mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2024-12-04 17:30:56 +01:00
1198 lines
37 KiB
C++
1198 lines
37 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring> // For std::memset, std::memcmp
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
|
|
#include "bitcount.h"
|
|
#include "misc.h"
|
|
#include "movegen.h"
|
|
#include "position.h"
|
|
#include "thread.h"
|
|
#include "tt.h"
|
|
#include "uci.h"
|
|
|
|
using std::string;
|
|
|
|
Value PieceValue[PHASE_NB][PIECE_NB] = {
|
|
{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg },
|
|
{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } };
|
|
|
|
namespace Zobrist {
|
|
|
|
Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
|
|
Key enpassant[FILE_NB];
|
|
Key castling[CASTLING_RIGHT_NB];
|
|
Key side;
|
|
Key exclusion;
|
|
}
|
|
|
|
Key Position::exclusion_key() const { return st->key ^ Zobrist::exclusion; }
|
|
|
|
namespace {
|
|
|
|
const string PieceToChar(" PNBRQK pnbrqk");
|
|
|
|
// min_attacker() is a helper function used by see() to locate the least
|
|
// valuable attacker for the side to move, remove the attacker we just found
|
|
// from the bitboards and scan for new X-ray attacks behind it.
|
|
|
|
template<int Pt>
|
|
PieceType min_attacker(const Bitboard* bb, Square to, Bitboard stmAttackers,
|
|
Bitboard& occupied, Bitboard& attackers) {
|
|
|
|
Bitboard b = stmAttackers & bb[Pt];
|
|
if (!b)
|
|
return min_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers);
|
|
|
|
occupied ^= b & ~(b - 1);
|
|
|
|
if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN)
|
|
attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]);
|
|
|
|
if (Pt == ROOK || Pt == QUEEN)
|
|
attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]);
|
|
|
|
attackers &= occupied; // After X-ray that may add already processed pieces
|
|
return (PieceType)Pt;
|
|
}
|
|
|
|
template<>
|
|
PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) {
|
|
return KING; // No need to update bitboards: it is the last cycle
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/// CheckInfo constructor
|
|
|
|
CheckInfo::CheckInfo(const Position& pos) {
|
|
|
|
Color them = ~pos.side_to_move();
|
|
ksq = pos.square<KING>(them);
|
|
|
|
pinned = pos.pinned_pieces(pos.side_to_move());
|
|
dcCandidates = pos.discovered_check_candidates();
|
|
|
|
checkSquares[PAWN] = pos.attacks_from<PAWN>(ksq, them);
|
|
checkSquares[KNIGHT] = pos.attacks_from<KNIGHT>(ksq);
|
|
checkSquares[BISHOP] = pos.attacks_from<BISHOP>(ksq);
|
|
checkSquares[ROOK] = pos.attacks_from<ROOK>(ksq);
|
|
checkSquares[QUEEN] = checkSquares[BISHOP] | checkSquares[ROOK];
|
|
checkSquares[KING] = 0;
|
|
}
|
|
|
|
|
|
/// operator<<(Position) returns an ASCII representation of the position
|
|
|
|
std::ostream& operator<<(std::ostream& os, const Position& pos) {
|
|
|
|
os << "\n +---+---+---+---+---+---+---+---+\n";
|
|
|
|
for (Rank r = RANK_8; r >= RANK_1; --r)
|
|
{
|
|
for (File f = FILE_A; f <= FILE_H; ++f)
|
|
os << " | " << PieceToChar[pos.piece_on(make_square(f, r))];
|
|
|
|
os << " |\n +---+---+---+---+---+---+---+---+\n";
|
|
}
|
|
|
|
os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase
|
|
<< std::setfill('0') << std::setw(16) << pos.key() << std::dec << "\nCheckers: ";
|
|
|
|
for (Bitboard b = pos.checkers(); b; )
|
|
os << UCI::square(pop_lsb(&b)) << " ";
|
|
|
|
return os;
|
|
}
|
|
|
|
|
|
/// Position::init() initializes at startup the various arrays used to compute
|
|
/// hash keys.
|
|
|
|
void Position::init() {
|
|
|
|
PRNG rng(1070372);
|
|
|
|
for (Color c = WHITE; c <= BLACK; ++c)
|
|
for (PieceType pt = PAWN; pt <= KING; ++pt)
|
|
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
|
Zobrist::psq[c][pt][s] = rng.rand<Key>();
|
|
|
|
for (File f = FILE_A; f <= FILE_H; ++f)
|
|
Zobrist::enpassant[f] = rng.rand<Key>();
|
|
|
|
for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr)
|
|
{
|
|
Zobrist::castling[cr] = 0;
|
|
Bitboard b = cr;
|
|
while (b)
|
|
{
|
|
Key k = Zobrist::castling[1ULL << pop_lsb(&b)];
|
|
Zobrist::castling[cr] ^= k ? k : rng.rand<Key>();
|
|
}
|
|
}
|
|
|
|
Zobrist::side = rng.rand<Key>();
|
|
Zobrist::exclusion = rng.rand<Key>();
|
|
}
|
|
|
|
|
|
/// Position::operator=() creates a copy of 'pos' but detaching the state pointer
|
|
/// from the source to be self-consistent and not depending on any external data.
|
|
|
|
Position& Position::operator=(const Position& pos) {
|
|
|
|
std::memcpy(this, &pos, sizeof(Position));
|
|
std::memcpy(&startState, st, sizeof(StateInfo));
|
|
st = &startState;
|
|
nodes = 0;
|
|
|
|
assert(pos_is_ok());
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/// Position::clear() erases the position object to a pristine state, with an
|
|
/// empty board, white to move, and no castling rights.
|
|
|
|
void Position::clear() {
|
|
|
|
std::memset(this, 0, sizeof(Position));
|
|
startState.epSquare = SQ_NONE;
|
|
st = &startState;
|
|
|
|
for (int i = 0; i < PIECE_TYPE_NB; ++i)
|
|
for (int j = 0; j < 16; ++j)
|
|
pieceList[WHITE][i][j] = pieceList[BLACK][i][j] = SQ_NONE;
|
|
}
|
|
|
|
|
|
/// Position::set() initializes the position object with the given FEN string.
|
|
/// This function is not very robust - make sure that input FENs are correct,
|
|
/// this is assumed to be the responsibility of the GUI.
|
|
|
|
void Position::set(const string& fenStr, bool isChess960, Thread* th) {
|
|
/*
|
|
A FEN string defines a particular position using only the ASCII character set.
|
|
|
|
A FEN string contains six fields separated by a space. The fields are:
|
|
|
|
1) Piece placement (from white's perspective). Each rank is described, starting
|
|
with rank 8 and ending with rank 1. Within each rank, the contents of each
|
|
square are described from file A through file H. Following the Standard
|
|
Algebraic Notation (SAN), each piece is identified by a single letter taken
|
|
from the standard English names. White pieces are designated using upper-case
|
|
letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are
|
|
noted using digits 1 through 8 (the number of blank squares), and "/"
|
|
separates ranks.
|
|
|
|
2) Active color. "w" means white moves next, "b" means black.
|
|
|
|
3) Castling availability. If neither side can castle, this is "-". Otherwise,
|
|
this has one or more letters: "K" (White can castle kingside), "Q" (White
|
|
can castle queenside), "k" (Black can castle kingside), and/or "q" (Black
|
|
can castle queenside).
|
|
|
|
4) En passant target square (in algebraic notation). If there's no en passant
|
|
target square, this is "-". If a pawn has just made a 2-square move, this
|
|
is the position "behind" the pawn. This is recorded regardless of whether
|
|
there is a pawn in position to make an en passant capture.
|
|
|
|
5) Halfmove clock. This is the number of halfmoves since the last pawn advance
|
|
or capture. This is used to determine if a draw can be claimed under the
|
|
fifty-move rule.
|
|
|
|
6) Fullmove number. The number of the full move. It starts at 1, and is
|
|
incremented after Black's move.
|
|
*/
|
|
|
|
unsigned char col, row, token;
|
|
size_t idx;
|
|
Square sq = SQ_A8;
|
|
std::istringstream ss(fenStr);
|
|
|
|
clear();
|
|
ss >> std::noskipws;
|
|
|
|
// 1. Piece placement
|
|
while ((ss >> token) && !isspace(token))
|
|
{
|
|
if (isdigit(token))
|
|
sq += Square(token - '0'); // Advance the given number of files
|
|
|
|
else if (token == '/')
|
|
sq -= Square(16);
|
|
|
|
else if ((idx = PieceToChar.find(token)) != string::npos)
|
|
{
|
|
put_piece(color_of(Piece(idx)), type_of(Piece(idx)), sq);
|
|
++sq;
|
|
}
|
|
}
|
|
|
|
// 2. Active color
|
|
ss >> token;
|
|
sideToMove = (token == 'w' ? WHITE : BLACK);
|
|
ss >> token;
|
|
|
|
// 3. Castling availability. Compatible with 3 standards: Normal FEN standard,
|
|
// Shredder-FEN that uses the letters of the columns on which the rooks began
|
|
// the game instead of KQkq and also X-FEN standard that, in case of Chess960,
|
|
// if an inner rook is associated with the castling right, the castling tag is
|
|
// replaced by the file letter of the involved rook, as for the Shredder-FEN.
|
|
while ((ss >> token) && !isspace(token))
|
|
{
|
|
Square rsq;
|
|
Color c = islower(token) ? BLACK : WHITE;
|
|
Piece rook = make_piece(c, ROOK);
|
|
|
|
token = char(toupper(token));
|
|
|
|
if (token == 'K')
|
|
for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {}
|
|
|
|
else if (token == 'Q')
|
|
for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {}
|
|
|
|
else if (token >= 'A' && token <= 'H')
|
|
rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1));
|
|
|
|
else
|
|
continue;
|
|
|
|
set_castling_right(c, rsq);
|
|
}
|
|
|
|
// 4. En passant square. Ignore if no pawn capture is possible
|
|
if ( ((ss >> col) && (col >= 'a' && col <= 'h'))
|
|
&& ((ss >> row) && (row == '3' || row == '6')))
|
|
{
|
|
st->epSquare = make_square(File(col - 'a'), Rank(row - '1'));
|
|
|
|
if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)))
|
|
st->epSquare = SQ_NONE;
|
|
}
|
|
|
|
// 5-6. Halfmove clock and fullmove number
|
|
ss >> std::skipws >> st->rule50 >> gamePly;
|
|
|
|
// Convert from fullmove starting from 1 to ply starting from 0,
|
|
// handle also common incorrect FEN with fullmove = 0.
|
|
gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK);
|
|
|
|
chess960 = isChess960;
|
|
thisThread = th;
|
|
set_state(st);
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
|
|
/// Position::set_castling_right() is a helper function used to set castling
|
|
/// rights given the corresponding color and the rook starting square.
|
|
|
|
void Position::set_castling_right(Color c, Square rfrom) {
|
|
|
|
Square kfrom = square<KING>(c);
|
|
CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE;
|
|
CastlingRight cr = (c | cs);
|
|
|
|
st->castlingRights |= cr;
|
|
castlingRightsMask[kfrom] |= cr;
|
|
castlingRightsMask[rfrom] |= cr;
|
|
castlingRookSquare[cr] = rfrom;
|
|
|
|
Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1);
|
|
Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1);
|
|
|
|
for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s)
|
|
if (s != kfrom && s != rfrom)
|
|
castlingPath[cr] |= s;
|
|
|
|
for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s)
|
|
if (s != kfrom && s != rfrom)
|
|
castlingPath[cr] |= s;
|
|
}
|
|
|
|
|
|
/// Position::set_state() computes the hash keys of the position, and other
|
|
/// data that once computed is updated incrementally as moves are made.
|
|
/// The function is only used when a new position is set up, and to verify
|
|
/// the correctness of the StateInfo data when running in debug mode.
|
|
|
|
void Position::set_state(StateInfo* si) const {
|
|
|
|
si->key = si->pawnKey = si->materialKey = 0;
|
|
si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO;
|
|
si->psq = SCORE_ZERO;
|
|
|
|
si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove);
|
|
|
|
for (Bitboard b = pieces(); b; )
|
|
{
|
|
Square s = pop_lsb(&b);
|
|
Piece pc = piece_on(s);
|
|
si->key ^= Zobrist::psq[color_of(pc)][type_of(pc)][s];
|
|
si->psq += PSQT::psq[color_of(pc)][type_of(pc)][s];
|
|
}
|
|
|
|
if (si->epSquare != SQ_NONE)
|
|
si->key ^= Zobrist::enpassant[file_of(si->epSquare)];
|
|
|
|
if (sideToMove == BLACK)
|
|
si->key ^= Zobrist::side;
|
|
|
|
si->key ^= Zobrist::castling[si->castlingRights];
|
|
|
|
for (Bitboard b = pieces(PAWN); b; )
|
|
{
|
|
Square s = pop_lsb(&b);
|
|
si->pawnKey ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s];
|
|
}
|
|
|
|
for (Color c = WHITE; c <= BLACK; ++c)
|
|
for (PieceType pt = PAWN; pt <= KING; ++pt)
|
|
for (int cnt = 0; cnt < pieceCount[c][pt]; ++cnt)
|
|
si->materialKey ^= Zobrist::psq[c][pt][cnt];
|
|
|
|
for (Color c = WHITE; c <= BLACK; ++c)
|
|
for (PieceType pt = KNIGHT; pt <= QUEEN; ++pt)
|
|
si->nonPawnMaterial[c] += pieceCount[c][pt] * PieceValue[MG][pt];
|
|
}
|
|
|
|
|
|
/// Position::fen() returns a FEN representation of the position. In case of
|
|
/// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function.
|
|
|
|
const string Position::fen() const {
|
|
|
|
int emptyCnt;
|
|
std::ostringstream ss;
|
|
|
|
for (Rank r = RANK_8; r >= RANK_1; --r)
|
|
{
|
|
for (File f = FILE_A; f <= FILE_H; ++f)
|
|
{
|
|
for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f)
|
|
++emptyCnt;
|
|
|
|
if (emptyCnt)
|
|
ss << emptyCnt;
|
|
|
|
if (f <= FILE_H)
|
|
ss << PieceToChar[piece_on(make_square(f, r))];
|
|
}
|
|
|
|
if (r > RANK_1)
|
|
ss << '/';
|
|
}
|
|
|
|
ss << (sideToMove == WHITE ? " w " : " b ");
|
|
|
|
if (can_castle(WHITE_OO))
|
|
ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K');
|
|
|
|
if (can_castle(WHITE_OOO))
|
|
ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q');
|
|
|
|
if (can_castle(BLACK_OO))
|
|
ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k');
|
|
|
|
if (can_castle(BLACK_OOO))
|
|
ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q');
|
|
|
|
if (!can_castle(WHITE) && !can_castle(BLACK))
|
|
ss << '-';
|
|
|
|
ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ")
|
|
<< st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2;
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
|
|
/// Position::game_phase() calculates the game phase interpolating total non-pawn
|
|
/// material between endgame and midgame limits.
|
|
|
|
Phase Position::game_phase() const {
|
|
|
|
Value npm = st->nonPawnMaterial[WHITE] + st->nonPawnMaterial[BLACK];
|
|
|
|
npm = std::max(EndgameLimit, std::min(npm, MidgameLimit));
|
|
|
|
return Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit));
|
|
}
|
|
|
|
|
|
/// Position::check_blockers() returns a bitboard of all the pieces with color
|
|
/// 'c' that are blocking check on the king with color 'kingColor'. A piece
|
|
/// blocks a check if removing that piece from the board would result in a
|
|
/// position where the king is in check. A check blocking piece can be either a
|
|
/// pinned or a discovered check piece, according if its color 'c' is the same
|
|
/// or the opposite of 'kingColor'.
|
|
|
|
Bitboard Position::check_blockers(Color c, Color kingColor) const {
|
|
|
|
Bitboard b, pinners, result = 0;
|
|
Square ksq = square<KING>(kingColor);
|
|
|
|
// Pinners are sliders that give check when a pinned piece is removed
|
|
pinners = ( (pieces( ROOK, QUEEN) & PseudoAttacks[ROOK ][ksq])
|
|
| (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq])) & pieces(~kingColor);
|
|
|
|
while (pinners)
|
|
{
|
|
b = between_bb(ksq, pop_lsb(&pinners)) & pieces();
|
|
|
|
if (!more_than_one(b))
|
|
result |= b & pieces(c);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Position::attackers_to() computes a bitboard of all pieces which attack a
|
|
/// given square. Slider attacks use the occupied bitboard to indicate occupancy.
|
|
|
|
Bitboard Position::attackers_to(Square s, Bitboard occupied) const {
|
|
|
|
return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN))
|
|
| (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN))
|
|
| (attacks_from<KNIGHT>(s) & pieces(KNIGHT))
|
|
| (attacks_bb<ROOK >(s, occupied) & pieces(ROOK, QUEEN))
|
|
| (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN))
|
|
| (attacks_from<KING>(s) & pieces(KING));
|
|
}
|
|
|
|
|
|
/// Position::legal() tests whether a pseudo-legal move is legal
|
|
|
|
bool Position::legal(Move m, Bitboard pinned) const {
|
|
|
|
assert(is_ok(m));
|
|
assert(pinned == pinned_pieces(sideToMove));
|
|
|
|
Color us = sideToMove;
|
|
Square from = from_sq(m);
|
|
|
|
assert(color_of(moved_piece(m)) == us);
|
|
assert(piece_on(square<KING>(us)) == make_piece(us, KING));
|
|
|
|
// En passant captures are a tricky special case. Because they are rather
|
|
// uncommon, we do it simply by testing whether the king is attacked after
|
|
// the move is made.
|
|
if (type_of(m) == ENPASSANT)
|
|
{
|
|
Square ksq = square<KING>(us);
|
|
Square to = to_sq(m);
|
|
Square capsq = to - pawn_push(us);
|
|
Bitboard occupied = (pieces() ^ from ^ capsq) | to;
|
|
|
|
assert(to == ep_square());
|
|
assert(moved_piece(m) == make_piece(us, PAWN));
|
|
assert(piece_on(capsq) == make_piece(~us, PAWN));
|
|
assert(piece_on(to) == NO_PIECE);
|
|
|
|
return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK))
|
|
&& !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP));
|
|
}
|
|
|
|
// If the moving piece is a king, check whether the destination
|
|
// square is attacked by the opponent. Castling moves are checked
|
|
// for legality during move generation.
|
|
if (type_of(piece_on(from)) == KING)
|
|
return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us));
|
|
|
|
// A non-king move is legal if and only if it is not pinned or it
|
|
// is moving along the ray towards or away from the king.
|
|
return !pinned
|
|
|| !(pinned & from)
|
|
|| aligned(from, to_sq(m), square<KING>(us));
|
|
}
|
|
|
|
|
|
/// Position::pseudo_legal() takes a random move and tests whether the move is
|
|
/// pseudo legal. It is used to validate moves from TT that can be corrupted
|
|
/// due to SMP concurrent access or hash position key aliasing.
|
|
|
|
bool Position::pseudo_legal(const Move m) const {
|
|
|
|
Color us = sideToMove;
|
|
Square from = from_sq(m);
|
|
Square to = to_sq(m);
|
|
Piece pc = moved_piece(m);
|
|
|
|
// Use a slower but simpler function for uncommon cases
|
|
if (type_of(m) != NORMAL)
|
|
return MoveList<LEGAL>(*this).contains(m);
|
|
|
|
// Is not a promotion, so promotion piece must be empty
|
|
if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE)
|
|
return false;
|
|
|
|
// If the 'from' square is not occupied by a piece belonging to the side to
|
|
// move, the move is obviously not legal.
|
|
if (pc == NO_PIECE || color_of(pc) != us)
|
|
return false;
|
|
|
|
// The destination square cannot be occupied by a friendly piece
|
|
if (pieces(us) & to)
|
|
return false;
|
|
|
|
// Handle the special case of a pawn move
|
|
if (type_of(pc) == PAWN)
|
|
{
|
|
// We have already handled promotion moves, so destination
|
|
// cannot be on the 8th/1st rank.
|
|
if (rank_of(to) == relative_rank(us, RANK_8))
|
|
return false;
|
|
|
|
if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture
|
|
&& !((from + pawn_push(us) == to) && empty(to)) // Not a single push
|
|
&& !( (from + 2 * pawn_push(us) == to) // Not a double push
|
|
&& (rank_of(from) == relative_rank(us, RANK_2))
|
|
&& empty(to)
|
|
&& empty(to - pawn_push(us))))
|
|
return false;
|
|
}
|
|
else if (!(attacks_from(pc, from) & to))
|
|
return false;
|
|
|
|
// Evasions generator already takes care to avoid some kind of illegal moves
|
|
// and legal() relies on this. We therefore have to take care that the same
|
|
// kind of moves are filtered out here.
|
|
if (checkers())
|
|
{
|
|
if (type_of(pc) != KING)
|
|
{
|
|
// Double check? In this case a king move is required
|
|
if (more_than_one(checkers()))
|
|
return false;
|
|
|
|
// Our move must be a blocking evasion or a capture of the checking piece
|
|
if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to))
|
|
return false;
|
|
}
|
|
// In case of king moves under check we have to remove king so as to catch
|
|
// invalid moves like b1a1 when opposite queen is on c1.
|
|
else if (attackers_to(to, pieces() ^ from) & pieces(~us))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Position::gives_check() tests whether a pseudo-legal move gives a check
|
|
|
|
bool Position::gives_check(Move m, const CheckInfo& ci) const {
|
|
|
|
assert(is_ok(m));
|
|
assert(ci.dcCandidates == discovered_check_candidates());
|
|
assert(color_of(moved_piece(m)) == sideToMove);
|
|
|
|
Square from = from_sq(m);
|
|
Square to = to_sq(m);
|
|
|
|
// Is there a direct check?
|
|
if (ci.checkSquares[type_of(piece_on(from))] & to)
|
|
return true;
|
|
|
|
// Is there a discovered check?
|
|
if ( ci.dcCandidates
|
|
&& (ci.dcCandidates & from)
|
|
&& !aligned(from, to, ci.ksq))
|
|
return true;
|
|
|
|
switch (type_of(m))
|
|
{
|
|
case NORMAL:
|
|
return false;
|
|
|
|
case PROMOTION:
|
|
return attacks_bb(Piece(promotion_type(m)), to, pieces() ^ from) & ci.ksq;
|
|
|
|
// En passant capture with check? We have already handled the case
|
|
// of direct checks and ordinary discovered check, so the only case we
|
|
// need to handle is the unusual case of a discovered check through
|
|
// the captured pawn.
|
|
case ENPASSANT:
|
|
{
|
|
Square capsq = make_square(file_of(to), rank_of(from));
|
|
Bitboard b = (pieces() ^ from ^ capsq) | to;
|
|
|
|
return (attacks_bb< ROOK>(ci.ksq, b) & pieces(sideToMove, QUEEN, ROOK))
|
|
| (attacks_bb<BISHOP>(ci.ksq, b) & pieces(sideToMove, QUEEN, BISHOP));
|
|
}
|
|
case CASTLING:
|
|
{
|
|
Square kfrom = from;
|
|
Square rfrom = to; // Castling is encoded as 'King captures the rook'
|
|
Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1);
|
|
Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1);
|
|
|
|
return (PseudoAttacks[ROOK][rto] & ci.ksq)
|
|
&& (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & ci.ksq);
|
|
}
|
|
default:
|
|
assert(false);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/// Position::do_move() makes a move, and saves all information necessary
|
|
/// to a StateInfo object. The move is assumed to be legal. Pseudo-legal
|
|
/// moves should be filtered out before this function is called.
|
|
|
|
void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
|
|
|
|
assert(is_ok(m));
|
|
assert(&newSt != st);
|
|
|
|
++nodes;
|
|
Key k = st->key ^ Zobrist::side;
|
|
|
|
// Copy some fields of the old state to our new StateInfo object except the
|
|
// ones which are going to be recalculated from scratch anyway and then switch
|
|
// our state pointer to point to the new (ready to be updated) state.
|
|
std::memcpy(&newSt, st, offsetof(StateInfo, key));
|
|
newSt.previous = st;
|
|
st = &newSt;
|
|
|
|
// Increment ply counters. In particular, rule50 will be reset to zero later on
|
|
// in case of a capture or a pawn move.
|
|
++gamePly;
|
|
++st->rule50;
|
|
++st->pliesFromNull;
|
|
|
|
Color us = sideToMove;
|
|
Color them = ~us;
|
|
Square from = from_sq(m);
|
|
Square to = to_sq(m);
|
|
PieceType pt = type_of(piece_on(from));
|
|
PieceType captured = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to));
|
|
|
|
assert(color_of(piece_on(from)) == us);
|
|
assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == (type_of(m) != CASTLING ? them : us));
|
|
assert(captured != KING);
|
|
|
|
if (type_of(m) == CASTLING)
|
|
{
|
|
assert(pt == KING);
|
|
|
|
Square rfrom, rto;
|
|
do_castling<true>(us, from, to, rfrom, rto);
|
|
|
|
captured = NO_PIECE_TYPE;
|
|
st->psq += PSQT::psq[us][ROOK][rto] - PSQT::psq[us][ROOK][rfrom];
|
|
k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto];
|
|
}
|
|
|
|
if (captured)
|
|
{
|
|
Square capsq = to;
|
|
|
|
// If the captured piece is a pawn, update pawn hash key, otherwise
|
|
// update non-pawn material.
|
|
if (captured == PAWN)
|
|
{
|
|
if (type_of(m) == ENPASSANT)
|
|
{
|
|
capsq -= pawn_push(us);
|
|
|
|
assert(pt == PAWN);
|
|
assert(to == st->epSquare);
|
|
assert(relative_rank(us, to) == RANK_6);
|
|
assert(piece_on(to) == NO_PIECE);
|
|
assert(piece_on(capsq) == make_piece(them, PAWN));
|
|
|
|
board[capsq] = NO_PIECE; // Not done by remove_piece()
|
|
}
|
|
|
|
st->pawnKey ^= Zobrist::psq[them][PAWN][capsq];
|
|
}
|
|
else
|
|
st->nonPawnMaterial[them] -= PieceValue[MG][captured];
|
|
|
|
// Update board and piece lists
|
|
remove_piece(them, captured, capsq);
|
|
|
|
// Update material hash key and prefetch access to materialTable
|
|
k ^= Zobrist::psq[them][captured][capsq];
|
|
st->materialKey ^= Zobrist::psq[them][captured][pieceCount[them][captured]];
|
|
prefetch(thisThread->materialTable[st->materialKey]);
|
|
|
|
// Update incremental scores
|
|
st->psq -= PSQT::psq[them][captured][capsq];
|
|
|
|
// Reset rule 50 counter
|
|
st->rule50 = 0;
|
|
}
|
|
|
|
// Update hash key
|
|
k ^= Zobrist::psq[us][pt][from] ^ Zobrist::psq[us][pt][to];
|
|
|
|
// Reset en passant square
|
|
if (st->epSquare != SQ_NONE)
|
|
{
|
|
k ^= Zobrist::enpassant[file_of(st->epSquare)];
|
|
st->epSquare = SQ_NONE;
|
|
}
|
|
|
|
// Update castling rights if needed
|
|
if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to]))
|
|
{
|
|
int cr = castlingRightsMask[from] | castlingRightsMask[to];
|
|
k ^= Zobrist::castling[st->castlingRights & cr];
|
|
st->castlingRights &= ~cr;
|
|
}
|
|
|
|
// Move the piece. The tricky Chess960 castling is handled earlier
|
|
if (type_of(m) != CASTLING)
|
|
move_piece(us, pt, from, to);
|
|
|
|
// If the moving piece is a pawn do some special extra work
|
|
if (pt == PAWN)
|
|
{
|
|
// Set en-passant square if the moved pawn can be captured
|
|
if ( (int(to) ^ int(from)) == 16
|
|
&& (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN)))
|
|
{
|
|
st->epSquare = (from + to) / 2;
|
|
k ^= Zobrist::enpassant[file_of(st->epSquare)];
|
|
}
|
|
|
|
else if (type_of(m) == PROMOTION)
|
|
{
|
|
PieceType promotion = promotion_type(m);
|
|
|
|
assert(relative_rank(us, to) == RANK_8);
|
|
assert(promotion >= KNIGHT && promotion <= QUEEN);
|
|
|
|
remove_piece(us, PAWN, to);
|
|
put_piece(us, promotion, to);
|
|
|
|
// Update hash keys
|
|
k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to];
|
|
st->pawnKey ^= Zobrist::psq[us][PAWN][to];
|
|
st->materialKey ^= Zobrist::psq[us][promotion][pieceCount[us][promotion]-1]
|
|
^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]];
|
|
|
|
// Update incremental score
|
|
st->psq += PSQT::psq[us][promotion][to] - PSQT::psq[us][PAWN][to];
|
|
|
|
// Update material
|
|
st->nonPawnMaterial[us] += PieceValue[MG][promotion];
|
|
}
|
|
|
|
// Update pawn hash key and prefetch access to pawnsTable
|
|
st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to];
|
|
prefetch(thisThread->pawnsTable[st->pawnKey]);
|
|
|
|
// Reset rule 50 draw counter
|
|
st->rule50 = 0;
|
|
}
|
|
|
|
// Update incremental scores
|
|
st->psq += PSQT::psq[us][pt][to] - PSQT::psq[us][pt][from];
|
|
|
|
// Set capture piece
|
|
st->capturedType = captured;
|
|
|
|
// Update the key with the final value
|
|
st->key = k;
|
|
|
|
// Calculate checkers bitboard (if move gives check)
|
|
st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0;
|
|
|
|
sideToMove = ~sideToMove;
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
|
|
/// Position::undo_move() unmakes a move. When it returns, the position should
|
|
/// be restored to exactly the same state as before the move was made.
|
|
|
|
void Position::undo_move(Move m) {
|
|
|
|
assert(is_ok(m));
|
|
|
|
sideToMove = ~sideToMove;
|
|
|
|
Color us = sideToMove;
|
|
Square from = from_sq(m);
|
|
Square to = to_sq(m);
|
|
PieceType pt = type_of(piece_on(to));
|
|
|
|
assert(empty(from) || type_of(m) == CASTLING);
|
|
assert(st->capturedType != KING);
|
|
|
|
if (type_of(m) == PROMOTION)
|
|
{
|
|
assert(relative_rank(us, to) == RANK_8);
|
|
assert(pt == promotion_type(m));
|
|
assert(pt >= KNIGHT && pt <= QUEEN);
|
|
|
|
remove_piece(us, pt, to);
|
|
put_piece(us, PAWN, to);
|
|
pt = PAWN;
|
|
}
|
|
|
|
if (type_of(m) == CASTLING)
|
|
{
|
|
Square rfrom, rto;
|
|
do_castling<false>(us, from, to, rfrom, rto);
|
|
}
|
|
else
|
|
{
|
|
move_piece(us, pt, to, from); // Put the piece back at the source square
|
|
|
|
if (st->capturedType)
|
|
{
|
|
Square capsq = to;
|
|
|
|
if (type_of(m) == ENPASSANT)
|
|
{
|
|
capsq -= pawn_push(us);
|
|
|
|
assert(pt == PAWN);
|
|
assert(to == st->previous->epSquare);
|
|
assert(relative_rank(us, to) == RANK_6);
|
|
assert(piece_on(capsq) == NO_PIECE);
|
|
assert(st->capturedType == PAWN);
|
|
}
|
|
|
|
put_piece(~us, st->capturedType, capsq); // Restore the captured piece
|
|
}
|
|
}
|
|
|
|
// Finally point our state pointer back to the previous state
|
|
st = st->previous;
|
|
--gamePly;
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
|
|
/// Position::do_castling() is a helper used to do/undo a castling move. This
|
|
/// is a bit tricky, especially in Chess960.
|
|
template<bool Do>
|
|
void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) {
|
|
|
|
bool kingSide = to > from;
|
|
rfrom = to; // Castling is encoded as "king captures friendly rook"
|
|
rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
|
|
to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
|
|
|
|
// Remove both pieces first since squares could overlap in Chess960
|
|
remove_piece(us, KING, Do ? from : to);
|
|
remove_piece(us, ROOK, Do ? rfrom : rto);
|
|
board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us
|
|
put_piece(us, KING, Do ? to : from);
|
|
put_piece(us, ROOK, Do ? rto : rfrom);
|
|
}
|
|
|
|
|
|
/// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips
|
|
/// the side to move without executing any move on the board.
|
|
|
|
void Position::do_null_move(StateInfo& newSt) {
|
|
|
|
assert(!checkers());
|
|
assert(&newSt != st);
|
|
|
|
std::memcpy(&newSt, st, sizeof(StateInfo));
|
|
newSt.previous = st;
|
|
st = &newSt;
|
|
|
|
if (st->epSquare != SQ_NONE)
|
|
{
|
|
st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
|
|
st->epSquare = SQ_NONE;
|
|
}
|
|
|
|
st->key ^= Zobrist::side;
|
|
prefetch(TT.first_entry(st->key));
|
|
|
|
++st->rule50;
|
|
st->pliesFromNull = 0;
|
|
|
|
sideToMove = ~sideToMove;
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
void Position::undo_null_move() {
|
|
|
|
assert(!checkers());
|
|
|
|
st = st->previous;
|
|
sideToMove = ~sideToMove;
|
|
}
|
|
|
|
|
|
/// Position::key_after() computes the new hash key after the given move. Needed
|
|
/// for speculative prefetch. It doesn't recognize special moves like castling,
|
|
/// en-passant and promotions.
|
|
|
|
Key Position::key_after(Move m) const {
|
|
|
|
Color us = sideToMove;
|
|
Square from = from_sq(m);
|
|
Square to = to_sq(m);
|
|
PieceType pt = type_of(piece_on(from));
|
|
PieceType captured = type_of(piece_on(to));
|
|
Key k = st->key ^ Zobrist::side;
|
|
|
|
if (captured)
|
|
k ^= Zobrist::psq[~us][captured][to];
|
|
|
|
return k ^ Zobrist::psq[us][pt][to] ^ Zobrist::psq[us][pt][from];
|
|
}
|
|
|
|
|
|
/// Position::see() is a static exchange evaluator: It tries to estimate the
|
|
/// material gain or loss resulting from a move.
|
|
|
|
Value Position::see_sign(Move m) const {
|
|
|
|
assert(is_ok(m));
|
|
|
|
// Early return if SEE cannot be negative because captured piece value
|
|
// is not less then capturing one. Note that king moves always return
|
|
// here because king midgame value is set to 0.
|
|
if (PieceValue[MG][moved_piece(m)] <= PieceValue[MG][piece_on(to_sq(m))])
|
|
return VALUE_KNOWN_WIN;
|
|
|
|
return see(m);
|
|
}
|
|
|
|
Value Position::see(Move m) const {
|
|
|
|
Square from, to;
|
|
Bitboard occupied, attackers, stmAttackers;
|
|
Value swapList[32];
|
|
int slIndex = 1;
|
|
PieceType captured;
|
|
Color stm;
|
|
|
|
assert(is_ok(m));
|
|
|
|
from = from_sq(m);
|
|
to = to_sq(m);
|
|
swapList[0] = PieceValue[MG][piece_on(to)];
|
|
stm = color_of(piece_on(from));
|
|
occupied = pieces() ^ from;
|
|
|
|
// Castling moves are implemented as king capturing the rook so cannot
|
|
// be handled correctly. Simply return VALUE_ZERO that is always correct
|
|
// unless in the rare case the rook ends up under attack.
|
|
if (type_of(m) == CASTLING)
|
|
return VALUE_ZERO;
|
|
|
|
if (type_of(m) == ENPASSANT)
|
|
{
|
|
occupied ^= to - pawn_push(stm); // Remove the captured pawn
|
|
swapList[0] = PieceValue[MG][PAWN];
|
|
}
|
|
|
|
// Find all attackers to the destination square, with the moving piece
|
|
// removed, but possibly an X-ray attacker added behind it.
|
|
attackers = attackers_to(to, occupied) & occupied;
|
|
|
|
// If the opponent has no attackers we are finished
|
|
stm = ~stm;
|
|
stmAttackers = attackers & pieces(stm);
|
|
if (!stmAttackers)
|
|
return swapList[0];
|
|
|
|
// The destination square is defended, which makes things rather more
|
|
// difficult to compute. We proceed by building up a "swap list" containing
|
|
// the material gain or loss at each stop in a sequence of captures to the
|
|
// destination square, where the sides alternately capture, and always
|
|
// capture with the least valuable piece. After each capture, we look for
|
|
// new X-ray attacks from behind the capturing piece.
|
|
captured = type_of(piece_on(from));
|
|
|
|
do {
|
|
assert(slIndex < 32);
|
|
|
|
// Add the new entry to the swap list
|
|
swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[MG][captured];
|
|
|
|
// Locate and remove the next least valuable attacker
|
|
captured = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
|
|
stm = ~stm;
|
|
stmAttackers = attackers & pieces(stm);
|
|
++slIndex;
|
|
|
|
} while (stmAttackers && (captured != KING || (--slIndex, false))); // Stop before a king capture
|
|
|
|
// Having built the swap list, we negamax through it to find the best
|
|
// achievable score from the point of view of the side to move.
|
|
while (--slIndex)
|
|
swapList[slIndex - 1] = std::min(-swapList[slIndex], swapList[slIndex - 1]);
|
|
|
|
return swapList[0];
|
|
}
|
|
|
|
|
|
/// Position::is_draw() tests whether the position is drawn by 50-move rule
|
|
/// or by repetition. It does not detect stalemates.
|
|
|
|
bool Position::is_draw() const {
|
|
|
|
if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size()))
|
|
return true;
|
|
|
|
StateInfo* stp = st;
|
|
for (int i = 2, e = std::min(st->rule50, st->pliesFromNull); i <= e; i += 2)
|
|
{
|
|
stp = stp->previous->previous;
|
|
|
|
if (stp->key == st->key)
|
|
return true; // Draw at first repetition
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Position::flip() flips position with the white and black sides reversed. This
|
|
/// is only useful for debugging e.g. for finding evaluation symmetry bugs.
|
|
|
|
void Position::flip() {
|
|
|
|
string f, token;
|
|
std::stringstream ss(fen());
|
|
|
|
for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement
|
|
{
|
|
std::getline(ss, token, r > RANK_1 ? '/' : ' ');
|
|
f.insert(0, token + (f.empty() ? " " : "/"));
|
|
}
|
|
|
|
ss >> token; // Active color
|
|
f += (token == "w" ? "B " : "W "); // Will be lowercased later
|
|
|
|
ss >> token; // Castling availability
|
|
f += token + " ";
|
|
|
|
std::transform(f.begin(), f.end(), f.begin(),
|
|
[](char c) { return char(islower(c) ? toupper(c) : tolower(c)); });
|
|
|
|
ss >> token; // En passant square
|
|
f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3"));
|
|
|
|
std::getline(ss, token); // Half and full moves
|
|
f += token;
|
|
|
|
set(f, is_chess960(), this_thread());
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
|
|
/// Position::pos_is_ok() performs some consistency checks for the position object.
|
|
/// This is meant to be helpful when debugging.
|
|
|
|
bool Position::pos_is_ok(int* failedStep) const {
|
|
|
|
const bool Fast = true; // Quick (default) or full check?
|
|
|
|
enum { Default, King, Bitboards, State, Lists, Castling };
|
|
|
|
for (int step = Default; step <= (Fast ? Default : Castling); step++)
|
|
{
|
|
if (failedStep)
|
|
*failedStep = step;
|
|
|
|
if (step == Default)
|
|
if ( (sideToMove != WHITE && sideToMove != BLACK)
|
|
|| piece_on(square<KING>(WHITE)) != W_KING
|
|
|| piece_on(square<KING>(BLACK)) != B_KING
|
|
|| ( ep_square() != SQ_NONE
|
|
&& relative_rank(sideToMove, ep_square()) != RANK_6))
|
|
return false;
|
|
|
|
if (step == King)
|
|
if ( std::count(board, board + SQUARE_NB, W_KING) != 1
|
|
|| std::count(board, board + SQUARE_NB, B_KING) != 1
|
|
|| attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove))
|
|
return false;
|
|
|
|
if (step == Bitboards)
|
|
{
|
|
if ( (pieces(WHITE) & pieces(BLACK))
|
|
||(pieces(WHITE) | pieces(BLACK)) != pieces())
|
|
return false;
|
|
|
|
for (PieceType p1 = PAWN; p1 <= KING; ++p1)
|
|
for (PieceType p2 = PAWN; p2 <= KING; ++p2)
|
|
if (p1 != p2 && (pieces(p1) & pieces(p2)))
|
|
return false;
|
|
}
|
|
|
|
if (step == State)
|
|
{
|
|
StateInfo si = *st;
|
|
set_state(&si);
|
|
if (std::memcmp(&si, st, sizeof(StateInfo)))
|
|
return false;
|
|
}
|
|
|
|
if (step == Lists)
|
|
for (Color c = WHITE; c <= BLACK; ++c)
|
|
for (PieceType pt = PAWN; pt <= KING; ++pt)
|
|
{
|
|
if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt)))
|
|
return false;
|
|
|
|
for (int i = 0; i < pieceCount[c][pt]; ++i)
|
|
if ( board[pieceList[c][pt][i]] != make_piece(c, pt)
|
|
|| index[pieceList[c][pt][i]] != i)
|
|
return false;
|
|
}
|
|
|
|
if (step == Castling)
|
|
for (Color c = WHITE; c <= BLACK; ++c)
|
|
for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
|
|
{
|
|
if (!can_castle(c | s))
|
|
continue;
|
|
|
|
if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK)
|
|
|| castlingRightsMask[castlingRookSquare[c | s]] != (c | s)
|
|
||(castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|