droidfish/DroidFish/jni/stockfish/endgame.cpp
2012-01-15 01:13:33 +00:00

894 lines
32 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include "bitcount.h"
#include "endgame.h"
#include "pawns.h"
using std::string;
using namespace std;
extern uint32_t probe_kpk_bitbase(Square wksq, Square wpsq, Square bksq, Color stm);
namespace {
// Table used to drive the defending king towards the edge of the board
// in KX vs K and KQ vs KR endgames.
const int MateTable[64] = {
100, 90, 80, 70, 70, 80, 90, 100,
90, 70, 60, 50, 50, 60, 70, 90,
80, 60, 40, 30, 30, 40, 60, 80,
70, 50, 30, 20, 20, 30, 50, 70,
70, 50, 30, 20, 20, 30, 50, 70,
80, 60, 40, 30, 30, 40, 60, 80,
90, 70, 60, 50, 50, 60, 70, 90,
100, 90, 80, 70, 70, 80, 90, 100,
};
// Table used to drive the defending king towards a corner square of the
// right color in KBN vs K endgames.
const int KBNKMateTable[64] = {
200, 190, 180, 170, 160, 150, 140, 130,
190, 180, 170, 160, 150, 140, 130, 140,
180, 170, 155, 140, 140, 125, 140, 150,
170, 160, 140, 120, 110, 140, 150, 160,
160, 150, 140, 110, 120, 140, 160, 170,
150, 140, 125, 140, 140, 155, 170, 180,
140, 130, 140, 150, 160, 170, 180, 190,
130, 140, 150, 160, 170, 180, 190, 200
};
// The attacking side is given a descending bonus based on distance between
// the two kings in basic endgames.
const int DistanceBonus[8] = { 0, 0, 100, 80, 60, 40, 20, 10 };
// Get the material key of a Position out of the given endgame key code
// like "KBPKN". The trick here is to first forge an ad-hoc fen string
// and then let a Position object to do the work for us. Note that the
// fen string could correspond to an illegal position.
Key key(const string& code, Color c) {
assert(code.length() > 0 && code.length() < 8);
assert(code[0] == 'K');
string sides[] = { code.substr(code.find('K', 1)), // Weaker
code.substr(0, code.find('K', 1)) }; // Stronger
transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower);
string fen = sides[0] + char('0' + int(8 - code.length()))
+ sides[1] + "/8/8/8/8/8/8/8 w - - 0 10";
return Position(fen, false, 0).material_key();
}
template<typename M>
void delete_endgame(const typename M::value_type& p) { delete p.second; }
} // namespace
/// Endgames members definitions
Endgames::Endgames() {
add<KPK>("KPK");
add<KNNK>("KNNK");
add<KBNK>("KBNK");
add<KRKP>("KRKP");
add<KRKB>("KRKB");
add<KRKN>("KRKN");
add<KQKR>("KQKR");
add<KBBKN>("KBBKN");
add<KNPK>("KNPK");
add<KRPKR>("KRPKR");
add<KBPKB>("KBPKB");
add<KBPKN>("KBPKN");
add<KBPPKB>("KBPPKB");
add<KRPPKRP>("KRPPKRP");
}
Endgames::~Endgames() {
for_each(m1.begin(), m1.end(), delete_endgame<M1>);
for_each(m2.begin(), m2.end(), delete_endgame<M2>);
}
template<EndgameType E>
void Endgames::add(const string& code) {
typedef typename eg_family<E>::type T;
map((T*)0)[key(code, WHITE)] = new Endgame<E>(WHITE);
map((T*)0)[key(code, BLACK)] = new Endgame<E>(BLACK);
}
/// Mate with KX vs K. This function is used to evaluate positions with
/// King and plenty of material vs a lone king. It simply gives the
/// attacking side a bonus for driving the defending king towards the edge
/// of the board, and for keeping the distance between the two kings small.
template<>
Value Endgame<KXK>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
Square winnerKSq = pos.king_square(strongerSide);
Square loserKSq = pos.king_square(weakerSide);
Value result = pos.non_pawn_material(strongerSide)
+ pos.piece_count(strongerSide, PAWN) * PawnValueEndgame
+ MateTable[loserKSq]
+ DistanceBonus[square_distance(winnerKSq, loserKSq)];
if ( pos.piece_count(strongerSide, QUEEN)
|| pos.piece_count(strongerSide, ROOK)
|| pos.piece_count(strongerSide, BISHOP) > 1)
// TODO: check for two equal-colored bishops!
result += VALUE_KNOWN_WIN;
return strongerSide == pos.side_to_move() ? result : -result;
}
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
/// defending king towards a corner square of the right color.
template<>
Value Endgame<KBNK>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame + BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
assert(pos.piece_count(strongerSide, KNIGHT) == 1);
assert(pos.piece_count(strongerSide, PAWN) == 0);
Square winnerKSq = pos.king_square(strongerSide);
Square loserKSq = pos.king_square(weakerSide);
Square bishopSquare = pos.piece_list(strongerSide, BISHOP)[0];
// kbnk_mate_table() tries to drive toward corners A1 or H8,
// if we have a bishop that cannot reach the above squares we
// mirror the kings so to drive enemy toward corners A8 or H1.
if (opposite_colors(bishopSquare, SQ_A1))
{
winnerKSq = mirror(winnerKSq);
loserKSq = mirror(loserKSq);
}
Value result = VALUE_KNOWN_WIN
+ DistanceBonus[square_distance(winnerKSq, loserKSq)]
+ KBNKMateTable[loserKSq];
return strongerSide == pos.side_to_move() ? result : -result;
}
/// KP vs K. This endgame is evaluated with the help of a bitbase.
template<>
Value Endgame<KPK>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(strongerSide, PAWN) == 1);
assert(pos.piece_count(weakerSide, PAWN) == 0);
Square wksq, bksq, wpsq;
Color stm;
if (strongerSide == WHITE)
{
wksq = pos.king_square(WHITE);
bksq = pos.king_square(BLACK);
wpsq = pos.piece_list(WHITE, PAWN)[0];
stm = pos.side_to_move();
}
else
{
wksq = ~pos.king_square(BLACK);
bksq = ~pos.king_square(WHITE);
wpsq = ~pos.piece_list(BLACK, PAWN)[0];
stm = ~pos.side_to_move();
}
if (file_of(wpsq) >= FILE_E)
{
wksq = mirror(wksq);
bksq = mirror(bksq);
wpsq = mirror(wpsq);
}
if (!probe_kpk_bitbase(wksq, wpsq, bksq, stm))
return VALUE_DRAW;
Value result = VALUE_KNOWN_WIN
+ PawnValueEndgame
+ Value(rank_of(wpsq));
return strongerSide == pos.side_to_move() ? result : -result;
}
/// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without
/// a bitbase. The function below returns drawish scores when the pawn is
/// far advanced with support of the king, while the attacking king is far
/// away.
template<>
Value Endgame<KRKP>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
assert(pos.non_pawn_material(weakerSide) == 0);
assert(pos.piece_count(weakerSide, PAWN) == 1);
Square wksq, wrsq, bksq, bpsq;
int tempo = (pos.side_to_move() == strongerSide);
wksq = pos.king_square(strongerSide);
wrsq = pos.piece_list(strongerSide, ROOK)[0];
bksq = pos.king_square(weakerSide);
bpsq = pos.piece_list(weakerSide, PAWN)[0];
if (strongerSide == BLACK)
{
wksq = ~wksq;
wrsq = ~wrsq;
bksq = ~bksq;
bpsq = ~bpsq;
}
Square queeningSq = make_square(file_of(bpsq), RANK_1);
Value result;
// If the stronger side's king is in front of the pawn, it's a win
if (wksq < bpsq && file_of(wksq) == file_of(bpsq))
result = RookValueEndgame - Value(square_distance(wksq, bpsq));
// If the weaker side's king is too far from the pawn and the rook,
// it's a win
else if ( square_distance(bksq, bpsq) - (tempo ^ 1) >= 3
&& square_distance(bksq, wrsq) >= 3)
result = RookValueEndgame - Value(square_distance(wksq, bpsq));
// If the pawn is far advanced and supported by the defending king,
// the position is drawish
else if ( rank_of(bksq) <= RANK_3
&& square_distance(bksq, bpsq) == 1
&& rank_of(wksq) >= RANK_4
&& square_distance(wksq, bpsq) - tempo > 2)
result = Value(80 - square_distance(wksq, bpsq) * 8);
else
result = Value(200)
- Value(square_distance(wksq, bpsq + DELTA_S) * 8)
+ Value(square_distance(bksq, bpsq + DELTA_S) * 8)
+ Value(square_distance(bpsq, queeningSq) * 8);
return strongerSide == pos.side_to_move() ? result : -result;
}
/// KR vs KB. This is very simple, and always returns drawish scores. The
/// score is slightly bigger when the defending king is close to the edge.
template<>
Value Endgame<KRKB>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
assert(pos.piece_count(weakerSide, PAWN) == 0);
assert(pos.piece_count(weakerSide, BISHOP) == 1);
Value result = Value(MateTable[pos.king_square(weakerSide)]);
return strongerSide == pos.side_to_move() ? result : -result;
}
/// KR vs KN. The attacking side has slightly better winning chances than
/// in KR vs KB, particularly if the king and the knight are far apart.
template<>
Value Endgame<KRKN>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
assert(pos.piece_count(weakerSide, PAWN) == 0);
assert(pos.piece_count(weakerSide, KNIGHT) == 1);
const int penalty[8] = { 0, 10, 14, 20, 30, 42, 58, 80 };
Square bksq = pos.king_square(weakerSide);
Square bnsq = pos.piece_list(weakerSide, KNIGHT)[0];
Value result = Value(MateTable[bksq] + penalty[square_distance(bksq, bnsq)]);
return strongerSide == pos.side_to_move() ? result : -result;
}
/// KQ vs KR. This is almost identical to KX vs K: We give the attacking
/// king a bonus for having the kings close together, and for forcing the
/// defending king towards the edge. If we also take care to avoid null move
/// for the defending side in the search, this is usually sufficient to be
/// able to win KQ vs KR.
template<>
Value Endgame<KQKR>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
assert(pos.piece_count(weakerSide, PAWN) == 0);
Square winnerKSq = pos.king_square(strongerSide);
Square loserKSq = pos.king_square(weakerSide);
Value result = QueenValueEndgame
- RookValueEndgame
+ MateTable[loserKSq]
+ DistanceBonus[square_distance(winnerKSq, loserKSq)];
return strongerSide == pos.side_to_move() ? result : -result;
}
template<>
Value Endgame<KBBKN>::operator()(const Position& pos) const {
assert(pos.piece_count(strongerSide, BISHOP) == 2);
assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
assert(pos.piece_count(weakerSide, KNIGHT) == 1);
assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
assert(!pos.pieces(PAWN));
Value result = BishopValueEndgame;
Square wksq = pos.king_square(strongerSide);
Square bksq = pos.king_square(weakerSide);
Square nsq = pos.piece_list(weakerSide, KNIGHT)[0];
// Bonus for attacking king close to defending king
result += Value(DistanceBonus[square_distance(wksq, bksq)]);
// Bonus for driving the defending king and knight apart
result += Value(square_distance(bksq, nsq) * 32);
// Bonus for restricting the knight's mobility
result += Value((8 - popcount<Max15>(pos.attacks_from<KNIGHT>(nsq))) * 8);
return strongerSide == pos.side_to_move() ? result : -result;
}
/// K and two minors vs K and one or two minors or K and two knights against
/// king alone are always draw.
template<>
Value Endgame<KmmKm>::operator()(const Position&) const {
return VALUE_DRAW;
}
template<>
Value Endgame<KNNK>::operator()(const Position&) const {
return VALUE_DRAW;
}
/// K, bishop and one or more pawns vs K. It checks for draws with rook pawns and
/// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW
/// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
/// will be used.
template<>
ScaleFactor Endgame<KBPsK>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
assert(pos.piece_count(strongerSide, PAWN) >= 1);
// No assertions about the material of weakerSide, because we want draws to
// be detected even when the weaker side has some pawns.
Bitboard pawns = pos.pieces(PAWN, strongerSide);
File pawnFile = file_of(pos.piece_list(strongerSide, PAWN)[0]);
// All pawns are on a single rook file ?
if ( (pawnFile == FILE_A || pawnFile == FILE_H)
&& !(pawns & ~file_bb(pawnFile)))
{
Square bishopSq = pos.piece_list(strongerSide, BISHOP)[0];
Square queeningSq = relative_square(strongerSide, make_square(pawnFile, RANK_8));
Square kingSq = pos.king_square(weakerSide);
if ( opposite_colors(queeningSq, bishopSq)
&& abs(file_of(kingSq) - pawnFile) <= 1)
{
// The bishop has the wrong color, and the defending king is on the
// file of the pawn(s) or the neighboring file. Find the rank of the
// frontmost pawn.
Rank rank;
if (strongerSide == WHITE)
{
for (rank = RANK_7; !(rank_bb(rank) & pawns); rank--) {}
assert(rank >= RANK_2 && rank <= RANK_7);
}
else
{
for (rank = RANK_2; !(rank_bb(rank) & pawns); rank++) {}
rank = Rank(rank ^ 7); // HACK to get the relative rank
assert(rank >= RANK_2 && rank <= RANK_7);
}
// If the defending king has distance 1 to the promotion square or
// is placed somewhere in front of the pawn, it's a draw.
if ( square_distance(kingSq, queeningSq) <= 1
|| relative_rank(strongerSide, kingSq) >= rank)
return SCALE_FACTOR_DRAW;
}
}
return SCALE_FACTOR_NONE;
}
/// K and queen vs K, rook and one or more pawns. It tests for fortress draws with
/// a rook on the third rank defended by a pawn.
template<>
ScaleFactor Endgame<KQKRPs>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
assert(pos.piece_count(strongerSide, QUEEN) == 1);
assert(pos.piece_count(strongerSide, PAWN) == 0);
assert(pos.piece_count(weakerSide, ROOK) == 1);
assert(pos.piece_count(weakerSide, PAWN) >= 1);
Square kingSq = pos.king_square(weakerSide);
if ( relative_rank(weakerSide, kingSq) <= RANK_2
&& relative_rank(weakerSide, pos.king_square(strongerSide)) >= RANK_4
&& (pos.pieces(ROOK, weakerSide) & rank_bb(relative_rank(weakerSide, RANK_3)))
&& (pos.pieces(PAWN, weakerSide) & rank_bb(relative_rank(weakerSide, RANK_2)))
&& (pos.attacks_from<KING>(kingSq) & pos.pieces(PAWN, weakerSide)))
{
Square rsq = pos.piece_list(weakerSide, ROOK)[0];
if (pos.attacks_from<PAWN>(rsq, strongerSide) & pos.pieces(PAWN, weakerSide))
return SCALE_FACTOR_DRAW;
}
return SCALE_FACTOR_NONE;
}
/// K, rook and one pawn vs K and a rook. This function knows a handful of the
/// most important classes of drawn positions, but is far from perfect. It would
/// probably be a good idea to add more knowledge in the future.
///
/// It would also be nice to rewrite the actual code for this function,
/// which is mostly copied from Glaurung 1.x, and not very pretty.
template<>
ScaleFactor Endgame<KRPKR>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 1);
assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
assert(pos.piece_count(weakerSide, PAWN) == 0);
Square wksq = pos.king_square(strongerSide);
Square wrsq = pos.piece_list(strongerSide, ROOK)[0];
Square wpsq = pos.piece_list(strongerSide, PAWN)[0];
Square bksq = pos.king_square(weakerSide);
Square brsq = pos.piece_list(weakerSide, ROOK)[0];
// Orient the board in such a way that the stronger side is white, and the
// pawn is on the left half of the board.
if (strongerSide == BLACK)
{
wksq = ~wksq;
wrsq = ~wrsq;
wpsq = ~wpsq;
bksq = ~bksq;
brsq = ~brsq;
}
if (file_of(wpsq) > FILE_D)
{
wksq = mirror(wksq);
wrsq = mirror(wrsq);
wpsq = mirror(wpsq);
bksq = mirror(bksq);
brsq = mirror(brsq);
}
File f = file_of(wpsq);
Rank r = rank_of(wpsq);
Square queeningSq = make_square(f, RANK_8);
int tempo = (pos.side_to_move() == strongerSide);
// If the pawn is not too far advanced and the defending king defends the
// queening square, use the third-rank defence.
if ( r <= RANK_5
&& square_distance(bksq, queeningSq) <= 1
&& wksq <= SQ_H5
&& (rank_of(brsq) == RANK_6 || (r <= RANK_3 && rank_of(wrsq) != RANK_6)))
return SCALE_FACTOR_DRAW;
// The defending side saves a draw by checking from behind in case the pawn
// has advanced to the 6th rank with the king behind.
if ( r == RANK_6
&& square_distance(bksq, queeningSq) <= 1
&& rank_of(wksq) + tempo <= RANK_6
&& (rank_of(brsq) == RANK_1 || (!tempo && abs(file_of(brsq) - f) >= 3)))
return SCALE_FACTOR_DRAW;
if ( r >= RANK_6
&& bksq == queeningSq
&& rank_of(brsq) == RANK_1
&& (!tempo || square_distance(wksq, wpsq) >= 2))
return SCALE_FACTOR_DRAW;
// White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7
// and the black rook is behind the pawn.
if ( wpsq == SQ_A7
&& wrsq == SQ_A8
&& (bksq == SQ_H7 || bksq == SQ_G7)
&& file_of(brsq) == FILE_A
&& (rank_of(brsq) <= RANK_3 || file_of(wksq) >= FILE_D || rank_of(wksq) <= RANK_5))
return SCALE_FACTOR_DRAW;
// If the defending king blocks the pawn and the attacking king is too far
// away, it's a draw.
if ( r <= RANK_5
&& bksq == wpsq + DELTA_N
&& square_distance(wksq, wpsq) - tempo >= 2
&& square_distance(wksq, brsq) - tempo >= 2)
return SCALE_FACTOR_DRAW;
// Pawn on the 7th rank supported by the rook from behind usually wins if the
// attacking king is closer to the queening square than the defending king,
// and the defending king cannot gain tempi by threatening the attacking rook.
if ( r == RANK_7
&& f != FILE_A
&& file_of(wrsq) == f
&& wrsq != queeningSq
&& (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo)
&& (square_distance(wksq, queeningSq) < square_distance(bksq, wrsq) + tempo))
return ScaleFactor(SCALE_FACTOR_MAX - 2 * square_distance(wksq, queeningSq));
// Similar to the above, but with the pawn further back
if ( f != FILE_A
&& file_of(wrsq) == f
&& wrsq < wpsq
&& (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo)
&& (square_distance(wksq, wpsq + DELTA_N) < square_distance(bksq, wpsq + DELTA_N) - 2 + tempo)
&& ( square_distance(bksq, wrsq) + tempo >= 3
|| ( square_distance(wksq, queeningSq) < square_distance(bksq, wrsq) + tempo
&& (square_distance(wksq, wpsq + DELTA_N) < square_distance(bksq, wrsq) + tempo))))
return ScaleFactor( SCALE_FACTOR_MAX
- 8 * square_distance(wpsq, queeningSq)
- 2 * square_distance(wksq, queeningSq));
// If the pawn is not far advanced, and the defending king is somewhere in
// the pawn's path, it's probably a draw.
if (r <= RANK_4 && bksq > wpsq)
{
if (file_of(bksq) == file_of(wpsq))
return ScaleFactor(10);
if ( abs(file_of(bksq) - file_of(wpsq)) == 1
&& square_distance(wksq, bksq) > 2)
return ScaleFactor(24 - 2 * square_distance(wksq, bksq));
}
return SCALE_FACTOR_NONE;
}
/// K, rook and two pawns vs K, rook and one pawn. There is only a single
/// pattern: If the stronger side has no passed pawns and the defending king
/// is actively placed, the position is drawish.
template<>
ScaleFactor Endgame<KRPPKRP>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 2);
assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
assert(pos.piece_count(weakerSide, PAWN) == 1);
Square wpsq1 = pos.piece_list(strongerSide, PAWN)[0];
Square wpsq2 = pos.piece_list(strongerSide, PAWN)[1];
Square bksq = pos.king_square(weakerSide);
// Does the stronger side have a passed pawn?
if ( pos.pawn_is_passed(strongerSide, wpsq1)
|| pos.pawn_is_passed(strongerSide, wpsq2))
return SCALE_FACTOR_NONE;
Rank r = std::max(relative_rank(strongerSide, wpsq1), relative_rank(strongerSide, wpsq2));
if ( file_distance(bksq, wpsq1) <= 1
&& file_distance(bksq, wpsq2) <= 1
&& relative_rank(strongerSide, bksq) > r)
{
switch (r) {
case RANK_2: return ScaleFactor(10);
case RANK_3: return ScaleFactor(10);
case RANK_4: return ScaleFactor(15);
case RANK_5: return ScaleFactor(20);
case RANK_6: return ScaleFactor(40);
default: assert(false);
}
}
return SCALE_FACTOR_NONE;
}
/// K and two or more pawns vs K. There is just a single rule here: If all pawns
/// are on the same rook file and are blocked by the defending king, it's a draw.
template<>
ScaleFactor Endgame<KPsK>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
assert(pos.piece_count(strongerSide, PAWN) >= 2);
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(weakerSide, PAWN) == 0);
Square ksq = pos.king_square(weakerSide);
Bitboard pawns = pos.pieces(PAWN, strongerSide);
// Are all pawns on the 'a' file?
if (!(pawns & ~FileABB))
{
// Does the defending king block the pawns?
if ( square_distance(ksq, relative_square(strongerSide, SQ_A8)) <= 1
|| ( file_of(ksq) == FILE_A
&& !in_front_bb(strongerSide, ksq) & pawns))
return SCALE_FACTOR_DRAW;
}
// Are all pawns on the 'h' file?
else if (!(pawns & ~FileHBB))
{
// Does the defending king block the pawns?
if ( square_distance(ksq, relative_square(strongerSide, SQ_H8)) <= 1
|| ( file_of(ksq) == FILE_H
&& !in_front_bb(strongerSide, ksq) & pawns))
return SCALE_FACTOR_DRAW;
}
return SCALE_FACTOR_NONE;
}
/// K, bishop and a pawn vs K and a bishop. There are two rules: If the defending
/// king is somewhere along the path of the pawn, and the square of the king is
/// not of the same color as the stronger side's bishop, it's a draw. If the two
/// bishops have opposite color, it's almost always a draw.
template<>
ScaleFactor Endgame<KBPKB>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
assert(pos.piece_count(strongerSide, PAWN) == 1);
assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
assert(pos.piece_count(weakerSide, BISHOP) == 1);
assert(pos.piece_count(weakerSide, PAWN) == 0);
Square pawnSq = pos.piece_list(strongerSide, PAWN)[0];
Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP)[0];
Square weakerBishopSq = pos.piece_list(weakerSide, BISHOP)[0];
Square weakerKingSq = pos.king_square(weakerSide);
// Case 1: Defending king blocks the pawn, and cannot be driven away
if ( file_of(weakerKingSq) == file_of(pawnSq)
&& relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq)
&& ( opposite_colors(weakerKingSq, strongerBishopSq)
|| relative_rank(strongerSide, weakerKingSq) <= RANK_6))
return SCALE_FACTOR_DRAW;
// Case 2: Opposite colored bishops
if (opposite_colors(strongerBishopSq, weakerBishopSq))
{
// We assume that the position is drawn in the following three situations:
//
// a. The pawn is on rank 5 or further back.
// b. The defending king is somewhere in the pawn's path.
// c. The defending bishop attacks some square along the pawn's path,
// and is at least three squares away from the pawn.
//
// These rules are probably not perfect, but in practice they work
// reasonably well.
if (relative_rank(strongerSide, pawnSq) <= RANK_5)
return SCALE_FACTOR_DRAW;
else
{
Bitboard path = squares_in_front_of(strongerSide, pawnSq);
if (path & pos.pieces(KING, weakerSide))
return SCALE_FACTOR_DRAW;
if ( (pos.attacks_from<BISHOP>(weakerBishopSq) & path)
&& square_distance(weakerBishopSq, pawnSq) >= 3)
return SCALE_FACTOR_DRAW;
}
}
return SCALE_FACTOR_NONE;
}
/// K, bishop and two pawns vs K and bishop. It detects a few basic draws with
/// opposite-colored bishops.
template<>
ScaleFactor Endgame<KBPPKB>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
assert(pos.piece_count(strongerSide, PAWN) == 2);
assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
assert(pos.piece_count(weakerSide, BISHOP) == 1);
assert(pos.piece_count(weakerSide, PAWN) == 0);
Square wbsq = pos.piece_list(strongerSide, BISHOP)[0];
Square bbsq = pos.piece_list(weakerSide, BISHOP)[0];
if (!opposite_colors(wbsq, bbsq))
return SCALE_FACTOR_NONE;
Square ksq = pos.king_square(weakerSide);
Square psq1 = pos.piece_list(strongerSide, PAWN)[0];
Square psq2 = pos.piece_list(strongerSide, PAWN)[1];
Rank r1 = rank_of(psq1);
Rank r2 = rank_of(psq2);
Square blockSq1, blockSq2;
if (relative_rank(strongerSide, psq1) > relative_rank(strongerSide, psq2))
{
blockSq1 = psq1 + pawn_push(strongerSide);
blockSq2 = make_square(file_of(psq2), rank_of(psq1));
}
else
{
blockSq1 = psq2 + pawn_push(strongerSide);
blockSq2 = make_square(file_of(psq1), rank_of(psq2));
}
switch (file_distance(psq1, psq2))
{
case 0:
// Both pawns are on the same file. Easy draw if defender firmly controls
// some square in the frontmost pawn's path.
if ( file_of(ksq) == file_of(blockSq1)
&& relative_rank(strongerSide, ksq) >= relative_rank(strongerSide, blockSq1)
&& opposite_colors(ksq, wbsq))
return SCALE_FACTOR_DRAW;
else
return SCALE_FACTOR_NONE;
case 1:
// Pawns on neighboring files. Draw if defender firmly controls the square
// in front of the frontmost pawn's path, and the square diagonally behind
// this square on the file of the other pawn.
if ( ksq == blockSq1
&& opposite_colors(ksq, wbsq)
&& ( bbsq == blockSq2
|| (pos.attacks_from<BISHOP>(blockSq2) & pos.pieces(BISHOP, weakerSide))
|| abs(r1 - r2) >= 2))
return SCALE_FACTOR_DRAW;
else if ( ksq == blockSq2
&& opposite_colors(ksq, wbsq)
&& ( bbsq == blockSq1
|| (pos.attacks_from<BISHOP>(blockSq1) & pos.pieces(BISHOP, weakerSide))))
return SCALE_FACTOR_DRAW;
else
return SCALE_FACTOR_NONE;
default:
// The pawns are not on the same file or adjacent files. No scaling.
return SCALE_FACTOR_NONE;
}
}
/// K, bisop and a pawn vs K and knight. There is a single rule: If the defending
/// king is somewhere along the path of the pawn, and the square of the king is
/// not of the same color as the stronger side's bishop, it's a draw.
template<>
ScaleFactor Endgame<KBPKN>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
assert(pos.piece_count(strongerSide, PAWN) == 1);
assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
assert(pos.piece_count(weakerSide, KNIGHT) == 1);
assert(pos.piece_count(weakerSide, PAWN) == 0);
Square pawnSq = pos.piece_list(strongerSide, PAWN)[0];
Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP)[0];
Square weakerKingSq = pos.king_square(weakerSide);
if ( file_of(weakerKingSq) == file_of(pawnSq)
&& relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq)
&& ( opposite_colors(weakerKingSq, strongerBishopSq)
|| relative_rank(strongerSide, weakerKingSq) <= RANK_6))
return SCALE_FACTOR_DRAW;
return SCALE_FACTOR_NONE;
}
/// K, knight and a pawn vs K. There is a single rule: If the pawn is a rook pawn
/// on the 7th rank and the defending king prevents the pawn from advancing, the
/// position is drawn.
template<>
ScaleFactor Endgame<KNPK>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame);
assert(pos.piece_count(strongerSide, KNIGHT) == 1);
assert(pos.piece_count(strongerSide, PAWN) == 1);
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(weakerSide, PAWN) == 0);
Square pawnSq = pos.piece_list(strongerSide, PAWN)[0];
Square weakerKingSq = pos.king_square(weakerSide);
if ( pawnSq == relative_square(strongerSide, SQ_A7)
&& square_distance(weakerKingSq, relative_square(strongerSide, SQ_A8)) <= 1)
return SCALE_FACTOR_DRAW;
if ( pawnSq == relative_square(strongerSide, SQ_H7)
&& square_distance(weakerKingSq, relative_square(strongerSide, SQ_H8)) <= 1)
return SCALE_FACTOR_DRAW;
return SCALE_FACTOR_NONE;
}
/// K and a pawn vs K and a pawn. This is done by removing the weakest side's
/// pawn and probing the KP vs K bitbase: If the weakest side has a draw without
/// the pawn, she probably has at least a draw with the pawn as well. The exception
/// is when the stronger side's pawn is far advanced and not on a rook file; in
/// this case it is often possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
template<>
ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(WHITE, PAWN) == 1);
assert(pos.piece_count(BLACK, PAWN) == 1);
Square wksq = pos.king_square(strongerSide);
Square bksq = pos.king_square(weakerSide);
Square wpsq = pos.piece_list(strongerSide, PAWN)[0];
Color stm = pos.side_to_move();
if (strongerSide == BLACK)
{
wksq = ~wksq;
bksq = ~bksq;
wpsq = ~wpsq;
stm = ~stm;
}
if (file_of(wpsq) >= FILE_E)
{
wksq = mirror(wksq);
bksq = mirror(bksq);
wpsq = mirror(wpsq);
}
// If the pawn has advanced to the fifth rank or further, and is not a
// rook pawn, it's too dangerous to assume that it's at least a draw.
if ( rank_of(wpsq) >= RANK_5
&& file_of(wpsq) != FILE_A)
return SCALE_FACTOR_NONE;
// Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw,
// it's probably at least a draw even with the pawn.
return probe_kpk_bitbase(wksq, wpsq, bksq, stm) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW;
}