType]++;
|
|
|
|
// Update piece list, add a new captured piece in capsq square
|
|
index[capsq] = pieceCount[them][st->capturedType] - 1;
|
|
pieceList[them][st->capturedType][index[capsq]] = capsq;
|
|
}
|
|
|
|
// Finally point our state pointer back to the previous state
|
|
st = st->previous;
|
|
|
|
assert(is_ok());
|
|
}
|
|
|
|
|
|
/// Position::undo_castle_move() is a private method used to unmake a castling
|
|
/// move. It is called from the main Position::undo_move function. Note that
|
|
/// castling moves are encoded as "king captures friendly rook" moves, for
|
|
/// instance white short castling in a non-Chess960 game is encoded as e1h1.
|
|
|
|
void Position::undo_castle_move(Move m) {
|
|
|
|
assert(move_is_ok(m));
|
|
assert(move_is_castle(m));
|
|
|
|
// When we have arrived here, some work has already been done by
|
|
// Position::undo_move. In particular, the side to move has been switched,
|
|
// so the code below is correct.
|
|
Color us = side_to_move();
|
|
|
|
// Find source squares for king and rook
|
|
Square kfrom = move_from(m);
|
|
Square rfrom = move_to(m); // HACK: See comment at beginning of function
|
|
Square kto, rto;
|
|
|
|
// Find destination squares for king and rook
|
|
if (rfrom > kfrom) // O-O
|
|
{
|
|
kto = relative_square(us, SQ_G1);
|
|
rto = relative_square(us, SQ_F1);
|
|
} else { // O-O-O
|
|
kto = relative_square(us, SQ_C1);
|
|
rto = relative_square(us, SQ_D1);
|
|
}
|
|
|
|
assert(piece_on(kto) == make_piece(us, KING));
|
|
assert(piece_on(rto) == make_piece(us, ROOK));
|
|
|
|
// Remove pieces from destination squares:
|
|
clear_bit(&(byColorBB[us]), kto);
|
|
clear_bit(&(byTypeBB[KING]), kto);
|
|
clear_bit(&(byTypeBB[0]), kto); // HACK: byTypeBB[0] == occupied squares
|
|
clear_bit(&(byColorBB[us]), rto);
|
|
clear_bit(&(byTypeBB[ROOK]), rto);
|
|
clear_bit(&(byTypeBB[0]), rto); // HACK: byTypeBB[0] == occupied squares
|
|
|
|
// Put pieces on source squares:
|
|
set_bit(&(byColorBB[us]), kfrom);
|
|
set_bit(&(byTypeBB[KING]), kfrom);
|
|
set_bit(&(byTypeBB[0]), kfrom); // HACK: byTypeBB[0] == occupied squares
|
|
set_bit(&(byColorBB[us]), rfrom);
|
|
set_bit(&(byTypeBB[ROOK]), rfrom);
|
|
set_bit(&(byTypeBB[0]), rfrom); // HACK: byTypeBB[0] == occupied squares
|
|
|
|
// Update board
|
|
board[rto] = board[kto] = PIECE_NONE;
|
|
board[rfrom] = make_piece(us, ROOK);
|
|
board[kfrom] = make_piece(us, KING);
|
|
|
|
// Update piece lists
|
|
pieceList[us][KING][index[kto]] = kfrom;
|
|
pieceList[us][ROOK][index[rto]] = rfrom;
|
|
int tmp = index[rto]; // In Chess960 could be rto == kfrom
|
|
index[kfrom] = index[kto];
|
|
index[rfrom] = tmp;
|
|
|
|
// Finally point our state pointer back to the previous state
|
|
st = st->previous;
|
|
|
|
assert(is_ok());
|
|
}
|
|
|
|
|
|
/// Position::do_null_move makes() a "null move": It switches the side to move
|
|
/// and updates the hash key without executing any move on the board.
|
|
|
|
void Position::do_null_move(StateInfo& backupSt) {
|
|
|
|
assert(is_ok());
|
|
assert(!in_check());
|
|
|
|
// Back up the information necessary to undo the null move to the supplied
|
|
// StateInfo object.
|
|
// Note that differently from normal case here backupSt is actually used as
|
|
// a backup storage not as a new state to be used.
|
|
backupSt.key = st->key;
|
|
backupSt.epSquare = st->epSquare;
|
|
backupSt.value = st->value;
|
|
backupSt.previous = st->previous;
|
|
backupSt.pliesFromNull = st->pliesFromNull;
|
|
st->previous = &backupSt;
|
|
|
|
// Save the current key to the history[] array, in order to be able to
|
|
// detect repetition draws.
|
|
history[st->gamePly++] = st->key;
|
|
|
|
// Update the necessary information
|
|
if (st->epSquare != SQ_NONE)
|
|
st->key ^= zobEp[st->epSquare];
|
|
|
|
st->key ^= zobSideToMove;
|
|
prefetch((char*)TT.first_entry(st->key));
|
|
|
|
sideToMove = opposite_color(sideToMove);
|
|
st->epSquare = SQ_NONE;
|
|
st->rule50++;
|
|
st->pliesFromNull = 0;
|
|
st->value += (sideToMove == WHITE) ? TempoValue : -TempoValue;
|
|
}
|
|
|
|
|
|
/// Position::undo_null_move() unmakes a "null move".
|
|
|
|
void Position::undo_null_move() {
|
|
|
|
assert(is_ok());
|
|
assert(!in_check());
|
|
|
|
// Restore information from the our backup StateInfo object
|
|
StateInfo* backupSt = st->previous;
|
|
st->key = backupSt->key;
|
|
st->epSquare = backupSt->epSquare;
|
|
st->value = backupSt->value;
|
|
st->previous = backupSt->previous;
|
|
st->pliesFromNull = backupSt->pliesFromNull;
|
|
|
|
// Update the necessary information
|
|
sideToMove = opposite_color(sideToMove);
|
|
st->rule50--;
|
|
st->gamePly--;
|
|
}
|
|
|
|
|
|
/// Position::see() is a static exchange evaluator: It tries to estimate the
|
|
/// material gain or loss resulting from a move. There are three versions of
|
|
/// this function: One which takes a destination square as input, one takes a
|
|
/// move, and one which takes a 'from' and a 'to' square. The function does
|
|
/// not yet understand promotions captures.
|
|
|
|
int Position::see(Move m) const {
|
|
|
|
assert(move_is_ok(m));
|
|
return see(move_from(m), move_to(m));
|
|
}
|
|
|
|
int Position::see_sign(Move m) const {
|
|
|
|
assert(move_is_ok(m));
|
|
|
|
Square from = move_from(m);
|
|
Square to = move_to(m);
|
|
|
|
// Early return if SEE cannot be negative because captured piece value
|
|
// is not less then capturing one. Note that king moves always return
|
|
// here because king midgame value is set to 0.
|
|
if (midgame_value_of_piece_on(to) >= midgame_value_of_piece_on(from))
|
|
return 1;
|
|
|
|
return see(from, to);
|
|
}
|
|
|
|
int Position::see(Square from, Square to) const {
|
|
|
|
Bitboard occupied, attackers, stmAttackers, b;
|
|
int swapList[32], slIndex = 1;
|
|
PieceType capturedType, pt;
|
|
Color stm;
|
|
|
|
assert(square_is_ok(from));
|
|
assert(square_is_ok(to));
|
|
|
|
capturedType = type_of_piece_on(to);
|
|
|
|
// King cannot be recaptured
|
|
if (capturedType == KING)
|
|
return seeValues[capturedType];
|
|
|
|
occupied = occupied_squares();
|
|
|
|
// Handle en passant moves
|
|
if (st->epSquare == to && type_of_piece_on(from) == PAWN)
|
|
{
|
|
Square capQq = (side_to_move() == WHITE ? to - DELTA_N : to - DELTA_S);
|
|
|
|
assert(capturedType == PIECE_TYPE_NONE);
|
|
assert(type_of_piece_on(capQq) == PAWN);
|
|
|
|
// Remove the captured pawn
|
|
clear_bit(&occupied, capQq);
|
|
capturedType = PAWN;
|
|
}
|
|
|
|
// Find all attackers to the destination square, with the moving piece
|
|
// removed, but possibly an X-ray attacker added behind it.
|
|
clear_bit(&occupied, from);
|
|
attackers = (rook_attacks_bb(to, occupied) & pieces(ROOK, QUEEN))
|
|
| (bishop_attacks_bb(to, occupied)& pieces(BISHOP, QUEEN))
|
|
| (attacks_from<KNIGHT>(to) & pieces(KNIGHT))
|
|
| (attacks_from<KING>(to) & pieces(KING))
|
|
| (attacks_from<PAWN>(to, WHITE) & pieces(PAWN, BLACK))
|
|
| (attacks_from<PAWN>(to, BLACK) & pieces(PAWN, WHITE));
|
|
|
|
// If the opponent has no attackers we are finished
|
|
stm = opposite_color(color_of_piece_on(from));
|
|
stmAttackers = attackers & pieces_of_color(stm);
|
|
if (!stmAttackers)
|
|
return seeValues[capturedType];
|
|
|
|
// The destination square is defended, which makes things rather more
|
|
// difficult to compute. We proceed by building up a "swap list" containing
|
|
// the material gain or loss at each stop in a sequence of captures to the
|
|
// destination square, where the sides alternately capture, and always
|
|
// capture with the least valuable piece. After each capture, we look for
|
|
// new X-ray attacks from behind the capturing piece.
|
|
swapList[0] = seeValues[capturedType];
|
|
capturedType = type_of_piece_on(from);
|
|
|
|
do {
|
|
// Locate the least valuable attacker for the side to move. The loop
|
|
// below looks like it is potentially infinite, but it isn't. We know
|
|
// that the side to move still has at least one attacker left.
|
|
for (pt = PAWN; !(stmAttackers & pieces(pt)); pt++)
|
|
assert(pt < KING);
|
|
|
|
// Remove the attacker we just found from the 'occupied' bitboard,
|
|
// and scan for new X-ray attacks behind the attacker.
|
|
b = stmAttackers & pieces(pt);
|
|
occupied ^= (b & (~b + 1));
|
|
attackers |= (rook_attacks_bb(to, occupied) & pieces(ROOK, QUEEN))
|
|
| (bishop_attacks_bb(to, occupied) & pieces(BISHOP, QUEEN));
|
|
|
|
attackers &= occupied; // Cut out pieces we've already done
|
|
|
|
// Add the new entry to the swap list
|
|
assert(slIndex < 32);
|
|
swapList[slIndex] = -swapList[slIndex - 1] + seeValues[capturedType];
|
|
slIndex++;
|
|
|
|
// Remember the value of the capturing piece, and change the side to
|
|
// move before beginning the next iteration.
|
|
capturedType = pt;
|
|
stm = opposite_color(stm);
|
|
stmAttackers = attackers & pieces_of_color(stm);
|
|
|
|
// Stop before processing a king capture
|
|
if (capturedType == KING && stmAttackers)
|
|
{
|
|
assert(slIndex < 32);
|
|
swapList[slIndex++] = QueenValueMidgame*10;
|
|
break;
|
|
}
|
|
} while (stmAttackers);
|
|
|
|
// Having built the swap list, we negamax through it to find the best
|
|
// achievable score from the point of view of the side to move.
|
|
while (--slIndex)
|
|
swapList[slIndex-1] = Min(-swapList[slIndex], swapList[slIndex-1]);
|
|
|
|
return swapList[0];
|
|
}
|
|
|
|
|
|
/// Position::clear() erases the position object to a pristine state, with an
|
|
/// empty board, white to move, and no castling rights.
|
|
|
|
void Position::clear() {
|
|
|
|
st = &startState;
|
|
memset(st, 0, sizeof(StateInfo));
|
|
st->epSquare = SQ_NONE;
|
|
startPosPlyCounter = 0;
|
|
nodes = 0;
|
|
|
|
memset(byColorBB, 0, sizeof(Bitboard) * 2);
|
|
memset(byTypeBB, 0, sizeof(Bitboard) * 8);
|
|
memset(pieceCount, 0, sizeof(int) * 2 * 8);
|
|
memset(index, 0, sizeof(int) * 64);
|
|
|
|
for (int i = 0; i < 64; i++)
|
|
board[i] = PIECE_NONE;
|
|
|
|
for (int i = 0; i < 8; i++)
|
|
for (int j = 0; j < 16; j++)
|
|
pieceList[0][i][j] = pieceList[1][i][j] = SQ_NONE;
|
|
|
|
for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
|
|
castleRightsMask[sq] = ALL_CASTLES;
|
|
|
|
sideToMove = WHITE;
|
|
initialKFile = FILE_E;
|
|
initialKRFile = FILE_H;
|
|
initialQRFile = FILE_A;
|
|
}
|
|
|
|
|
|
/// Position::put_piece() puts a piece on the given square of the board,
|
|
/// updating the board array, pieces list, bitboards, and piece counts.
|
|
|
|
void Position::put_piece(Piece p, Square s) {
|
|
|
|
Color c = color_of_piece(p);
|
|
PieceType pt = type_of_piece(p);
|
|
|
|
board[s] = p;
|
|
index[s] = pieceCount[c][pt]++;
|
|
pieceList[c][pt][index[s]] = s;
|
|
|
|
set_bit(&(byTypeBB[pt]), s);
|
|
set_bit(&(byColorBB[c]), s);
|
|
set_bit(&(byTypeBB[0]), s); // HACK: byTypeBB[0] contains all occupied squares.
|
|
}
|
|
|
|
|
|
/// Position::compute_key() computes the hash key of the position. The hash
|
|
/// key is usually updated incrementally as moves are made and unmade, the
|
|
/// compute_key() function is only used when a new position is set up, and
|
|
/// to verify the correctness of the hash key when running in debug mode.
|
|
|
|
Key Position::compute_key() const {
|
|
|
|
Key result = zobCastle[st->castleRights];
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
if (square_is_occupied(s))
|
|
result ^= zobrist[color_of_piece_on(s)][type_of_piece_on(s)][s];
|
|
|
|
if (ep_square() != SQ_NONE)
|
|
result ^= zobEp[ep_square()];
|
|
|
|
if (side_to_move() == BLACK)
|
|
result ^= zobSideToMove;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Position::compute_pawn_key() computes the hash key of the position. The
|
|
/// hash key is usually updated incrementally as moves are made and unmade,
|
|
/// the compute_pawn_key() function is only used when a new position is set
|
|
/// up, and to verify the correctness of the pawn hash key when running in
|
|
/// debug mode.
|
|
|
|
Key Position::compute_pawn_key() const {
|
|
|
|
Bitboard b;
|
|
Key result = 0;
|
|
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
{
|
|
b = pieces(PAWN, c);
|
|
while (b)
|
|
result ^= zobrist[c][PAWN][pop_1st_bit(&b)];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Position::compute_material_key() computes the hash key of the position.
|
|
/// The hash key is usually updated incrementally as moves are made and unmade,
|
|
/// the compute_material_key() function is only used when a new position is set
|
|
/// up, and to verify the correctness of the material hash key when running in
|
|
/// debug mode.
|
|
|
|
Key Position::compute_material_key() const {
|
|
|
|
int count;
|
|
Key result = 0;
|
|
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (PieceType pt = PAWN; pt <= QUEEN; pt++)
|
|
{
|
|
count = piece_count(c, pt);
|
|
for (int i = 0; i < count; i++)
|
|
result ^= zobrist[c][pt][i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Position::compute_value() compute the incremental scores for the middle
|
|
/// game and the endgame. These functions are used to initialize the incremental
|
|
/// scores when a new position is set up, and to verify that the scores are correctly
|
|
/// updated by do_move and undo_move when the program is running in debug mode.
|
|
Score Position::compute_value() const {
|
|
|
|
Bitboard b;
|
|
Score result = SCORE_ZERO;
|
|
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (PieceType pt = PAWN; pt <= KING; pt++)
|
|
{
|
|
b = pieces(pt, c);
|
|
while (b)
|
|
result += pst(c, pt, pop_1st_bit(&b));
|
|
}
|
|
|
|
result += (side_to_move() == WHITE ? TempoValue / 2 : -TempoValue / 2);
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Position::compute_non_pawn_material() computes the total non-pawn middle
|
|
/// game material value for the given side. Material values are updated
|
|
/// incrementally during the search, this function is only used while
|
|
/// initializing a new Position object.
|
|
|
|
Value Position::compute_non_pawn_material(Color c) const {
|
|
|
|
Value result = VALUE_ZERO;
|
|
|
|
for (PieceType pt = KNIGHT; pt <= QUEEN; pt++)
|
|
result += piece_count(c, pt) * PieceValueMidgame[pt];
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Position::is_draw() tests whether the position is drawn by material,
|
|
/// repetition, or the 50 moves rule. It does not detect stalemates, this
|
|
/// must be done by the search.
|
|
|
|
bool Position::is_draw() const {
|
|
|
|
// Draw by material?
|
|
if ( !pieces(PAWN)
|
|
&& (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMidgame))
|
|
return true;
|
|
|
|
// Draw by the 50 moves rule?
|
|
if (st->rule50 > 99 && !is_mate())
|
|
return true;
|
|
|
|
// Draw by repetition?
|
|
for (int i = 4, e = Min(Min(st->gamePly, st->rule50), st->pliesFromNull); i <= e; i += 2)
|
|
if (history[st->gamePly - i] == st->key)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Position::is_mate() returns true or false depending on whether the
|
|
/// side to move is checkmated.
|
|
|
|
bool Position::is_mate() const {
|
|
|
|
MoveStack moves[MAX_MOVES];
|
|
return in_check() && generate<MV_LEGAL>(*this, moves) == moves;
|
|
}
|
|
|
|
|
|
/// Position::init_zobrist() is a static member function which initializes at
|
|
/// startup the various arrays used to compute hash keys.
|
|
|
|
void Position::init_zobrist() {
|
|
|
|
int i,j, k;
|
|
RKISS rk;
|
|
|
|
for (i = 0; i < 2; i++) for (j = 0; j < 8; j++) for (k = 0; k < 64; k++)
|
|
zobrist[i][j][k] = rk.rand<Key>();
|
|
|
|
for (i = 0; i < 64; i++)
|
|
zobEp[i] = rk.rand<Key>();
|
|
|
|
for (i = 0; i < 16; i++)
|
|
zobCastle[i] = rk.rand<Key>();
|
|
|
|
zobSideToMove = rk.rand<Key>();
|
|
zobExclusion = rk.rand<Key>();
|
|
}
|
|
|
|
|
|
/// Position::init_piece_square_tables() initializes the piece square tables.
|
|
/// This is a two-step operation: First, the white halves of the tables are
|
|
/// copied from the MgPST[][] and EgPST[][] arrays. Second, the black halves
|
|
/// of the tables are initialized by mirroring and changing the sign of the
|
|
/// corresponding white scores.
|
|
|
|
void Position::init_piece_square_tables() {
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
for (Piece p = WP; p <= WK; p++)
|
|
PieceSquareTable[p][s] = make_score(MgPST[p][s], EgPST[p][s]);
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
for (Piece p = BP; p <= BK; p++)
|
|
PieceSquareTable[p][s] = -PieceSquareTable[p-8][flip_square(s)];
|
|
}
|
|
|
|
|
|
/// Position::flip() flips position with the white and black sides reversed. This
|
|
/// is only useful for debugging especially for finding evaluation symmetry bugs.
|
|
|
|
void Position::flip() {
|
|
|
|
assert(is_ok());
|
|
|
|
// Make a copy of current position before to start changing
|
|
const Position pos(*this, threadID);
|
|
|
|
clear();
|
|
threadID = pos.thread();
|
|
|
|
// Board
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
if (!pos.square_is_empty(s))
|
|
put_piece(Piece(pos.piece_on(s) ^ 8), flip_square(s));
|
|
|
|
// Side to move
|
|
sideToMove = opposite_color(pos.side_to_move());
|
|
|
|
// Castling rights
|
|
if (pos.can_castle_kingside(WHITE)) do_allow_oo(BLACK);
|
|
if (pos.can_castle_queenside(WHITE)) do_allow_ooo(BLACK);
|
|
if (pos.can_castle_kingside(BLACK)) do_allow_oo(WHITE);
|
|
if (pos.can_castle_queenside(BLACK)) do_allow_ooo(WHITE);
|
|
|
|
initialKFile = pos.initialKFile;
|
|
initialKRFile = pos.initialKRFile;
|
|
initialQRFile = pos.initialQRFile;
|
|
|
|
castleRightsMask[make_square(initialKFile, RANK_1)] ^= (WHITE_OO | WHITE_OOO);
|
|
castleRightsMask[make_square(initialKFile, RANK_8)] ^= (BLACK_OO | BLACK_OOO);
|
|
castleRightsMask[make_square(initialKRFile, RANK_1)] ^= WHITE_OO;
|
|
castleRightsMask[make_square(initialKRFile, RANK_8)] ^= BLACK_OO;
|
|
castleRightsMask[make_square(initialQRFile, RANK_1)] ^= WHITE_OOO;
|
|
castleRightsMask[make_square(initialQRFile, RANK_8)] ^= BLACK_OOO;
|
|
|
|
// En passant square
|
|
if (pos.st->epSquare != SQ_NONE)
|
|
st->epSquare = flip_square(pos.st->epSquare);
|
|
|
|
// Checkers
|
|
find_checkers();
|
|
|
|
// Hash keys
|
|
st->key = compute_key();
|
|
st->pawnKey = compute_pawn_key();
|
|
st->materialKey = compute_material_key();
|
|
|
|
// Incremental scores
|
|
st->value = compute_value();
|
|
|
|
// Material
|
|
st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
|
|
st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
|
|
|
|
assert(is_ok());
|
|
}
|
|
|
|
|
|
/// Position::is_ok() performs some consitency checks for the position object.
|
|
/// This is meant to be helpful when debugging.
|
|
|
|
bool Position::is_ok(int* failedStep) const {
|
|
|
|
// What features of the position should be verified?
|
|
const bool debugAll = false;
|
|
|
|
const bool debugBitboards = debugAll || false;
|
|
const bool debugKingCount = debugAll || false;
|
|
const bool debugKingCapture = debugAll || false;
|
|
const bool debugCheckerCount = debugAll || false;
|
|
const bool debugKey = debugAll || false;
|
|
const bool debugMaterialKey = debugAll || false;
|
|
const bool debugPawnKey = debugAll || false;
|
|
const bool debugIncrementalEval = debugAll || false;
|
|
const bool debugNonPawnMaterial = debugAll || false;
|
|
const bool debugPieceCounts = debugAll || false;
|
|
const bool debugPieceList = debugAll || false;
|
|
const bool debugCastleSquares = debugAll || false;
|
|
|
|
if (failedStep) *failedStep = 1;
|
|
|
|
// Side to move OK?
|
|
if (!color_is_ok(side_to_move()))
|
|
return false;
|
|
|
|
// Are the king squares in the position correct?
|
|
if (failedStep) (*failedStep)++;
|
|
if (piece_on(king_square(WHITE)) != WK)
|
|
return false;
|
|
|
|
if (failedStep) (*failedStep)++;
|
|
if (piece_on(king_square(BLACK)) != BK)
|
|
return false;
|
|
|
|
// Castle files OK?
|
|
if (failedStep) (*failedStep)++;
|
|
if (!file_is_ok(initialKRFile))
|
|
return false;
|
|
|
|
if (!file_is_ok(initialQRFile))
|
|
return false;
|
|
|
|
// Do both sides have exactly one king?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugKingCount)
|
|
{
|
|
int kingCount[2] = {0, 0};
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
if (type_of_piece_on(s) == KING)
|
|
kingCount[color_of_piece_on(s)]++;
|
|
|
|
if (kingCount[0] != 1 || kingCount[1] != 1)
|
|
return false;
|
|
}
|
|
|
|
// Can the side to move capture the opponent's king?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugKingCapture)
|
|
{
|
|
Color us = side_to_move();
|
|
Color them = opposite_color(us);
|
|
Square ksq = king_square(them);
|
|
if (attackers_to(ksq) & pieces_of_color(us))
|
|
return false;
|
|
}
|
|
|
|
// Is there more than 2 checkers?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugCheckerCount && count_1s<CNT32>(st->checkersBB) > 2)
|
|
return false;
|
|
|
|
// Bitboards OK?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugBitboards)
|
|
{
|
|
// The intersection of the white and black pieces must be empty
|
|
if ((pieces_of_color(WHITE) & pieces_of_color(BLACK)) != EmptyBoardBB)
|
|
return false;
|
|
|
|
// The union of the white and black pieces must be equal to all
|
|
// occupied squares
|
|
if ((pieces_of_color(WHITE) | pieces_of_color(BLACK)) != occupied_squares())
|
|
return false;
|
|
|
|
// Separate piece type bitboards must have empty intersections
|
|
for (PieceType p1 = PAWN; p1 <= KING; p1++)
|
|
for (PieceType p2 = PAWN; p2 <= KING; p2++)
|
|
if (p1 != p2 && (pieces(p1) & pieces(p2)))
|
|
return false;
|
|
}
|
|
|
|
// En passant square OK?
|
|
if (failedStep) (*failedStep)++;
|
|
if (ep_square() != SQ_NONE)
|
|
{
|
|
// The en passant square must be on rank 6, from the point of view of the
|
|
// side to move.
|
|
if (relative_rank(side_to_move(), ep_square()) != RANK_6)
|
|
return false;
|
|
}
|
|
|
|
// Hash key OK?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugKey && st->key != compute_key())
|
|
return false;
|
|
|
|
// Pawn hash key OK?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugPawnKey && st->pawnKey != compute_pawn_key())
|
|
return false;
|
|
|
|
// Material hash key OK?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugMaterialKey && st->materialKey != compute_material_key())
|
|
return false;
|
|
|
|
// Incremental eval OK?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugIncrementalEval && st->value != compute_value())
|
|
return false;
|
|
|
|
// Non-pawn material OK?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugNonPawnMaterial)
|
|
{
|
|
if (st->npMaterial[WHITE] != compute_non_pawn_material(WHITE))
|
|
return false;
|
|
|
|
if (st->npMaterial[BLACK] != compute_non_pawn_material(BLACK))
|
|
return false;
|
|
}
|
|
|
|
// Piece counts OK?
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugPieceCounts)
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (PieceType pt = PAWN; pt <= KING; pt++)
|
|
if (pieceCount[c][pt] != count_1s<CNT32>(pieces(pt, c)))
|
|
return false;
|
|
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugPieceList)
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (PieceType pt = PAWN; pt <= KING; pt++)
|
|
for (int i = 0; i < pieceCount[c][pt]; i++)
|
|
{
|
|
if (piece_on(piece_list(c, pt, i)) != make_piece(c, pt))
|
|
return false;
|
|
|
|
if (index[piece_list(c, pt, i)] != i)
|
|
return false;
|
|
}
|
|
|
|
if (failedStep) (*failedStep)++;
|
|
if (debugCastleSquares)
|
|
{
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
{
|
|
if (can_castle_kingside(c) && piece_on(initial_kr_square(c)) != make_piece(c, ROOK))
|
|
return false;
|
|
|
|
if (can_castle_queenside(c) && piece_on(initial_qr_square(c)) != make_piece(c, ROOK))
|
|
return false;
|
|
}
|
|
if (castleRightsMask[initial_kr_square(WHITE)] != (ALL_CASTLES ^ WHITE_OO))
|
|
return false;
|
|
if (castleRightsMask[initial_qr_square(WHITE)] != (ALL_CASTLES ^ WHITE_OOO))
|
|
return false;
|
|
if (castleRightsMask[initial_kr_square(BLACK)] != (ALL_CASTLES ^ BLACK_OO))
|
|
return false;
|
|
if (castleRightsMask[initial_qr_square(BLACK)] != (ALL_CASTLES ^ BLACK_OOO))
|
|
return false;
|
|
}
|
|
|
|
if (failedStep) *failedStep = 0;
|
|
return true;
|
|
}
|