mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2024-12-05 01:35:50 +01:00
99 lines
5.7 KiB
C
99 lines
5.7 KiB
C
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef PSQTAB_H_INCLUDED
|
|
#define PSQTAB_H_INCLUDED
|
|
|
|
#include "types.h"
|
|
|
|
#define S(mg, eg) make_score(mg, eg)
|
|
|
|
|
|
/// PSQT[PieceType][Square] contains Piece-Square scores. For each piece type on
|
|
/// a given square a (midgame, endgame) score pair is assigned. PSQT is defined
|
|
/// for white side, for black side the tables are symmetric.
|
|
|
|
static const Score PSQT[][SQUARE_NB] = {
|
|
{ },
|
|
{ // Pawn
|
|
S( 0, 0), S( 0, 0), S( 0, 0), S( 0, 0), S(0, 0), S( 0, 0), S( 0, 0), S( 0, 0),
|
|
S(-20,-8), S(-6,-8), S( 4,-8), S(14,-8), S(14,-8), S( 4,-8), S(-6,-8), S(-20,-8),
|
|
S(-20,-8), S(-6,-8), S( 9,-8), S(34,-8), S(34,-8), S( 9,-8), S(-6,-8), S(-20,-8),
|
|
S(-20,-8), S(-6,-8), S(17,-8), S(54,-8), S(54,-8), S(17,-8), S(-6,-8), S(-20,-8),
|
|
S(-20,-8), S(-6,-8), S(17,-8), S(34,-8), S(34,-8), S(17,-8), S(-6,-8), S(-20,-8),
|
|
S(-20,-8), S(-6,-8), S( 9,-8), S(14,-8), S(14,-8), S( 9,-8), S(-6,-8), S(-20,-8),
|
|
S(-20,-8), S(-6,-8), S( 4,-8), S(14,-8), S(14,-8), S( 4,-8), S(-6,-8), S(-20,-8),
|
|
S( 0, 0), S( 0, 0), S( 0, 0), S( 0, 0), S(0, 0), S( 0, 0), S( 0, 0), S( 0, 0)
|
|
},
|
|
{ // Knight
|
|
S(-135,-104), S(-107,-79), S(-80,-55), S(-67,-42), S(-67,-42), S(-80,-55), S(-107,-79), S(-135,-104),
|
|
S( -93, -79), S( -67,-55), S(-39,-30), S(-25,-17), S(-25,-17), S(-39,-30), S( -67,-55), S( -93, -79),
|
|
S( -53, -55), S( -25,-30), S( 1, -6), S( 13, 5), S( 13, 5), S( 1, -6), S( -25,-30), S( -53, -55),
|
|
S( -25, -42), S( 1,-17), S( 27, 5), S( 41, 18), S( 41, 18), S( 27, 5), S( 1,-17), S( -25, -42),
|
|
S( -11, -42), S( 13,-17), S( 41, 5), S( 55, 18), S( 55, 18), S( 41, 5), S( 13,-17), S( -11, -42),
|
|
S( -11, -55), S( 13,-30), S( 41, -6), S( 55, 5), S( 55, 5), S( 41, -6), S( 13,-30), S( -11, -55),
|
|
S( -53, -79), S( -25,-55), S( 1,-30), S( 13,-17), S( 13,-17), S( 1,-30), S( -25,-55), S( -53, -79),
|
|
S(-193,-104), S( -67,-79), S(-39,-55), S(-25,-42), S(-25,-42), S(-39,-55), S( -67,-79), S(-193,-104)
|
|
},
|
|
{ // Bishop
|
|
S(-40,-59), S(-40,-42), S(-35,-35), S(-30,-26), S(-30,-26), S(-35,-35), S(-40,-42), S(-40,-59),
|
|
S(-17,-42), S( 0,-26), S( -4,-18), S( 0,-11), S( 0,-11), S( -4,-18), S( 0,-26), S(-17,-42),
|
|
S(-13,-35), S( -4,-18), S( 8,-11), S( 4, -4), S( 4, -4), S( 8,-11), S( -4,-18), S(-13,-35),
|
|
S( -8,-26), S( 0,-11), S( 4, -4), S( 17, 4), S( 17, 4), S( 4, -4), S( 0,-11), S( -8,-26),
|
|
S( -8,-26), S( 0,-11), S( 4, -4), S( 17, 4), S( 17, 4), S( 4, -4), S( 0,-11), S( -8,-26),
|
|
S(-13,-35), S( -4,-18), S( 8,-11), S( 4, -4), S( 4, -4), S( 8,-11), S( -4,-18), S(-13,-35),
|
|
S(-17,-42), S( 0,-26), S( -4,-18), S( 0,-11), S( 0,-11), S( -4,-18), S( 0,-26), S(-17,-42),
|
|
S(-17,-59), S(-17,-42), S(-13,-35), S( -8,-26), S( -8,-26), S(-13,-35), S(-17,-42), S(-17,-59)
|
|
},
|
|
{ // Rook
|
|
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
|
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
|
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
|
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
|
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
|
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
|
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3),
|
|
S(-12, 3), S(-7, 3), S(-2, 3), S(2, 3), S(2, 3), S(-2, 3), S(-7, 3), S(-12, 3)
|
|
},
|
|
{ // Queen
|
|
S(8,-80), S(8,-54), S(8,-42), S(8,-30), S(8,-30), S(8,-42), S(8,-54), S(8,-80),
|
|
S(8,-54), S(8,-30), S(8,-18), S(8, -6), S(8, -6), S(8,-18), S(8,-30), S(8,-54),
|
|
S(8,-42), S(8,-18), S(8, -6), S(8, 6), S(8, 6), S(8, -6), S(8,-18), S(8,-42),
|
|
S(8,-30), S(8, -6), S(8, 6), S(8, 18), S(8, 18), S(8, 6), S(8, -6), S(8,-30),
|
|
S(8,-30), S(8, -6), S(8, 6), S(8, 18), S(8, 18), S(8, 6), S(8, -6), S(8,-30),
|
|
S(8,-42), S(8,-18), S(8, -6), S(8, 6), S(8, 6), S(8, -6), S(8,-18), S(8,-42),
|
|
S(8,-54), S(8,-30), S(8,-18), S(8, -6), S(8, -6), S(8,-18), S(8,-30), S(8,-54),
|
|
S(8,-80), S(8,-54), S(8,-42), S(8,-30), S(8,-30), S(8,-42), S(8,-54), S(8,-80)
|
|
},
|
|
{ // King
|
|
S(287, 18), S(311, 77), S(262,105), S(214,135), S(214,135), S(262,105), S(311, 77), S(287, 18),
|
|
S(262, 77), S(287,135), S(238,165), S(190,193), S(190,193), S(238,165), S(287,135), S(262, 77),
|
|
S(214,105), S(238,165), S(190,193), S(142,222), S(142,222), S(190,193), S(238,165), S(214,105),
|
|
S(190,135), S(214,193), S(167,222), S(119,251), S(119,251), S(167,222), S(214,193), S(190,135),
|
|
S(167,135), S(190,193), S(142,222), S( 94,251), S( 94,251), S(142,222), S(190,193), S(167,135),
|
|
S(142,105), S(167,165), S(119,193), S( 69,222), S( 69,222), S(119,193), S(167,165), S(142,105),
|
|
S(119, 77), S(142,135), S( 94,165), S( 46,193), S( 46,193), S( 94,165), S(142,135), S(119, 77),
|
|
S(94, 18), S(119, 77), S( 69,105), S( 21,135), S( 21,135), S( 69,105), S(119, 77), S( 94, 18)
|
|
}
|
|
};
|
|
|
|
#undef S
|
|
|
|
#endif // #ifndef PSQTAB_H_INCLUDED
|