mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-02-07 20:59:13 +01:00
2200 lines
74 KiB
C++
2200 lines
74 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
#include "book.h"
|
|
#include "evaluate.h"
|
|
#include "history.h"
|
|
#include "misc.h"
|
|
#include "move.h"
|
|
#include "movegen.h"
|
|
#include "movepick.h"
|
|
#include "search.h"
|
|
#include "timeman.h"
|
|
#include "thread.h"
|
|
#include "tt.h"
|
|
#include "ucioption.h"
|
|
|
|
using std::cout;
|
|
using std::endl;
|
|
|
|
namespace {
|
|
|
|
// Set to true to force running with one thread. Used for debugging
|
|
const bool FakeSplit = false;
|
|
|
|
// Different node types, used as template parameter
|
|
enum NodeType { NonPV, PV };
|
|
|
|
// RootMove struct is used for moves at the root of the tree. For each root
|
|
// move, we store two scores, a node count, and a PV (really a refutation
|
|
// in the case of moves which fail low). Value pv_score is normally set at
|
|
// -VALUE_INFINITE for all non-pv moves, while non_pv_score is computed
|
|
// according to the order in which moves are returned by MovePicker.
|
|
struct RootMove {
|
|
|
|
RootMove();
|
|
RootMove(const RootMove& rm) { *this = rm; }
|
|
RootMove& operator=(const RootMove& rm);
|
|
|
|
// RootMove::operator<() is the comparison function used when
|
|
// sorting the moves. A move m1 is considered to be better
|
|
// than a move m2 if it has an higher pv_score, or if it has
|
|
// equal pv_score but m1 has the higher non_pv_score. In this way
|
|
// we are guaranteed that PV moves are always sorted as first.
|
|
bool operator<(const RootMove& m) const {
|
|
return pv_score != m.pv_score ? pv_score < m.pv_score
|
|
: non_pv_score < m.non_pv_score;
|
|
}
|
|
|
|
void extract_pv_from_tt(Position& pos);
|
|
void insert_pv_in_tt(Position& pos);
|
|
std::string pv_info_to_uci(Position& pos, int depth, int selDepth,
|
|
Value alpha, Value beta, int pvIdx);
|
|
int64_t nodes;
|
|
Value pv_score;
|
|
Value non_pv_score;
|
|
Move pv[PLY_MAX_PLUS_2];
|
|
};
|
|
|
|
// RootMoveList struct is just a vector of RootMove objects,
|
|
// with an handful of methods above the standard ones.
|
|
struct RootMoveList : public std::vector<RootMove> {
|
|
|
|
typedef std::vector<RootMove> Base;
|
|
|
|
void init(Position& pos, Move searchMoves[]);
|
|
void sort() { insertion_sort<RootMove, Base::iterator>(begin(), end()); }
|
|
void sort_multipv(int n) { insertion_sort<RootMove, Base::iterator>(begin(), begin() + n); }
|
|
|
|
int bestMoveChanges;
|
|
};
|
|
|
|
// MovePickerExt template class extends MovePicker and allows to choose at compile
|
|
// time the proper moves source according to the type of node. In the default case
|
|
// we simply create and use a standard MovePicker object.
|
|
template<bool SpNode, bool Root> struct MovePickerExt : public MovePicker {
|
|
|
|
MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b)
|
|
: MovePicker(p, ttm, d, h, ss, b) {}
|
|
|
|
RootMoveList::iterator rm; // Dummy, needed to compile
|
|
};
|
|
|
|
// In case of a SpNode we use split point's shared MovePicker object as moves source
|
|
template<> struct MovePickerExt<true, false> : public MovePicker {
|
|
|
|
MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b)
|
|
: MovePicker(p, ttm, d, h, ss, b), mp(ss->sp->mp) {}
|
|
|
|
Move get_next_move() { return mp->get_next_move(); }
|
|
|
|
RootMoveList::iterator rm; // Dummy, needed to compile
|
|
MovePicker* mp;
|
|
};
|
|
|
|
// In case of a Root node we use RootMoveList as moves source
|
|
template<> struct MovePickerExt<false, true> : public MovePicker {
|
|
|
|
MovePickerExt(const Position&, Move, Depth, const History&, SearchStack*, Value);
|
|
Move get_next_move();
|
|
|
|
RootMoveList::iterator rm;
|
|
bool firstCall;
|
|
};
|
|
|
|
|
|
/// Constants
|
|
|
|
// Lookup table to check if a Piece is a slider and its access function
|
|
const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 };
|
|
inline bool piece_is_slider(Piece p) { return Slidings[p]; }
|
|
|
|
// Step 6. Razoring
|
|
|
|
// Maximum depth for razoring
|
|
const Depth RazorDepth = 4 * ONE_PLY;
|
|
|
|
// Dynamic razoring margin based on depth
|
|
inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * int(d)); }
|
|
|
|
// Maximum depth for use of dynamic threat detection when null move fails low
|
|
const Depth ThreatDepth = 5 * ONE_PLY;
|
|
|
|
// Step 9. Internal iterative deepening
|
|
|
|
// Minimum depth for use of internal iterative deepening
|
|
const Depth IIDDepth[] = { 8 * ONE_PLY, 5 * ONE_PLY };
|
|
|
|
// At Non-PV nodes we do an internal iterative deepening search
|
|
// when the static evaluation is bigger then beta - IIDMargin.
|
|
const Value IIDMargin = Value(0x100);
|
|
|
|
// Step 11. Decide the new search depth
|
|
|
|
// Extensions. Array index 0 is used for non-PV nodes, index 1 for PV nodes
|
|
const Depth CheckExtension[] = { ONE_PLY / 2, ONE_PLY / 1 };
|
|
const Depth PawnEndgameExtension[] = { ONE_PLY / 1, ONE_PLY / 1 };
|
|
const Depth PawnPushTo7thExtension[] = { ONE_PLY / 2, ONE_PLY / 2 };
|
|
const Depth PassedPawnExtension[] = { DEPTH_ZERO, ONE_PLY / 2 };
|
|
|
|
// Minimum depth for use of singular extension
|
|
const Depth SingularExtensionDepth[] = { 8 * ONE_PLY, 6 * ONE_PLY };
|
|
|
|
// Step 12. Futility pruning
|
|
|
|
// Futility margin for quiescence search
|
|
const Value FutilityMarginQS = Value(0x80);
|
|
|
|
// Futility lookup tables (initialized at startup) and their access functions
|
|
Value FutilityMargins[16][64]; // [depth][moveNumber]
|
|
int FutilityMoveCounts[32]; // [depth]
|
|
|
|
inline Value futility_margin(Depth d, int mn) {
|
|
|
|
return d < 7 * ONE_PLY ? FutilityMargins[Max(d, 1)][Min(mn, 63)]
|
|
: 2 * VALUE_INFINITE;
|
|
}
|
|
|
|
inline int futility_move_count(Depth d) {
|
|
|
|
return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES;
|
|
}
|
|
|
|
// Step 14. Reduced search
|
|
|
|
// Reduction lookup tables (initialized at startup) and their access function
|
|
int8_t Reductions[2][64][64]; // [pv][depth][moveNumber]
|
|
|
|
template <NodeType PV> inline Depth reduction(Depth d, int mn) {
|
|
|
|
return (Depth) Reductions[PV][Min(d / ONE_PLY, 63)][Min(mn, 63)];
|
|
}
|
|
|
|
// Easy move margin. An easy move candidate must be at least this much
|
|
// better than the second best move.
|
|
const Value EasyMoveMargin = Value(0x200);
|
|
|
|
|
|
/// Namespace variables
|
|
|
|
// Root move list
|
|
RootMoveList Rml;
|
|
|
|
// MultiPV mode
|
|
int MultiPV, UCIMultiPV;
|
|
|
|
// Time management variables
|
|
bool StopOnPonderhit, FirstRootMove, StopRequest, QuitRequest, AspirationFailLow;
|
|
TimeManager TimeMgr;
|
|
SearchLimits Limits;
|
|
|
|
// Log file
|
|
std::ofstream LogFile;
|
|
|
|
// Skill level adjustment
|
|
int SkillLevel;
|
|
bool SkillLevelEnabled;
|
|
|
|
// Node counters, used only by thread[0] but try to keep in different cache
|
|
// lines (64 bytes each) from the heavy multi-thread read accessed variables.
|
|
bool SendSearchedNodes;
|
|
int NodesSincePoll;
|
|
int NodesBetweenPolls = 30000;
|
|
|
|
// History table
|
|
History H;
|
|
|
|
|
|
/// Local functions
|
|
|
|
Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove);
|
|
|
|
template <NodeType PvNode, bool SpNode, bool Root>
|
|
Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth);
|
|
|
|
template <NodeType PvNode>
|
|
Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth);
|
|
|
|
template <NodeType PvNode>
|
|
inline Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) {
|
|
|
|
return depth < ONE_PLY ? qsearch<PvNode>(pos, ss, alpha, beta, DEPTH_ZERO)
|
|
: search<PvNode, false, false>(pos, ss, alpha, beta, depth);
|
|
}
|
|
|
|
template <NodeType PvNode>
|
|
Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool* dangerous);
|
|
|
|
bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bValue);
|
|
bool connected_moves(const Position& pos, Move m1, Move m2);
|
|
Value value_to_tt(Value v, int ply);
|
|
Value value_from_tt(Value v, int ply);
|
|
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
|
|
bool connected_threat(const Position& pos, Move m, Move threat);
|
|
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
|
|
void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
|
|
void update_gains(const Position& pos, Move move, Value before, Value after);
|
|
void do_skill_level(Move* best, Move* ponder);
|
|
|
|
int current_search_time(int set = 0);
|
|
std::string value_to_uci(Value v);
|
|
std::string speed_to_uci(int64_t nodes);
|
|
void poll(const Position& pos);
|
|
void wait_for_stop_or_ponderhit();
|
|
|
|
// Overload operator<<() to make it easier to print moves in a coordinate
|
|
// notation compatible with UCI protocol.
|
|
std::ostream& operator<<(std::ostream& os, Move m) {
|
|
|
|
bool chess960 = (os.iword(0) != 0); // See set960()
|
|
return os << move_to_uci(m, chess960);
|
|
}
|
|
|
|
// When formatting a move for std::cout we must know if we are in Chess960
|
|
// or not. To keep using the handy operator<<() on the move the trick is to
|
|
// embed this flag in the stream itself. Function-like named enum set960 is
|
|
// used as a custom manipulator and the stream internal general-purpose array,
|
|
// accessed through ios_base::iword(), is used to pass the flag to the move's
|
|
// operator<<() that will read it to properly format castling moves.
|
|
enum set960 {};
|
|
|
|
std::ostream& operator<< (std::ostream& os, const set960& f) {
|
|
|
|
os.iword(0) = int(f);
|
|
return os;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/// init_search() is called during startup to initialize various lookup tables
|
|
|
|
void init_search() {
|
|
|
|
int d; // depth (ONE_PLY == 2)
|
|
int hd; // half depth (ONE_PLY == 1)
|
|
int mc; // moveCount
|
|
|
|
// Init reductions array
|
|
for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++)
|
|
{
|
|
double pvRed = log(double(hd)) * log(double(mc)) / 3.0;
|
|
double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
|
|
Reductions[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0);
|
|
Reductions[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0);
|
|
}
|
|
|
|
// Init futility margins array
|
|
for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
|
|
FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45);
|
|
|
|
// Init futility move count array
|
|
for (d = 0; d < 32; d++)
|
|
FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(d, 2.0));
|
|
}
|
|
|
|
|
|
/// perft() is our utility to verify move generation. All the leaf nodes up to
|
|
/// the given depth are generated and counted and the sum returned.
|
|
|
|
int64_t perft(Position& pos, Depth depth) {
|
|
|
|
MoveStack mlist[MAX_MOVES];
|
|
StateInfo st;
|
|
Move m;
|
|
int64_t sum = 0;
|
|
|
|
// Generate all legal moves
|
|
MoveStack* last = generate<MV_LEGAL>(pos, mlist);
|
|
|
|
// If we are at the last ply we don't need to do and undo
|
|
// the moves, just to count them.
|
|
if (depth <= ONE_PLY)
|
|
return int(last - mlist);
|
|
|
|
// Loop through all legal moves
|
|
CheckInfo ci(pos);
|
|
for (MoveStack* cur = mlist; cur != last; cur++)
|
|
{
|
|
m = cur->move;
|
|
pos.do_move(m, st, ci, pos.move_gives_check(m, ci));
|
|
sum += perft(pos, depth - ONE_PLY);
|
|
pos.undo_move(m);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
|
|
/// think() is the external interface to Stockfish's search, and is called when
|
|
/// the program receives the UCI 'go' command. It initializes various global
|
|
/// variables, and calls id_loop(). It returns false when a "quit" command is
|
|
/// received during the search.
|
|
|
|
bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]) {
|
|
|
|
static Book book;
|
|
|
|
// Initialize global search-related variables
|
|
StopOnPonderhit = StopRequest = QuitRequest = AspirationFailLow = SendSearchedNodes = false;
|
|
NodesSincePoll = 0;
|
|
current_search_time(get_system_time());
|
|
Limits = limits;
|
|
TimeMgr.init(Limits, pos.startpos_ply_counter());
|
|
|
|
// Set best NodesBetweenPolls interval to avoid lagging under time pressure
|
|
if (Limits.maxNodes)
|
|
NodesBetweenPolls = Min(Limits.maxNodes, 30000);
|
|
else if (Limits.time && Limits.time < 1000)
|
|
NodesBetweenPolls = 1000;
|
|
else if (Limits.time && Limits.time < 5000)
|
|
NodesBetweenPolls = 5000;
|
|
else
|
|
NodesBetweenPolls = 30000;
|
|
NodesBetweenPolls /= 16;
|
|
|
|
// Look for a book move
|
|
if (Options["OwnBook"].value<bool>())
|
|
{
|
|
if (Options["Book File"].value<std::string>() != book.name())
|
|
book.open(Options["Book File"].value<std::string>());
|
|
|
|
Move bookMove = book.get_move(pos, Options["Best Book Move"].value<bool>());
|
|
if (bookMove != MOVE_NONE)
|
|
{
|
|
if (Limits.ponder)
|
|
wait_for_stop_or_ponderhit();
|
|
|
|
cout << "bestmove " << bookMove << endl;
|
|
return !QuitRequest;
|
|
}
|
|
}
|
|
|
|
// Read UCI options
|
|
UCIMultiPV = Options["MultiPV"].value<int>();
|
|
SkillLevel = Options["Skill Level"].value<int>();
|
|
|
|
read_evaluation_uci_options(pos.side_to_move());
|
|
Threads.read_uci_options();
|
|
|
|
// If needed allocate pawn and material hash tables and adjust TT size
|
|
Threads.init_hash_tables();
|
|
TT.set_size(Options["Hash"].value<int>());
|
|
|
|
if (Options["Clear Hash"].value<bool>())
|
|
{
|
|
Options["Clear Hash"].set_value("false");
|
|
TT.clear();
|
|
}
|
|
|
|
// Do we have to play with skill handicap? In this case enable MultiPV that
|
|
// we will use behind the scenes to retrieve a set of possible moves.
|
|
SkillLevelEnabled = (SkillLevel < 20);
|
|
MultiPV = (SkillLevelEnabled ? Max(UCIMultiPV, 4) : UCIMultiPV);
|
|
|
|
// Wake up needed threads and reset maxPly counter
|
|
for (int i = 0; i < Threads.size(); i++)
|
|
{
|
|
Threads[i].wake_up();
|
|
Threads[i].maxPly = 0;
|
|
}
|
|
|
|
// Write to log file and keep it open to be accessed during the search
|
|
if (Options["Use Search Log"].value<bool>())
|
|
{
|
|
std::string name = Options["Search Log Filename"].value<std::string>();
|
|
LogFile.open(name.c_str(), std::ios::out | std::ios::app);
|
|
|
|
if (LogFile.is_open())
|
|
LogFile << "\nSearching: " << pos.to_fen()
|
|
<< "\ninfinite: " << Limits.infinite
|
|
<< " ponder: " << Limits.ponder
|
|
<< " time: " << Limits.time
|
|
<< " increment: " << Limits.increment
|
|
<< " moves to go: " << Limits.movesToGo
|
|
<< endl;
|
|
}
|
|
|
|
// We're ready to start thinking. Call the iterative deepening loop function
|
|
Move ponderMove = MOVE_NONE;
|
|
Move bestMove = id_loop(pos, searchMoves, &ponderMove);
|
|
|
|
cout << "info" << speed_to_uci(pos.nodes_searched()) << endl;
|
|
|
|
// Write final search statistics and close log file
|
|
if (LogFile.is_open())
|
|
{
|
|
int t = current_search_time();
|
|
|
|
LogFile << "Nodes: " << pos.nodes_searched()
|
|
<< "\nNodes/second: " << (t > 0 ? pos.nodes_searched() * 1000 / t : 0)
|
|
<< "\nBest move: " << move_to_san(pos, bestMove);
|
|
|
|
StateInfo st;
|
|
pos.do_move(bestMove, st);
|
|
LogFile << "\nPonder move: " << move_to_san(pos, ponderMove) << endl;
|
|
pos.undo_move(bestMove); // Return from think() with unchanged position
|
|
LogFile.close();
|
|
}
|
|
|
|
// This makes all the threads to go to sleep
|
|
Threads.set_size(1);
|
|
|
|
// If we are pondering or in infinite search, we shouldn't print the
|
|
// best move before we are told to do so.
|
|
if (!StopRequest && (Limits.ponder || Limits.infinite))
|
|
wait_for_stop_or_ponderhit();
|
|
|
|
// Could be MOVE_NONE when searching on a stalemate position
|
|
cout << "bestmove " << bestMove;
|
|
|
|
// UCI protol is not clear on allowing sending an empty ponder move, instead
|
|
// it is clear that ponder move is optional. So skip it if empty.
|
|
if (ponderMove != MOVE_NONE)
|
|
cout << " ponder " << ponderMove;
|
|
|
|
cout << endl;
|
|
|
|
return !QuitRequest;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
// id_loop() is the main iterative deepening loop. It calls search() repeatedly
|
|
// with increasing depth until the allocated thinking time has been consumed,
|
|
// user stops the search, or the maximum search depth is reached.
|
|
|
|
Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove) {
|
|
|
|
SearchStack ss[PLY_MAX_PLUS_2];
|
|
Value bestValues[PLY_MAX_PLUS_2];
|
|
int bestMoveChanges[PLY_MAX_PLUS_2];
|
|
int depth, selDepth, aspirationDelta;
|
|
Value value, alpha, beta;
|
|
Move bestMove, easyMove, skillBest, skillPonder;
|
|
|
|
// Initialize stuff before a new search
|
|
memset(ss, 0, 4 * sizeof(SearchStack));
|
|
TT.new_search();
|
|
H.clear();
|
|
*ponderMove = bestMove = easyMove = skillBest = skillPonder = MOVE_NONE;
|
|
depth = aspirationDelta = 0;
|
|
alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
|
|
ss->currentMove = MOVE_NULL; // Hack to skip update_gains()
|
|
|
|
// Moves to search are verified and copied
|
|
Rml.init(pos, searchMoves);
|
|
|
|
// Handle special case of searching on a mate/stalemate position
|
|
if (Rml.size() == 0)
|
|
{
|
|
cout << "info depth 0 score "
|
|
<< value_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW)
|
|
<< endl;
|
|
|
|
return MOVE_NONE;
|
|
}
|
|
|
|
// Iterative deepening loop until requested to stop or target depth reached
|
|
while (!StopRequest && ++depth <= PLY_MAX && (!Limits.maxDepth || depth <= Limits.maxDepth))
|
|
{
|
|
Rml.bestMoveChanges = 0;
|
|
cout << set960(pos.is_chess960()) << "info depth " << depth << endl;
|
|
|
|
// Calculate dynamic aspiration window based on previous iterations
|
|
if (MultiPV == 1 && depth >= 5 && abs(bestValues[depth - 1]) < VALUE_KNOWN_WIN)
|
|
{
|
|
int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2];
|
|
int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3];
|
|
|
|
aspirationDelta = Min(Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24);
|
|
aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize
|
|
|
|
alpha = Max(bestValues[depth - 1] - aspirationDelta, -VALUE_INFINITE);
|
|
beta = Min(bestValues[depth - 1] + aspirationDelta, VALUE_INFINITE);
|
|
}
|
|
|
|
// Start with a small aspiration window and, in case of fail high/low,
|
|
// research with bigger window until not failing high/low anymore.
|
|
do {
|
|
// Search starting from ss+1 to allow calling update_gains()
|
|
value = search<PV, false, true>(pos, ss+1, alpha, beta, depth * ONE_PLY);
|
|
|
|
// Write PV back to transposition table in case the relevant entries
|
|
// have been overwritten during the search.
|
|
for (int i = 0; i < Min(MultiPV, (int)Rml.size()); i++)
|
|
Rml[i].insert_pv_in_tt(pos);
|
|
|
|
// Value cannot be trusted. Break out immediately!
|
|
if (StopRequest)
|
|
break;
|
|
|
|
assert(value >= alpha);
|
|
|
|
// In case of failing high/low increase aspiration window and research,
|
|
// otherwise exit the fail high/low loop.
|
|
if (value >= beta)
|
|
{
|
|
beta = Min(beta + aspirationDelta, VALUE_INFINITE);
|
|
aspirationDelta += aspirationDelta / 2;
|
|
}
|
|
else if (value <= alpha)
|
|
{
|
|
AspirationFailLow = true;
|
|
StopOnPonderhit = false;
|
|
|
|
alpha = Max(alpha - aspirationDelta, -VALUE_INFINITE);
|
|
aspirationDelta += aspirationDelta / 2;
|
|
}
|
|
else
|
|
break;
|
|
|
|
} while (abs(value) < VALUE_KNOWN_WIN);
|
|
|
|
// Collect info about search result
|
|
bestMove = Rml[0].pv[0];
|
|
*ponderMove = Rml[0].pv[1];
|
|
bestValues[depth] = value;
|
|
bestMoveChanges[depth] = Rml.bestMoveChanges;
|
|
|
|
// Do we need to pick now the best and the ponder moves ?
|
|
if (SkillLevelEnabled && depth == 1 + SkillLevel)
|
|
do_skill_level(&skillBest, &skillPonder);
|
|
|
|
// Retrieve max searched depth among threads
|
|
selDepth = 0;
|
|
for (int i = 0; i < Threads.size(); i++)
|
|
if (Threads[i].maxPly > selDepth)
|
|
selDepth = Threads[i].maxPly;
|
|
|
|
// Send PV line to GUI and to log file
|
|
for (int i = 0; i < Min(UCIMultiPV, (int)Rml.size()); i++)
|
|
cout << Rml[i].pv_info_to_uci(pos, depth, selDepth, alpha, beta, i) << endl;
|
|
|
|
if (LogFile.is_open())
|
|
LogFile << pretty_pv(pos, depth, value, current_search_time(), Rml[0].pv) << endl;
|
|
|
|
// Init easyMove after first iteration or drop if differs from the best move
|
|
if (depth == 1 && (Rml.size() == 1 || Rml[0].pv_score > Rml[1].pv_score + EasyMoveMargin))
|
|
easyMove = bestMove;
|
|
else if (bestMove != easyMove)
|
|
easyMove = MOVE_NONE;
|
|
|
|
// Check for some early stop condition
|
|
if (!StopRequest && Limits.useTimeManagement())
|
|
{
|
|
// Stop search early when the last two iterations returned a mate score
|
|
if ( depth >= 5
|
|
&& abs(bestValues[depth]) >= VALUE_MATE_IN_PLY_MAX
|
|
&& abs(bestValues[depth - 1]) >= VALUE_MATE_IN_PLY_MAX)
|
|
StopRequest = true;
|
|
|
|
// Stop search early if one move seems to be much better than the
|
|
// others or if there is only a single legal move. Also in the latter
|
|
// case we search up to some depth anyway to get a proper score.
|
|
if ( depth >= 7
|
|
&& easyMove == bestMove
|
|
&& ( Rml.size() == 1
|
|
||( Rml[0].nodes > (pos.nodes_searched() * 85) / 100
|
|
&& current_search_time() > TimeMgr.available_time() / 16)
|
|
||( Rml[0].nodes > (pos.nodes_searched() * 98) / 100
|
|
&& current_search_time() > TimeMgr.available_time() / 32)))
|
|
StopRequest = true;
|
|
|
|
// Take in account some extra time if the best move has changed
|
|
if (depth > 4 && depth < 50)
|
|
TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth - 1]);
|
|
|
|
// Stop search if most of available time is already consumed. We probably don't
|
|
// have enough time to search the first move at the next iteration anyway.
|
|
if (current_search_time() > (TimeMgr.available_time() * 62) / 100)
|
|
StopRequest = true;
|
|
|
|
// If we are allowed to ponder do not stop the search now but keep pondering
|
|
if (StopRequest && Limits.ponder)
|
|
{
|
|
StopRequest = false;
|
|
StopOnPonderhit = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// When using skills overwrite best and ponder moves with the sub-optimal ones
|
|
if (SkillLevelEnabled)
|
|
{
|
|
if (skillBest == MOVE_NONE) // Still unassigned ?
|
|
do_skill_level(&skillBest, &skillPonder);
|
|
|
|
bestMove = skillBest;
|
|
*ponderMove = skillPonder;
|
|
}
|
|
|
|
return bestMove;
|
|
}
|
|
|
|
|
|
// search<>() is the main search function for both PV and non-PV nodes and for
|
|
// normal and SplitPoint nodes. When called just after a split point the search
|
|
// is simpler because we have already probed the hash table, done a null move
|
|
// search, and searched the first move before splitting, we don't have to repeat
|
|
// all this work again. We also don't need to store anything to the hash table
|
|
// here: This is taken care of after we return from the split point.
|
|
|
|
template <NodeType PvNode, bool SpNode, bool Root>
|
|
Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) {
|
|
|
|
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
|
|
assert(beta > alpha && beta <= VALUE_INFINITE);
|
|
assert(PvNode || alpha == beta - 1);
|
|
assert(pos.thread() >= 0 && pos.thread() < Threads.size());
|
|
|
|
Move movesSearched[MAX_MOVES];
|
|
int64_t nodes;
|
|
StateInfo st;
|
|
const TTEntry *tte;
|
|
Key posKey;
|
|
Move ttMove, move, excludedMove, threatMove;
|
|
Depth ext, newDepth;
|
|
ValueType vt;
|
|
Value bestValue, value, oldAlpha;
|
|
Value refinedValue, nullValue, futilityBase, futilityValueScaled; // Non-PV specific
|
|
bool isPvMove, inCheck, singularExtensionNode, givesCheck, captureOrPromotion, dangerous, isBadCap;
|
|
int moveCount = 0, playedMoveCount = 0;
|
|
int threadID = pos.thread();
|
|
SplitPoint* sp = NULL;
|
|
|
|
refinedValue = bestValue = value = -VALUE_INFINITE;
|
|
oldAlpha = alpha;
|
|
inCheck = pos.in_check();
|
|
ss->ply = (ss-1)->ply + 1;
|
|
|
|
// Used to send selDepth info to GUI
|
|
if (PvNode && Threads[threadID].maxPly < ss->ply)
|
|
Threads[threadID].maxPly = ss->ply;
|
|
|
|
if (SpNode)
|
|
{
|
|
sp = ss->sp;
|
|
tte = NULL;
|
|
ttMove = excludedMove = MOVE_NONE;
|
|
threatMove = sp->threatMove;
|
|
goto split_point_start;
|
|
}
|
|
else if (Root)
|
|
bestValue = alpha;
|
|
|
|
// Step 1. Initialize node and poll. Polling can abort search
|
|
ss->currentMove = ss->bestMove = threatMove = (ss+1)->excludedMove = MOVE_NONE;
|
|
(ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
|
|
(ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE;
|
|
|
|
if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls)
|
|
{
|
|
NodesSincePoll = 0;
|
|
poll(pos);
|
|
}
|
|
|
|
// Step 2. Check for aborted search and immediate draw
|
|
if (( StopRequest
|
|
|| Threads[threadID].cutoff_occurred()
|
|
|| pos.is_draw()
|
|
|| ss->ply > PLY_MAX) && !Root)
|
|
return VALUE_DRAW;
|
|
|
|
// Step 3. Mate distance pruning
|
|
alpha = Max(value_mated_in(ss->ply), alpha);
|
|
beta = Min(value_mate_in(ss->ply+1), beta);
|
|
if (alpha >= beta)
|
|
return alpha;
|
|
|
|
// Step 4. Transposition table lookup
|
|
// We don't want the score of a partial search to overwrite a previous full search
|
|
// TT value, so we use a different position key in case of an excluded move.
|
|
excludedMove = ss->excludedMove;
|
|
posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
|
|
|
|
tte = TT.probe(posKey);
|
|
ttMove = tte ? tte->move() : MOVE_NONE;
|
|
|
|
// At PV nodes we check for exact scores, while at non-PV nodes we check for
|
|
// a fail high/low. Biggest advantage at probing at PV nodes is to have a
|
|
// smooth experience in analysis mode.
|
|
if ( !Root
|
|
&& tte
|
|
&& (PvNode ? tte->depth() >= depth && tte->type() == VALUE_TYPE_EXACT
|
|
: ok_to_use_TT(tte, depth, beta, ss->ply)))
|
|
{
|
|
TT.refresh(tte);
|
|
ss->bestMove = ttMove; // Can be MOVE_NONE
|
|
return value_from_tt(tte->value(), ss->ply);
|
|
}
|
|
|
|
// Step 5. Evaluate the position statically and update parent's gain statistics
|
|
if (inCheck)
|
|
ss->eval = ss->evalMargin = VALUE_NONE;
|
|
else if (tte)
|
|
{
|
|
assert(tte->static_value() != VALUE_NONE);
|
|
|
|
ss->eval = tte->static_value();
|
|
ss->evalMargin = tte->static_value_margin();
|
|
refinedValue = refine_eval(tte, ss->eval, ss->ply);
|
|
}
|
|
else
|
|
{
|
|
refinedValue = ss->eval = evaluate(pos, ss->evalMargin);
|
|
TT.store(posKey, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ss->evalMargin);
|
|
}
|
|
|
|
// Save gain for the parent non-capture move
|
|
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
|
|
|
|
// Step 6. Razoring (is omitted in PV nodes)
|
|
if ( !PvNode
|
|
&& depth < RazorDepth
|
|
&& !inCheck
|
|
&& refinedValue + razor_margin(depth) < beta
|
|
&& ttMove == MOVE_NONE
|
|
&& abs(beta) < VALUE_MATE_IN_PLY_MAX
|
|
&& !pos.has_pawn_on_7th(pos.side_to_move()))
|
|
{
|
|
Value rbeta = beta - razor_margin(depth);
|
|
Value v = qsearch<NonPV>(pos, ss, rbeta-1, rbeta, DEPTH_ZERO);
|
|
if (v < rbeta)
|
|
// Logically we should return (v + razor_margin(depth)), but
|
|
// surprisingly this did slightly weaker in tests.
|
|
return v;
|
|
}
|
|
|
|
// Step 7. Static null move pruning (is omitted in PV nodes)
|
|
// We're betting that the opponent doesn't have a move that will reduce
|
|
// the score by more than futility_margin(depth) if we do a null move.
|
|
if ( !PvNode
|
|
&& !ss->skipNullMove
|
|
&& depth < RazorDepth
|
|
&& !inCheck
|
|
&& refinedValue - futility_margin(depth, 0) >= beta
|
|
&& abs(beta) < VALUE_MATE_IN_PLY_MAX
|
|
&& pos.non_pawn_material(pos.side_to_move()))
|
|
return refinedValue - futility_margin(depth, 0);
|
|
|
|
// Step 8. Null move search with verification search (is omitted in PV nodes)
|
|
if ( !PvNode
|
|
&& !ss->skipNullMove
|
|
&& depth > ONE_PLY
|
|
&& !inCheck
|
|
&& refinedValue >= beta
|
|
&& abs(beta) < VALUE_MATE_IN_PLY_MAX
|
|
&& pos.non_pawn_material(pos.side_to_move()))
|
|
{
|
|
ss->currentMove = MOVE_NULL;
|
|
|
|
// Null move dynamic reduction based on depth
|
|
int R = 3 + (depth >= 5 * ONE_PLY ? depth / 8 : 0);
|
|
|
|
// Null move dynamic reduction based on value
|
|
if (refinedValue - PawnValueMidgame > beta)
|
|
R++;
|
|
|
|
pos.do_null_move(st);
|
|
(ss+1)->skipNullMove = true;
|
|
nullValue = -search<NonPV>(pos, ss+1, -beta, -alpha, depth-R*ONE_PLY);
|
|
(ss+1)->skipNullMove = false;
|
|
pos.undo_null_move();
|
|
|
|
if (nullValue >= beta)
|
|
{
|
|
// Do not return unproven mate scores
|
|
if (nullValue >= VALUE_MATE_IN_PLY_MAX)
|
|
nullValue = beta;
|
|
|
|
if (depth < 6 * ONE_PLY)
|
|
return nullValue;
|
|
|
|
// Do verification search at high depths
|
|
ss->skipNullMove = true;
|
|
Value v = search<NonPV>(pos, ss, alpha, beta, depth-R*ONE_PLY);
|
|
ss->skipNullMove = false;
|
|
|
|
if (v >= beta)
|
|
return nullValue;
|
|
}
|
|
else
|
|
{
|
|
// The null move failed low, which means that we may be faced with
|
|
// some kind of threat. If the previous move was reduced, check if
|
|
// the move that refuted the null move was somehow connected to the
|
|
// move which was reduced. If a connection is found, return a fail
|
|
// low score (which will cause the reduced move to fail high in the
|
|
// parent node, which will trigger a re-search with full depth).
|
|
threatMove = (ss+1)->bestMove;
|
|
|
|
if ( depth < ThreatDepth
|
|
&& (ss-1)->reduction
|
|
&& threatMove != MOVE_NONE
|
|
&& connected_moves(pos, (ss-1)->currentMove, threatMove))
|
|
return beta - 1;
|
|
}
|
|
}
|
|
|
|
// Step 9. Internal iterative deepening
|
|
if ( depth >= IIDDepth[PvNode]
|
|
&& ttMove == MOVE_NONE
|
|
&& (PvNode || (!inCheck && ss->eval + IIDMargin >= beta)))
|
|
{
|
|
Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2);
|
|
|
|
ss->skipNullMove = true;
|
|
search<PvNode>(pos, ss, alpha, beta, d);
|
|
ss->skipNullMove = false;
|
|
|
|
ttMove = ss->bestMove;
|
|
tte = TT.probe(posKey);
|
|
}
|
|
|
|
split_point_start: // At split points actual search starts from here
|
|
|
|
// Initialize a MovePicker object for the current position
|
|
MovePickerExt<SpNode, Root> mp(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta));
|
|
CheckInfo ci(pos);
|
|
ss->bestMove = MOVE_NONE;
|
|
futilityBase = ss->eval + ss->evalMargin;
|
|
singularExtensionNode = !Root
|
|
&& !SpNode
|
|
&& depth >= SingularExtensionDepth[PvNode]
|
|
&& tte
|
|
&& tte->move()
|
|
&& !excludedMove // Do not allow recursive singular extension search
|
|
&& (tte->type() & VALUE_TYPE_LOWER)
|
|
&& tte->depth() >= depth - 3 * ONE_PLY;
|
|
if (SpNode)
|
|
{
|
|
lock_grab(&(sp->lock));
|
|
bestValue = sp->bestValue;
|
|
}
|
|
|
|
// Step 10. Loop through moves
|
|
// Loop through all legal moves until no moves remain or a beta cutoff occurs
|
|
while ( bestValue < beta
|
|
&& (move = mp.get_next_move()) != MOVE_NONE
|
|
&& !Threads[threadID].cutoff_occurred())
|
|
{
|
|
assert(move_is_ok(move));
|
|
|
|
if (SpNode)
|
|
{
|
|
moveCount = ++sp->moveCount;
|
|
lock_release(&(sp->lock));
|
|
}
|
|
else if (move == excludedMove)
|
|
continue;
|
|
else
|
|
moveCount++;
|
|
|
|
if (Root)
|
|
{
|
|
// This is used by time management
|
|
FirstRootMove = (moveCount == 1);
|
|
|
|
// Save the current node count before the move is searched
|
|
nodes = pos.nodes_searched();
|
|
|
|
// If it's time to send nodes info, do it here where we have the
|
|
// correct accumulated node counts searched by each thread.
|
|
if (SendSearchedNodes)
|
|
{
|
|
SendSearchedNodes = false;
|
|
cout << "info" << speed_to_uci(pos.nodes_searched()) << endl;
|
|
}
|
|
|
|
if (current_search_time() > 2000)
|
|
cout << "info currmove " << move
|
|
<< " currmovenumber " << moveCount << endl;
|
|
}
|
|
|
|
// At Root and at first iteration do a PV search on all the moves to score root moves
|
|
isPvMove = (PvNode && moveCount <= (Root ? depth <= ONE_PLY ? 1000 : MultiPV : 1));
|
|
givesCheck = pos.move_gives_check(move, ci);
|
|
captureOrPromotion = pos.move_is_capture_or_promotion(move);
|
|
|
|
// Step 11. Decide the new search depth
|
|
ext = extension<PvNode>(pos, move, captureOrPromotion, givesCheck, &dangerous);
|
|
|
|
// Singular extension search. If all moves but one fail low on a search of
|
|
// (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
|
|
// is singular and should be extended. To verify this we do a reduced search
|
|
// on all the other moves but the ttMove, if result is lower than ttValue minus
|
|
// a margin then we extend ttMove.
|
|
if ( singularExtensionNode
|
|
&& move == tte->move()
|
|
&& ext < ONE_PLY)
|
|
{
|
|
Value ttValue = value_from_tt(tte->value(), ss->ply);
|
|
|
|
if (abs(ttValue) < VALUE_KNOWN_WIN)
|
|
{
|
|
Value rBeta = ttValue - int(depth);
|
|
ss->excludedMove = move;
|
|
ss->skipNullMove = true;
|
|
Value v = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2);
|
|
ss->skipNullMove = false;
|
|
ss->excludedMove = MOVE_NONE;
|
|
ss->bestMove = MOVE_NONE;
|
|
if (v < rBeta)
|
|
ext = ONE_PLY;
|
|
}
|
|
}
|
|
|
|
// Update current move (this must be done after singular extension search)
|
|
ss->currentMove = move;
|
|
newDepth = depth - ONE_PLY + ext;
|
|
|
|
// Step 12. Futility pruning (is omitted in PV nodes)
|
|
if ( !PvNode
|
|
&& !captureOrPromotion
|
|
&& !inCheck
|
|
&& !dangerous
|
|
&& move != ttMove
|
|
&& !move_is_castle(move))
|
|
{
|
|
// Move count based pruning
|
|
if ( moveCount >= futility_move_count(depth)
|
|
&& (!threatMove || !connected_threat(pos, move, threatMove))
|
|
&& bestValue > VALUE_MATED_IN_PLY_MAX) // FIXME bestValue is racy
|
|
{
|
|
if (SpNode)
|
|
lock_grab(&(sp->lock));
|
|
|
|
continue;
|
|
}
|
|
|
|
// Value based pruning
|
|
// We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
|
|
// but fixing this made program slightly weaker.
|
|
Depth predictedDepth = newDepth - reduction<NonPV>(depth, moveCount);
|
|
futilityValueScaled = futilityBase + futility_margin(predictedDepth, moveCount)
|
|
+ H.gain(pos.piece_on(move_from(move)), move_to(move));
|
|
|
|
if (futilityValueScaled < beta)
|
|
{
|
|
if (SpNode)
|
|
{
|
|
lock_grab(&(sp->lock));
|
|
if (futilityValueScaled > sp->bestValue)
|
|
sp->bestValue = bestValue = futilityValueScaled;
|
|
}
|
|
else if (futilityValueScaled > bestValue)
|
|
bestValue = futilityValueScaled;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Prune moves with negative SEE at low depths
|
|
if ( predictedDepth < 2 * ONE_PLY
|
|
&& bestValue > VALUE_MATED_IN_PLY_MAX
|
|
&& pos.see_sign(move) < 0)
|
|
{
|
|
if (SpNode)
|
|
lock_grab(&(sp->lock));
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Bad capture detection. Will be used by prob-cut search
|
|
isBadCap = depth >= 3 * ONE_PLY
|
|
&& depth < 8 * ONE_PLY
|
|
&& captureOrPromotion
|
|
&& move != ttMove
|
|
&& !dangerous
|
|
&& !move_is_promotion(move)
|
|
&& abs(alpha) < VALUE_MATE_IN_PLY_MAX
|
|
&& pos.see_sign(move) < 0;
|
|
|
|
// Step 13. Make the move
|
|
pos.do_move(move, st, ci, givesCheck);
|
|
|
|
if (!SpNode && !captureOrPromotion)
|
|
movesSearched[playedMoveCount++] = move;
|
|
|
|
// Step extra. pv search (only in PV nodes)
|
|
// The first move in list is the expected PV
|
|
if (isPvMove)
|
|
{
|
|
// Aspiration window is disabled in multi-pv case
|
|
if (Root && MultiPV > 1)
|
|
alpha = -VALUE_INFINITE;
|
|
|
|
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth);
|
|
}
|
|
else
|
|
{
|
|
// Step 14. Reduced depth search
|
|
// If the move fails high will be re-searched at full depth.
|
|
bool doFullDepthSearch = true;
|
|
alpha = SpNode ? sp->alpha : alpha;
|
|
|
|
if ( depth >= 3 * ONE_PLY
|
|
&& !captureOrPromotion
|
|
&& !dangerous
|
|
&& !move_is_castle(move)
|
|
&& ss->killers[0] != move
|
|
&& ss->killers[1] != move)
|
|
{
|
|
ss->reduction = reduction<PvNode>(depth, moveCount);
|
|
if (ss->reduction)
|
|
{
|
|
Depth d = newDepth - ss->reduction;
|
|
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d);
|
|
|
|
doFullDepthSearch = (value > alpha);
|
|
}
|
|
ss->reduction = DEPTH_ZERO; // Restore original reduction
|
|
}
|
|
|
|
// Probcut search for bad captures. If a reduced search returns a value
|
|
// very below beta then we can (almost) safely prune the bad capture.
|
|
if (isBadCap)
|
|
{
|
|
ss->reduction = 3 * ONE_PLY;
|
|
Value rAlpha = alpha - 300;
|
|
Depth d = newDepth - ss->reduction;
|
|
value = -search<NonPV>(pos, ss+1, -(rAlpha+1), -rAlpha, d);
|
|
doFullDepthSearch = (value > rAlpha);
|
|
ss->reduction = DEPTH_ZERO; // Restore original reduction
|
|
}
|
|
|
|
// Step 15. Full depth search
|
|
if (doFullDepthSearch)
|
|
{
|
|
alpha = SpNode ? sp->alpha : alpha;
|
|
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth);
|
|
|
|
// Step extra. pv search (only in PV nodes)
|
|
// Search only for possible new PV nodes, if instead value >= beta then
|
|
// parent node fails low with value <= alpha and tries another move.
|
|
if (PvNode && value > alpha && (Root || value < beta))
|
|
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth);
|
|
}
|
|
}
|
|
|
|
// Step 16. Undo move
|
|
pos.undo_move(move);
|
|
|
|
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
|
|
|
// Step 17. Check for new best move
|
|
if (SpNode)
|
|
{
|
|
lock_grab(&(sp->lock));
|
|
bestValue = sp->bestValue;
|
|
alpha = sp->alpha;
|
|
}
|
|
|
|
if (value > bestValue && !(SpNode && Threads[threadID].cutoff_occurred()))
|
|
{
|
|
bestValue = value;
|
|
|
|
if (SpNode)
|
|
sp->bestValue = value;
|
|
|
|
if (!Root && value > alpha)
|
|
{
|
|
if (PvNode && value < beta) // We want always alpha < beta
|
|
{
|
|
alpha = value;
|
|
|
|
if (SpNode)
|
|
sp->alpha = value;
|
|
}
|
|
else if (SpNode)
|
|
sp->is_betaCutoff = true;
|
|
|
|
if (value == value_mate_in(ss->ply + 1))
|
|
ss->mateKiller = move;
|
|
|
|
ss->bestMove = move;
|
|
|
|
if (SpNode)
|
|
sp->ss->bestMove = move;
|
|
}
|
|
}
|
|
|
|
if (Root)
|
|
{
|
|
// Finished searching the move. If StopRequest is true, the search
|
|
// was aborted because the user interrupted the search or because we
|
|
// ran out of time. In this case, the return value of the search cannot
|
|
// be trusted, and we break out of the loop without updating the best
|
|
// move and/or PV.
|
|
if (StopRequest)
|
|
break;
|
|
|
|
// Remember searched nodes counts for this move
|
|
mp.rm->nodes += pos.nodes_searched() - nodes;
|
|
|
|
// PV move or new best move ?
|
|
if (isPvMove || value > alpha)
|
|
{
|
|
// Update PV
|
|
ss->bestMove = move;
|
|
mp.rm->pv_score = value;
|
|
mp.rm->extract_pv_from_tt(pos);
|
|
|
|
// We record how often the best move has been changed in each
|
|
// iteration. This information is used for time management: When
|
|
// the best move changes frequently, we allocate some more time.
|
|
if (!isPvMove && MultiPV == 1)
|
|
Rml.bestMoveChanges++;
|
|
|
|
Rml.sort_multipv(moveCount);
|
|
|
|
// Update alpha. In multi-pv we don't use aspiration window, so
|
|
// set alpha equal to minimum score among the PV lines.
|
|
if (MultiPV > 1)
|
|
alpha = Rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount?
|
|
else if (value > alpha)
|
|
alpha = value;
|
|
}
|
|
else
|
|
mp.rm->pv_score = -VALUE_INFINITE;
|
|
|
|
} // Root
|
|
|
|
// Step 18. Check for split
|
|
if ( !Root
|
|
&& !SpNode
|
|
&& depth >= Threads.min_split_depth()
|
|
&& bestValue < beta
|
|
&& Threads.available_slave_exists(threadID)
|
|
&& !StopRequest
|
|
&& !Threads[threadID].cutoff_occurred())
|
|
Threads.split<FakeSplit>(pos, ss, &alpha, beta, &bestValue, depth,
|
|
threatMove, moveCount, &mp, PvNode);
|
|
}
|
|
|
|
// Step 19. Check for mate and stalemate
|
|
// All legal moves have been searched and if there are
|
|
// no legal moves, it must be mate or stalemate.
|
|
// If one move was excluded return fail low score.
|
|
if (!SpNode && !moveCount)
|
|
return excludedMove ? oldAlpha : inCheck ? value_mated_in(ss->ply) : VALUE_DRAW;
|
|
|
|
// Step 20. Update tables
|
|
// If the search is not aborted, update the transposition table,
|
|
// history counters, and killer moves.
|
|
if (!SpNode && !StopRequest && !Threads[threadID].cutoff_occurred())
|
|
{
|
|
move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove;
|
|
vt = bestValue <= oldAlpha ? VALUE_TYPE_UPPER
|
|
: bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT;
|
|
|
|
TT.store(posKey, value_to_tt(bestValue, ss->ply), vt, depth, move, ss->eval, ss->evalMargin);
|
|
|
|
// Update killers and history only for non capture moves that fails high
|
|
if ( bestValue >= beta
|
|
&& !pos.move_is_capture_or_promotion(move))
|
|
{
|
|
if (move != ss->killers[0])
|
|
{
|
|
ss->killers[1] = ss->killers[0];
|
|
ss->killers[0] = move;
|
|
}
|
|
update_history(pos, move, depth, movesSearched, playedMoveCount);
|
|
}
|
|
}
|
|
|
|
if (SpNode)
|
|
{
|
|
// Here we have the lock still grabbed
|
|
sp->is_slave[threadID] = false;
|
|
sp->nodes += pos.nodes_searched();
|
|
lock_release(&(sp->lock));
|
|
}
|
|
|
|
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
// qsearch() is the quiescence search function, which is called by the main
|
|
// search function when the remaining depth is zero (or, to be more precise,
|
|
// less than ONE_PLY).
|
|
|
|
template <NodeType PvNode>
|
|
Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) {
|
|
|
|
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
|
|
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
|
|
assert(PvNode || alpha == beta - 1);
|
|
assert(depth <= 0);
|
|
assert(pos.thread() >= 0 && pos.thread() < Threads.size());
|
|
|
|
StateInfo st;
|
|
Move ttMove, move;
|
|
Value bestValue, value, evalMargin, futilityValue, futilityBase;
|
|
bool inCheck, enoughMaterial, givesCheck, evasionPrunable;
|
|
const TTEntry* tte;
|
|
Depth ttDepth;
|
|
Value oldAlpha = alpha;
|
|
|
|
ss->bestMove = ss->currentMove = MOVE_NONE;
|
|
ss->ply = (ss-1)->ply + 1;
|
|
|
|
// Check for an instant draw or maximum ply reached
|
|
if (ss->ply > PLY_MAX || pos.is_draw())
|
|
return VALUE_DRAW;
|
|
|
|
// Decide whether or not to include checks, this fixes also the type of
|
|
// TT entry depth that we are going to use. Note that in qsearch we use
|
|
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
|
|
inCheck = pos.in_check();
|
|
ttDepth = (inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS);
|
|
|
|
// Transposition table lookup. At PV nodes, we don't use the TT for
|
|
// pruning, but only for move ordering.
|
|
tte = TT.probe(pos.get_key());
|
|
ttMove = (tte ? tte->move() : MOVE_NONE);
|
|
|
|
if (!PvNode && tte && ok_to_use_TT(tte, ttDepth, beta, ss->ply))
|
|
{
|
|
ss->bestMove = ttMove; // Can be MOVE_NONE
|
|
return value_from_tt(tte->value(), ss->ply);
|
|
}
|
|
|
|
// Evaluate the position statically
|
|
if (inCheck)
|
|
{
|
|
bestValue = futilityBase = -VALUE_INFINITE;
|
|
ss->eval = evalMargin = VALUE_NONE;
|
|
enoughMaterial = false;
|
|
}
|
|
else
|
|
{
|
|
if (tte)
|
|
{
|
|
assert(tte->static_value() != VALUE_NONE);
|
|
|
|
evalMargin = tte->static_value_margin();
|
|
ss->eval = bestValue = tte->static_value();
|
|
}
|
|
else
|
|
ss->eval = bestValue = evaluate(pos, evalMargin);
|
|
|
|
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
|
|
|
|
// Stand pat. Return immediately if static value is at least beta
|
|
if (bestValue >= beta)
|
|
{
|
|
if (!tte)
|
|
TT.store(pos.get_key(), value_to_tt(bestValue, ss->ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
if (PvNode && bestValue > alpha)
|
|
alpha = bestValue;
|
|
|
|
// Futility pruning parameters, not needed when in check
|
|
futilityBase = ss->eval + evalMargin + FutilityMarginQS;
|
|
enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
|
|
}
|
|
|
|
// Initialize a MovePicker object for the current position, and prepare
|
|
// to search the moves. Because the depth is <= 0 here, only captures,
|
|
// queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
|
|
// be generated.
|
|
MovePicker mp(pos, ttMove, depth, H);
|
|
CheckInfo ci(pos);
|
|
|
|
// Loop through the moves until no moves remain or a beta cutoff occurs
|
|
while ( alpha < beta
|
|
&& (move = mp.get_next_move()) != MOVE_NONE)
|
|
{
|
|
assert(move_is_ok(move));
|
|
|
|
givesCheck = pos.move_gives_check(move, ci);
|
|
|
|
// Futility pruning
|
|
if ( !PvNode
|
|
&& !inCheck
|
|
&& !givesCheck
|
|
&& move != ttMove
|
|
&& enoughMaterial
|
|
&& !move_is_promotion(move)
|
|
&& !pos.move_is_passed_pawn_push(move))
|
|
{
|
|
futilityValue = futilityBase
|
|
+ pos.endgame_value_of_piece_on(move_to(move))
|
|
+ (move_is_ep(move) ? PawnValueEndgame : VALUE_ZERO);
|
|
|
|
if (futilityValue < alpha)
|
|
{
|
|
if (futilityValue > bestValue)
|
|
bestValue = futilityValue;
|
|
continue;
|
|
}
|
|
|
|
// Prune moves with negative or equal SEE
|
|
if ( futilityBase < beta
|
|
&& depth < DEPTH_ZERO
|
|
&& pos.see(move) <= 0)
|
|
continue;
|
|
}
|
|
|
|
// Detect non-capture evasions that are candidate to be pruned
|
|
evasionPrunable = inCheck
|
|
&& bestValue > VALUE_MATED_IN_PLY_MAX
|
|
&& !pos.move_is_capture(move)
|
|
&& !pos.can_castle(pos.side_to_move());
|
|
|
|
// Don't search moves with negative SEE values
|
|
if ( !PvNode
|
|
&& (!inCheck || evasionPrunable)
|
|
&& move != ttMove
|
|
&& !move_is_promotion(move)
|
|
&& pos.see_sign(move) < 0)
|
|
continue;
|
|
|
|
// Don't search useless checks
|
|
if ( !PvNode
|
|
&& !inCheck
|
|
&& givesCheck
|
|
&& move != ttMove
|
|
&& !pos.move_is_capture_or_promotion(move)
|
|
&& ss->eval + PawnValueMidgame / 4 < beta
|
|
&& !check_is_dangerous(pos, move, futilityBase, beta, &bestValue))
|
|
{
|
|
if (ss->eval + PawnValueMidgame / 4 > bestValue)
|
|
bestValue = ss->eval + PawnValueMidgame / 4;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Update current move
|
|
ss->currentMove = move;
|
|
|
|
// Make and search the move
|
|
pos.do_move(move, st, ci, givesCheck);
|
|
value = -qsearch<PvNode>(pos, ss+1, -beta, -alpha, depth-ONE_PLY);
|
|
pos.undo_move(move);
|
|
|
|
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
|
|
|
// New best move?
|
|
if (value > bestValue)
|
|
{
|
|
bestValue = value;
|
|
if (value > alpha)
|
|
{
|
|
alpha = value;
|
|
ss->bestMove = move;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All legal moves have been searched. A special case: If we're in check
|
|
// and no legal moves were found, it is checkmate.
|
|
if (inCheck && bestValue == -VALUE_INFINITE)
|
|
return value_mated_in(ss->ply);
|
|
|
|
// Update transposition table
|
|
ValueType vt = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT);
|
|
TT.store(pos.get_key(), value_to_tt(bestValue, ss->ply), vt, ttDepth, ss->bestMove, ss->eval, evalMargin);
|
|
|
|
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
|
|
// check_is_dangerous() tests if a checking move can be pruned in qsearch().
|
|
// bestValue is updated only when returning false because in that case move
|
|
// will be pruned.
|
|
|
|
bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bestValue)
|
|
{
|
|
Bitboard b, occ, oldAtt, newAtt, kingAtt;
|
|
Square from, to, ksq, victimSq;
|
|
Piece pc;
|
|
Color them;
|
|
Value futilityValue, bv = *bestValue;
|
|
|
|
from = move_from(move);
|
|
to = move_to(move);
|
|
them = opposite_color(pos.side_to_move());
|
|
ksq = pos.king_square(them);
|
|
kingAtt = pos.attacks_from<KING>(ksq);
|
|
pc = pos.piece_on(from);
|
|
|
|
occ = pos.occupied_squares() & ~(1ULL << from) & ~(1ULL << ksq);
|
|
oldAtt = pos.attacks_from(pc, from, occ);
|
|
newAtt = pos.attacks_from(pc, to, occ);
|
|
|
|
// Rule 1. Checks which give opponent's king at most one escape square are dangerous
|
|
b = kingAtt & ~pos.pieces_of_color(them) & ~newAtt & ~(1ULL << to);
|
|
|
|
if (!(b && (b & (b - 1))))
|
|
return true;
|
|
|
|
// Rule 2. Queen contact check is very dangerous
|
|
if ( type_of_piece(pc) == QUEEN
|
|
&& bit_is_set(kingAtt, to))
|
|
return true;
|
|
|
|
// Rule 3. Creating new double threats with checks
|
|
b = pos.pieces_of_color(them) & newAtt & ~oldAtt & ~(1ULL << ksq);
|
|
|
|
while (b)
|
|
{
|
|
victimSq = pop_1st_bit(&b);
|
|
futilityValue = futilityBase + pos.endgame_value_of_piece_on(victimSq);
|
|
|
|
// Note that here we generate illegal "double move"!
|
|
if ( futilityValue >= beta
|
|
&& pos.see_sign(make_move(from, victimSq)) >= 0)
|
|
return true;
|
|
|
|
if (futilityValue > bv)
|
|
bv = futilityValue;
|
|
}
|
|
|
|
// Update bestValue only if check is not dangerous (because we will prune the move)
|
|
*bestValue = bv;
|
|
return false;
|
|
}
|
|
|
|
|
|
// connected_moves() tests whether two moves are 'connected' in the sense
|
|
// that the first move somehow made the second move possible (for instance
|
|
// if the moving piece is the same in both moves). The first move is assumed
|
|
// to be the move that was made to reach the current position, while the
|
|
// second move is assumed to be a move from the current position.
|
|
|
|
bool connected_moves(const Position& pos, Move m1, Move m2) {
|
|
|
|
Square f1, t1, f2, t2;
|
|
Piece p;
|
|
|
|
assert(m1 && move_is_ok(m1));
|
|
assert(m2 && move_is_ok(m2));
|
|
|
|
// Case 1: The moving piece is the same in both moves
|
|
f2 = move_from(m2);
|
|
t1 = move_to(m1);
|
|
if (f2 == t1)
|
|
return true;
|
|
|
|
// Case 2: The destination square for m2 was vacated by m1
|
|
t2 = move_to(m2);
|
|
f1 = move_from(m1);
|
|
if (t2 == f1)
|
|
return true;
|
|
|
|
// Case 3: Moving through the vacated square
|
|
if ( piece_is_slider(pos.piece_on(f2))
|
|
&& bit_is_set(squares_between(f2, t2), f1))
|
|
return true;
|
|
|
|
// Case 4: The destination square for m2 is defended by the moving piece in m1
|
|
p = pos.piece_on(t1);
|
|
if (bit_is_set(pos.attacks_from(p, t1), t2))
|
|
return true;
|
|
|
|
// Case 5: Discovered check, checking piece is the piece moved in m1
|
|
if ( piece_is_slider(p)
|
|
&& bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
|
|
&& !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2))
|
|
{
|
|
// discovered_check_candidates() works also if the Position's side to
|
|
// move is the opposite of the checking piece.
|
|
Color them = opposite_color(pos.side_to_move());
|
|
Bitboard dcCandidates = pos.discovered_check_candidates(them);
|
|
|
|
if (bit_is_set(dcCandidates, f2))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
|
|
// "plies to mate from the current ply". Non-mate scores are unchanged.
|
|
// The function is called before storing a value to the transposition table.
|
|
|
|
Value value_to_tt(Value v, int ply) {
|
|
|
|
if (v >= VALUE_MATE_IN_PLY_MAX)
|
|
return v + ply;
|
|
|
|
if (v <= VALUE_MATED_IN_PLY_MAX)
|
|
return v - ply;
|
|
|
|
return v;
|
|
}
|
|
|
|
|
|
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score from
|
|
// the transposition table to a mate score corrected for the current ply.
|
|
|
|
Value value_from_tt(Value v, int ply) {
|
|
|
|
if (v >= VALUE_MATE_IN_PLY_MAX)
|
|
return v - ply;
|
|
|
|
if (v <= VALUE_MATED_IN_PLY_MAX)
|
|
return v + ply;
|
|
|
|
return v;
|
|
}
|
|
|
|
|
|
// extension() decides whether a move should be searched with normal depth,
|
|
// or with extended depth. Certain classes of moves (checking moves, in
|
|
// particular) are searched with bigger depth than ordinary moves and in
|
|
// any case are marked as 'dangerous'. Note that also if a move is not
|
|
// extended, as example because the corresponding UCI option is set to zero,
|
|
// the move is marked as 'dangerous' so, at least, we avoid to prune it.
|
|
template <NodeType PvNode>
|
|
Depth extension(const Position& pos, Move m, bool captureOrPromotion,
|
|
bool moveIsCheck, bool* dangerous) {
|
|
|
|
assert(m != MOVE_NONE);
|
|
|
|
Depth result = DEPTH_ZERO;
|
|
*dangerous = moveIsCheck;
|
|
|
|
if (moveIsCheck && pos.see_sign(m) >= 0)
|
|
result += CheckExtension[PvNode];
|
|
|
|
if (pos.type_of_piece_on(move_from(m)) == PAWN)
|
|
{
|
|
Color c = pos.side_to_move();
|
|
if (relative_rank(c, move_to(m)) == RANK_7)
|
|
{
|
|
result += PawnPushTo7thExtension[PvNode];
|
|
*dangerous = true;
|
|
}
|
|
if (pos.pawn_is_passed(c, move_to(m)))
|
|
{
|
|
result += PassedPawnExtension[PvNode];
|
|
*dangerous = true;
|
|
}
|
|
}
|
|
|
|
if ( captureOrPromotion
|
|
&& pos.type_of_piece_on(move_to(m)) != PAWN
|
|
&& ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
|
|
- pos.midgame_value_of_piece_on(move_to(m)) == VALUE_ZERO)
|
|
&& !move_is_special(m))
|
|
{
|
|
result += PawnEndgameExtension[PvNode];
|
|
*dangerous = true;
|
|
}
|
|
|
|
return Min(result, ONE_PLY);
|
|
}
|
|
|
|
|
|
// connected_threat() tests whether it is safe to forward prune a move or if
|
|
// is somehow connected to the threat move returned by null search.
|
|
|
|
bool connected_threat(const Position& pos, Move m, Move threat) {
|
|
|
|
assert(move_is_ok(m));
|
|
assert(threat && move_is_ok(threat));
|
|
assert(!pos.move_gives_check(m));
|
|
assert(!pos.move_is_capture_or_promotion(m));
|
|
assert(!pos.move_is_passed_pawn_push(m));
|
|
|
|
Square mfrom, mto, tfrom, tto;
|
|
|
|
mfrom = move_from(m);
|
|
mto = move_to(m);
|
|
tfrom = move_from(threat);
|
|
tto = move_to(threat);
|
|
|
|
// Case 1: Don't prune moves which move the threatened piece
|
|
if (mfrom == tto)
|
|
return true;
|
|
|
|
// Case 2: If the threatened piece has value less than or equal to the
|
|
// value of the threatening piece, don't prune moves which defend it.
|
|
if ( pos.move_is_capture(threat)
|
|
&& ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
|
|
|| pos.type_of_piece_on(tfrom) == KING)
|
|
&& pos.move_attacks_square(m, tto))
|
|
return true;
|
|
|
|
// Case 3: If the moving piece in the threatened move is a slider, don't
|
|
// prune safe moves which block its ray.
|
|
if ( piece_is_slider(pos.piece_on(tfrom))
|
|
&& bit_is_set(squares_between(tfrom, tto), mto)
|
|
&& pos.see_sign(m) >= 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// ok_to_use_TT() returns true if a transposition table score
|
|
// can be used at a given point in search.
|
|
|
|
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
|
|
|
|
Value v = value_from_tt(tte->value(), ply);
|
|
|
|
return ( tte->depth() >= depth
|
|
|| v >= Max(VALUE_MATE_IN_PLY_MAX, beta)
|
|
|| v < Min(VALUE_MATED_IN_PLY_MAX, beta))
|
|
|
|
&& ( ((tte->type() & VALUE_TYPE_LOWER) && v >= beta)
|
|
|| ((tte->type() & VALUE_TYPE_UPPER) && v < beta));
|
|
}
|
|
|
|
|
|
// refine_eval() returns the transposition table score if
|
|
// possible otherwise falls back on static position evaluation.
|
|
|
|
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) {
|
|
|
|
assert(tte);
|
|
|
|
Value v = value_from_tt(tte->value(), ply);
|
|
|
|
if ( ((tte->type() & VALUE_TYPE_LOWER) && v >= defaultEval)
|
|
|| ((tte->type() & VALUE_TYPE_UPPER) && v < defaultEval))
|
|
return v;
|
|
|
|
return defaultEval;
|
|
}
|
|
|
|
|
|
// update_history() registers a good move that produced a beta-cutoff
|
|
// in history and marks as failures all the other moves of that ply.
|
|
|
|
void update_history(const Position& pos, Move move, Depth depth,
|
|
Move movesSearched[], int moveCount) {
|
|
Move m;
|
|
Value bonus = Value(int(depth) * int(depth));
|
|
|
|
H.update(pos.piece_on(move_from(move)), move_to(move), bonus);
|
|
|
|
for (int i = 0; i < moveCount - 1; i++)
|
|
{
|
|
m = movesSearched[i];
|
|
|
|
assert(m != move);
|
|
|
|
H.update(pos.piece_on(move_from(m)), move_to(m), -bonus);
|
|
}
|
|
}
|
|
|
|
|
|
// update_gains() updates the gains table of a non-capture move given
|
|
// the static position evaluation before and after the move.
|
|
|
|
void update_gains(const Position& pos, Move m, Value before, Value after) {
|
|
|
|
if ( m != MOVE_NULL
|
|
&& before != VALUE_NONE
|
|
&& after != VALUE_NONE
|
|
&& pos.captured_piece_type() == PIECE_TYPE_NONE
|
|
&& !move_is_special(m))
|
|
H.update_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
|
|
}
|
|
|
|
|
|
// current_search_time() returns the number of milliseconds which have passed
|
|
// since the beginning of the current search.
|
|
|
|
int current_search_time(int set) {
|
|
|
|
static int searchStartTime;
|
|
|
|
if (set)
|
|
searchStartTime = set;
|
|
|
|
return get_system_time() - searchStartTime;
|
|
}
|
|
|
|
|
|
// value_to_uci() converts a value to a string suitable for use with the UCI
|
|
// protocol specifications:
|
|
//
|
|
// cp <x> The score from the engine's point of view in centipawns.
|
|
// mate <y> Mate in y moves, not plies. If the engine is getting mated
|
|
// use negative values for y.
|
|
|
|
std::string value_to_uci(Value v) {
|
|
|
|
std::stringstream s;
|
|
|
|
if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY)
|
|
s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns
|
|
else
|
|
s << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2;
|
|
|
|
return s.str();
|
|
}
|
|
|
|
|
|
// speed_to_uci() returns a string with time stats of current search suitable
|
|
// to be sent to UCI gui.
|
|
|
|
std::string speed_to_uci(int64_t nodes) {
|
|
|
|
std::stringstream s;
|
|
int t = current_search_time();
|
|
|
|
s << " nodes " << nodes
|
|
<< " nps " << (t > 0 ? int(nodes * 1000 / t) : 0)
|
|
<< " time " << t;
|
|
|
|
return s.str();
|
|
}
|
|
|
|
|
|
// poll() performs two different functions: It polls for user input, and it
|
|
// looks at the time consumed so far and decides if it's time to abort the
|
|
// search.
|
|
|
|
void poll(const Position& pos) {
|
|
|
|
static int lastInfoTime;
|
|
int t = current_search_time();
|
|
|
|
// Poll for input
|
|
if (input_available())
|
|
{
|
|
// We are line oriented, don't read single chars
|
|
std::string command;
|
|
|
|
if (!std::getline(std::cin, command) || command == "quit")
|
|
{
|
|
// Quit the program as soon as possible
|
|
Limits.ponder = false;
|
|
QuitRequest = StopRequest = true;
|
|
return;
|
|
}
|
|
else if (command == "stop")
|
|
{
|
|
// Stop calculating as soon as possible, but still send the "bestmove"
|
|
// and possibly the "ponder" token when finishing the search.
|
|
Limits.ponder = false;
|
|
StopRequest = true;
|
|
}
|
|
else if (command == "ponderhit")
|
|
{
|
|
// The opponent has played the expected move. GUI sends "ponderhit" if
|
|
// we were told to ponder on the same move the opponent has played. We
|
|
// should continue searching but switching from pondering to normal search.
|
|
Limits.ponder = false;
|
|
|
|
if (StopOnPonderhit)
|
|
StopRequest = true;
|
|
}
|
|
}
|
|
|
|
// Print search information
|
|
if (t < 1000)
|
|
lastInfoTime = 0;
|
|
|
|
else if (lastInfoTime > t)
|
|
// HACK: Must be a new search where we searched less than
|
|
// NodesBetweenPolls nodes during the first second of search.
|
|
lastInfoTime = 0;
|
|
|
|
else if (t - lastInfoTime >= 1000)
|
|
{
|
|
lastInfoTime = t;
|
|
|
|
dbg_print_mean();
|
|
dbg_print_hit_rate();
|
|
|
|
// Send info on searched nodes as soon as we return to root
|
|
SendSearchedNodes = true;
|
|
}
|
|
|
|
// Should we stop the search?
|
|
if (Limits.ponder)
|
|
return;
|
|
|
|
bool stillAtFirstMove = FirstRootMove
|
|
&& !AspirationFailLow
|
|
&& t > TimeMgr.available_time();
|
|
|
|
bool noMoreTime = t > TimeMgr.maximum_time()
|
|
|| stillAtFirstMove;
|
|
|
|
if ( (Limits.useTimeManagement() && noMoreTime)
|
|
|| (Limits.maxTime && t >= Limits.maxTime)
|
|
|| (Limits.maxNodes && pos.nodes_searched() >= Limits.maxNodes)) // FIXME
|
|
StopRequest = true;
|
|
}
|
|
|
|
|
|
// wait_for_stop_or_ponderhit() is called when the maximum depth is reached
|
|
// while the program is pondering. The point is to work around a wrinkle in
|
|
// the UCI protocol: When pondering, the engine is not allowed to give a
|
|
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
|
|
// We simply wait here until one of these commands is sent, and return,
|
|
// after which the bestmove and pondermove will be printed.
|
|
|
|
void wait_for_stop_or_ponderhit() {
|
|
|
|
std::string command;
|
|
|
|
// Wait for a command from stdin
|
|
while ( std::getline(std::cin, command)
|
|
&& command != "ponderhit" && command != "stop" && command != "quit") {};
|
|
|
|
if (command != "ponderhit" && command != "stop")
|
|
QuitRequest = true; // Must be "quit" or getline() returned false
|
|
}
|
|
|
|
|
|
// When playing with strength handicap choose best move among the MultiPV set
|
|
// using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
|
|
void do_skill_level(Move* best, Move* ponder) {
|
|
|
|
assert(MultiPV > 1);
|
|
|
|
static RKISS rk;
|
|
|
|
// Rml list is already sorted by pv_score in descending order
|
|
int s;
|
|
int max_s = -VALUE_INFINITE;
|
|
int size = Min(MultiPV, (int)Rml.size());
|
|
int max = Rml[0].pv_score;
|
|
int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame);
|
|
int wk = 120 - 2 * SkillLevel;
|
|
|
|
// PRNG sequence should be non deterministic
|
|
for (int i = abs(get_system_time() % 50); i > 0; i--)
|
|
rk.rand<unsigned>();
|
|
|
|
// Choose best move. For each move's score we add two terms both dependent
|
|
// on wk, one deterministic and bigger for weaker moves, and one random,
|
|
// then we choose the move with the resulting highest score.
|
|
for (int i = 0; i < size; i++)
|
|
{
|
|
s = Rml[i].pv_score;
|
|
|
|
// Don't allow crazy blunders even at very low skills
|
|
if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin)
|
|
break;
|
|
|
|
// This is our magical formula
|
|
s += ((max - s) * wk + var * (rk.rand<unsigned>() % wk)) / 128;
|
|
|
|
if (s > max_s)
|
|
{
|
|
max_s = s;
|
|
*best = Rml[i].pv[0];
|
|
*ponder = Rml[i].pv[1];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// RootMove and RootMoveList method's definitions
|
|
|
|
RootMove::RootMove() {
|
|
|
|
nodes = 0;
|
|
pv_score = non_pv_score = -VALUE_INFINITE;
|
|
pv[0] = MOVE_NONE;
|
|
}
|
|
|
|
RootMove& RootMove::operator=(const RootMove& rm) {
|
|
|
|
const Move* src = rm.pv;
|
|
Move* dst = pv;
|
|
|
|
// Avoid a costly full rm.pv[] copy
|
|
do *dst++ = *src; while (*src++ != MOVE_NONE);
|
|
|
|
nodes = rm.nodes;
|
|
pv_score = rm.pv_score;
|
|
non_pv_score = rm.non_pv_score;
|
|
return *this;
|
|
}
|
|
|
|
void RootMoveList::init(Position& pos, Move searchMoves[]) {
|
|
|
|
MoveStack mlist[MAX_MOVES];
|
|
Move* sm;
|
|
|
|
clear();
|
|
bestMoveChanges = 0;
|
|
|
|
// Generate all legal moves and add them to RootMoveList
|
|
MoveStack* last = generate<MV_LEGAL>(pos, mlist);
|
|
for (MoveStack* cur = mlist; cur != last; cur++)
|
|
{
|
|
// If we have a searchMoves[] list then verify cur->move
|
|
// is in the list before to add it.
|
|
for (sm = searchMoves; *sm && *sm != cur->move; sm++) {}
|
|
|
|
if (searchMoves[0] && *sm != cur->move)
|
|
continue;
|
|
|
|
RootMove rm;
|
|
rm.pv[0] = cur->move;
|
|
rm.pv[1] = MOVE_NONE;
|
|
rm.pv_score = -VALUE_INFINITE;
|
|
push_back(rm);
|
|
}
|
|
}
|
|
|
|
// extract_pv_from_tt() builds a PV by adding moves from the transposition table.
|
|
// We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This
|
|
// allow to always have a ponder move even when we fail high at root and also a
|
|
// long PV to print that is important for position analysis.
|
|
|
|
void RootMove::extract_pv_from_tt(Position& pos) {
|
|
|
|
StateInfo state[PLY_MAX_PLUS_2], *st = state;
|
|
TTEntry* tte;
|
|
int ply = 1;
|
|
|
|
assert(pv[0] != MOVE_NONE && pos.move_is_legal(pv[0]));
|
|
|
|
pos.do_move(pv[0], *st++);
|
|
|
|
while ( (tte = TT.probe(pos.get_key())) != NULL
|
|
&& tte->move() != MOVE_NONE
|
|
&& pos.move_is_legal(tte->move())
|
|
&& ply < PLY_MAX
|
|
&& (!pos.is_draw() || ply < 2))
|
|
{
|
|
pv[ply] = tte->move();
|
|
pos.do_move(pv[ply++], *st++);
|
|
}
|
|
pv[ply] = MOVE_NONE;
|
|
|
|
do pos.undo_move(pv[--ply]); while (ply);
|
|
}
|
|
|
|
// insert_pv_in_tt() is called at the end of a search iteration, and inserts
|
|
// the PV back into the TT. This makes sure the old PV moves are searched
|
|
// first, even if the old TT entries have been overwritten.
|
|
|
|
void RootMove::insert_pv_in_tt(Position& pos) {
|
|
|
|
StateInfo state[PLY_MAX_PLUS_2], *st = state;
|
|
TTEntry* tte;
|
|
Key k;
|
|
Value v, m = VALUE_NONE;
|
|
int ply = 0;
|
|
|
|
assert(pv[0] != MOVE_NONE && pos.move_is_legal(pv[0]));
|
|
|
|
do {
|
|
k = pos.get_key();
|
|
tte = TT.probe(k);
|
|
|
|
// Don't overwrite existing correct entries
|
|
if (!tte || tte->move() != pv[ply])
|
|
{
|
|
v = (pos.in_check() ? VALUE_NONE : evaluate(pos, m));
|
|
TT.store(k, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[ply], v, m);
|
|
}
|
|
pos.do_move(pv[ply], *st++);
|
|
|
|
} while (pv[++ply] != MOVE_NONE);
|
|
|
|
do pos.undo_move(pv[--ply]); while (ply);
|
|
}
|
|
|
|
// pv_info_to_uci() returns a string with information on the current PV line
|
|
// formatted according to UCI specification.
|
|
|
|
std::string RootMove::pv_info_to_uci(Position& pos, int depth, int selDepth, Value alpha,
|
|
Value beta, int pvIdx) {
|
|
std::stringstream s;
|
|
|
|
s << "info depth " << depth
|
|
<< " seldepth " << selDepth
|
|
<< " multipv " << pvIdx + 1
|
|
<< " score " << value_to_uci(pv_score)
|
|
<< (pv_score >= beta ? " lowerbound" : pv_score <= alpha ? " upperbound" : "")
|
|
<< speed_to_uci(pos.nodes_searched())
|
|
<< " pv ";
|
|
|
|
for (Move* m = pv; *m != MOVE_NONE; m++)
|
|
s << *m << " ";
|
|
|
|
return s.str();
|
|
}
|
|
|
|
// Specializations for MovePickerExt in case of Root node
|
|
MovePickerExt<false, true>::MovePickerExt(const Position& p, Move ttm, Depth d,
|
|
const History& h, SearchStack* ss, Value b)
|
|
: MovePicker(p, ttm, d, h, ss, b), firstCall(true) {
|
|
Move move;
|
|
Value score = VALUE_ZERO;
|
|
|
|
// Score root moves using standard ordering used in main search, the moves
|
|
// are scored according to the order in which they are returned by MovePicker.
|
|
// This is the second order score that is used to compare the moves when
|
|
// the first orders pv_score of both moves are equal.
|
|
while ((move = MovePicker::get_next_move()) != MOVE_NONE)
|
|
for (rm = Rml.begin(); rm != Rml.end(); ++rm)
|
|
if (rm->pv[0] == move)
|
|
{
|
|
rm->non_pv_score = score--;
|
|
break;
|
|
}
|
|
|
|
Rml.sort();
|
|
rm = Rml.begin();
|
|
}
|
|
|
|
Move MovePickerExt<false, true>::get_next_move() {
|
|
|
|
if (!firstCall)
|
|
++rm;
|
|
else
|
|
firstCall = false;
|
|
|
|
return rm != Rml.end() ? rm->pv[0] : MOVE_NONE;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
// ThreadsManager::idle_loop() is where the threads are parked when they have no work
|
|
// to do. The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint
|
|
// object for which the current thread is the master.
|
|
|
|
void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) {
|
|
|
|
assert(threadID >= 0 && threadID < MAX_THREADS);
|
|
|
|
int i;
|
|
bool allFinished;
|
|
|
|
while (true)
|
|
{
|
|
// Slave threads can exit as soon as AllThreadsShouldExit raises,
|
|
// master should exit as last one.
|
|
if (allThreadsShouldExit)
|
|
{
|
|
assert(!sp);
|
|
threads[threadID].state = Thread::TERMINATED;
|
|
return;
|
|
}
|
|
|
|
// If we are not thinking, wait for a condition to be signaled
|
|
// instead of wasting CPU time polling for work.
|
|
while ( threadID >= activeThreads
|
|
|| threads[threadID].state == Thread::INITIALIZING
|
|
|| (useSleepingThreads && threads[threadID].state == Thread::AVAILABLE))
|
|
{
|
|
assert(!sp || useSleepingThreads);
|
|
assert(threadID != 0 || useSleepingThreads);
|
|
|
|
if (threads[threadID].state == Thread::INITIALIZING)
|
|
threads[threadID].state = Thread::AVAILABLE;
|
|
|
|
// Grab the lock to avoid races with Thread::wake_up()
|
|
lock_grab(&threads[threadID].sleepLock);
|
|
|
|
// If we are master and all slaves have finished do not go to sleep
|
|
for (i = 0; sp && i < activeThreads && !sp->is_slave[i]; i++) {}
|
|
allFinished = (i == activeThreads);
|
|
|
|
if (allFinished || allThreadsShouldExit)
|
|
{
|
|
lock_release(&threads[threadID].sleepLock);
|
|
break;
|
|
}
|
|
|
|
// Do sleep here after retesting sleep conditions
|
|
if (threadID >= activeThreads || threads[threadID].state == Thread::AVAILABLE)
|
|
cond_wait(&threads[threadID].sleepCond, &threads[threadID].sleepLock);
|
|
|
|
lock_release(&threads[threadID].sleepLock);
|
|
}
|
|
|
|
// If this thread has been assigned work, launch a search
|
|
if (threads[threadID].state == Thread::WORKISWAITING)
|
|
{
|
|
assert(!allThreadsShouldExit);
|
|
|
|
threads[threadID].state = Thread::SEARCHING;
|
|
|
|
// Copy split point position and search stack and call search()
|
|
// with SplitPoint template parameter set to true.
|
|
SearchStack ss[PLY_MAX_PLUS_2];
|
|
SplitPoint* tsp = threads[threadID].splitPoint;
|
|
Position pos(*tsp->pos, threadID);
|
|
|
|
memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack));
|
|
(ss+1)->sp = tsp;
|
|
|
|
if (tsp->pvNode)
|
|
search<PV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth);
|
|
else
|
|
search<NonPV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth);
|
|
|
|
assert(threads[threadID].state == Thread::SEARCHING);
|
|
|
|
threads[threadID].state = Thread::AVAILABLE;
|
|
|
|
// Wake up master thread so to allow it to return from the idle loop in
|
|
// case we are the last slave of the split point.
|
|
if ( useSleepingThreads
|
|
&& threadID != tsp->master
|
|
&& threads[tsp->master].state == Thread::AVAILABLE)
|
|
threads[tsp->master].wake_up();
|
|
}
|
|
|
|
// If this thread is the master of a split point and all slaves have
|
|
// finished their work at this split point, return from the idle loop.
|
|
for (i = 0; sp && i < activeThreads && !sp->is_slave[i]; i++) {}
|
|
allFinished = (i == activeThreads);
|
|
|
|
if (allFinished)
|
|
{
|
|
// Because sp->slaves[] is reset under lock protection,
|
|
// be sure sp->lock has been released before to return.
|
|
lock_grab(&(sp->lock));
|
|
lock_release(&(sp->lock));
|
|
|
|
// In helpful master concept a master can help only a sub-tree, and
|
|
// because here is all finished is not possible master is booked.
|
|
assert(threads[threadID].state == Thread::AVAILABLE);
|
|
|
|
threads[threadID].state = Thread::SEARCHING;
|
|
return;
|
|
}
|
|
}
|
|
}
|