droidfish/DroidFish/jni/stockfish/search.cpp
2015-12-27 23:25:14 +01:00

1620 lines
56 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring> // For std::memset
#include <iostream>
#include <sstream>
#include "evaluate.h"
#include "misc.h"
#include "movegen.h"
#include "movepick.h"
#include "search.h"
#include "timeman.h"
#include "thread.h"
#include "tt.h"
#include "uci.h"
#include "syzygy/tbprobe.h"
namespace Search {
SignalsType Signals;
LimitsType Limits;
StateStackPtr SetupStates;
}
namespace Tablebases {
int Cardinality;
uint64_t Hits;
bool RootInTB;
bool UseRule50;
Depth ProbeDepth;
Value Score;
}
namespace TB = Tablebases;
using std::string;
using Eval::evaluate;
using namespace Search;
namespace {
// Different node types, used as template parameter
enum NodeType { Root, PV, NonPV };
// Razoring and futility margin based on depth
const int razor_margin[4] = { 483, 570, 603, 554 };
Value futility_margin(Depth d) { return Value(200 * d); }
// Futility and reductions lookup tables, initialized at startup
int FutilityMoveCounts[2][16]; // [improving][depth]
Depth Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
template <bool PvNode> Depth reduction(bool i, Depth d, int mn) {
return Reductions[PvNode][i][std::min(d, 63 * ONE_PLY)][std::min(mn, 63)];
}
// Skill struct is used to implement strength limiting
struct Skill {
Skill(int l) : level(l) {}
bool enabled() const { return level < 20; }
bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); }
Move pick_best(size_t multiPV);
int level;
Move best = MOVE_NONE;
};
// EasyMoveManager struct is used to detect a so called 'easy move'; when PV is
// stable across multiple search iterations we can fast return the best move.
struct EasyMoveManager {
void clear() {
stableCnt = 0;
expectedPosKey = 0;
pv[0] = pv[1] = pv[2] = MOVE_NONE;
}
Move get(Key key) const {
return expectedPosKey == key ? pv[2] : MOVE_NONE;
}
void update(Position& pos, const std::vector<Move>& newPv) {
assert(newPv.size() >= 3);
// Keep track of how many times in a row 3rd ply remains stable
stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0;
if (!std::equal(newPv.begin(), newPv.begin() + 3, pv))
{
std::copy(newPv.begin(), newPv.begin() + 3, pv);
StateInfo st[2];
pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0], CheckInfo(pos)));
pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1], CheckInfo(pos)));
expectedPosKey = pos.key();
pos.undo_move(newPv[1]);
pos.undo_move(newPv[0]);
}
}
int stableCnt;
Key expectedPosKey;
Move pv[3];
};
EasyMoveManager EasyMove;
Value DrawValue[COLOR_NB];
CounterMovesHistoryStats CounterMovesHistory;
template <NodeType NT>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
template <NodeType NT, bool InCheck>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
Value value_to_tt(Value v, int ply);
Value value_from_tt(Value v, int ply);
void update_pv(Move* pv, Move move, Move* childPv);
void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt);
void check_time();
} // namespace
/// Search::init() is called during startup to initialize various lookup tables
void Search::init() {
const double K[][2] = {{ 0.799, 2.281 }, { 0.484, 3.023 }};
for (int pv = 0; pv <= 1; ++pv)
for (int imp = 0; imp <= 1; ++imp)
for (int d = 1; d < 64; ++d)
for (int mc = 1; mc < 64; ++mc)
{
double r = K[pv][0] + log(d) * log(mc) / K[pv][1];
if (r >= 1.5)
Reductions[pv][imp][d][mc] = int(r) * ONE_PLY;
// Increase reduction when eval is not improving
if (!pv && !imp && Reductions[pv][imp][d][mc] >= 2 * ONE_PLY)
Reductions[pv][imp][d][mc] += ONE_PLY;
}
for (int d = 0; d < 16; ++d)
{
FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8));
FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8));
}
}
/// Search::clear() resets to zero search state, to obtain reproducible results
void Search::clear() {
TT.clear();
CounterMovesHistory.clear();
for (Thread* th : Threads)
{
th->history.clear();
th->counterMoves.clear();
}
}
/// Search::perft() is our utility to verify move generation. All the leaf nodes
/// up to the given depth are generated and counted and the sum returned.
template<bool Root>
uint64_t Search::perft(Position& pos, Depth depth) {
StateInfo st;
uint64_t cnt, nodes = 0;
CheckInfo ci(pos);
const bool leaf = (depth == 2 * ONE_PLY);
for (const auto& m : MoveList<LEGAL>(pos))
{
if (Root && depth <= ONE_PLY)
cnt = 1, nodes++;
else
{
pos.do_move(m, st, pos.gives_check(m, ci));
cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
nodes += cnt;
pos.undo_move(m);
}
if (Root)
sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
}
return nodes;
}
template uint64_t Search::perft<true>(Position&, Depth);
/// MainThread::search() is called by the main thread when the program receives
/// the UCI 'go' command. It searches from root position and at the end prints
/// the "bestmove" to output.
void MainThread::search() {
Color us = rootPos.side_to_move();
Time.init(Limits, us, rootPos.game_ply());
int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns
DrawValue[ us] = VALUE_DRAW - Value(contempt);
DrawValue[~us] = VALUE_DRAW + Value(contempt);
TB::Hits = 0;
TB::RootInTB = false;
TB::UseRule50 = Options["Syzygy50MoveRule"];
TB::ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY;
TB::Cardinality = Options["SyzygyProbeLimit"];
// Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality
if (TB::Cardinality > TB::MaxCardinality)
{
TB::Cardinality = TB::MaxCardinality;
TB::ProbeDepth = DEPTH_ZERO;
}
if (rootMoves.empty())
{
rootMoves.push_back(RootMove(MOVE_NONE));
sync_cout << "info depth 0 score "
<< UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
<< sync_endl;
}
else
{
if (TB::Cardinality >= rootPos.count<ALL_PIECES>(WHITE)
+ rootPos.count<ALL_PIECES>(BLACK))
{
// If the current root position is in the tablebases then RootMoves
// contains only moves that preserve the draw or win.
TB::RootInTB = Tablebases::root_probe(rootPos, rootMoves, TB::Score);
if (TB::RootInTB)
TB::Cardinality = 0; // Do not probe tablebases during the search
else // If DTZ tables are missing, use WDL tables as a fallback
{
// Filter out moves that do not preserve a draw or win
TB::RootInTB = Tablebases::root_probe_wdl(rootPos, rootMoves, TB::Score);
// Only probe during search if winning
if (TB::Score <= VALUE_DRAW)
TB::Cardinality = 0;
}
if (TB::RootInTB)
{
TB::Hits = rootMoves.size();
if (!TB::UseRule50)
TB::Score = TB::Score > VALUE_DRAW ? VALUE_MATE - MAX_PLY - 1
: TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1
: VALUE_DRAW;
}
}
for (Thread* th : Threads)
{
th->maxPly = 0;
th->rootDepth = DEPTH_ZERO;
if (th != this)
{
th->rootPos = Position(rootPos, th);
th->rootMoves = rootMoves;
th->start_searching();
}
}
Thread::search(); // Let's start searching!
}
// When playing in 'nodes as time' mode, subtract the searched nodes from
// the available ones before to exit.
if (Limits.npmsec)
Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
// When we reach the maximum depth, we can arrive here without a raise of
// Signals.stop. However, if we are pondering or in an infinite search,
// the UCI protocol states that we shouldn't print the best move before the
// GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
// until the GUI sends one of those commands (which also raises Signals.stop).
if (!Signals.stop && (Limits.ponder || Limits.infinite))
{
Signals.stopOnPonderhit = true;
wait(Signals.stop);
}
// Stop the threads if not already stopped
Signals.stop = true;
// Wait until all threads have finished
for (Thread* th : Threads)
if (th != this)
th->wait_for_search_finished();
// Check if there are threads with a better score than main thread
Thread* bestThread = this;
if ( !this->easyMovePlayed
&& Options["MultiPV"] == 1
&& !Skill(Options["Skill Level"]).enabled())
{
for (Thread* th : Threads)
if ( th->completedDepth > bestThread->completedDepth
&& th->rootMoves[0].score > bestThread->rootMoves[0].score)
bestThread = th;
}
// Send new PV when needed
if (bestThread != this)
sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
std::cout << sync_endl;
}
// Thread::search() is the main iterative deepening loop. It calls search()
// repeatedly with increasing depth until the allocated thinking time has been
// consumed, user stops the search, or the maximum search depth is reached.
void Thread::search() {
Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2)
Value bestValue, alpha, beta, delta;
Move easyMove = MOVE_NONE;
MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
std::memset(ss-2, 0, 5 * sizeof(Stack));
bestValue = delta = alpha = -VALUE_INFINITE;
beta = VALUE_INFINITE;
completedDepth = DEPTH_ZERO;
if (mainThread)
{
easyMove = EasyMove.get(rootPos.key());
EasyMove.clear();
mainThread->easyMovePlayed = mainThread->failedLow = false;
mainThread->bestMoveChanges = 0;
TT.new_search();
}
size_t multiPV = Options["MultiPV"];
Skill skill(Options["Skill Level"]);
// When playing with strength handicap enable MultiPV search that we will
// use behind the scenes to retrieve a set of possible moves.
if (skill.enabled())
multiPV = std::max(multiPV, (size_t)4);
multiPV = std::min(multiPV, rootMoves.size());
// Iterative deepening loop until requested to stop or target depth reached
while (++rootDepth < DEPTH_MAX && !Signals.stop && (!Limits.depth || rootDepth <= Limits.depth))
{
// Set up the new depth for the helper threads skipping in average each
// 2nd ply (using a half density map similar to a Hadamard matrix).
if (!mainThread)
{
int d = rootDepth + rootPos.game_ply();
if (idx <= 6 || idx > 24)
{
if (((d + idx) >> (msb(idx + 1) - 1)) % 2)
continue;
}
else
{
// Table of values of 6 bits with 3 of them set
static const int HalfDensityMap[] = {
0x07, 0x0b, 0x0d, 0x0e, 0x13, 0x16, 0x19, 0x1a, 0x1c,
0x23, 0x25, 0x26, 0x29, 0x2c, 0x31, 0x32, 0x34, 0x38
};
if ((HalfDensityMap[idx - 7] >> (d % 6)) & 1)
continue;
}
}
// Age out PV variability metric
if (mainThread)
mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false;
// Save the last iteration's scores before first PV line is searched and
// all the move scores except the (new) PV are set to -VALUE_INFINITE.
for (RootMove& rm : rootMoves)
rm.previousScore = rm.score;
// MultiPV loop. We perform a full root search for each PV line
for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx)
{
// Reset aspiration window starting size
if (rootDepth >= 5 * ONE_PLY)
{
delta = Value(18);
alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE);
beta = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE);
}
// Start with a small aspiration window and, in the case of a fail
// high/low, re-search with a bigger window until we're not failing
// high/low anymore.
while (true)
{
bestValue = ::search<Root>(rootPos, ss, alpha, beta, rootDepth, false);
// Bring the best move to the front. It is critical that sorting
// is done with a stable algorithm because all the values but the
// first and eventually the new best one are set to -VALUE_INFINITE
// and we want to keep the same order for all the moves except the
// new PV that goes to the front. Note that in case of MultiPV
// search the already searched PV lines are preserved.
std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end());
// Write PV back to transposition table in case the relevant
// entries have been overwritten during the search.
for (size_t i = 0; i <= PVIdx; ++i)
rootMoves[i].insert_pv_in_tt(rootPos);
// If search has been stopped break immediately. Sorting and
// writing PV back to TT is safe because RootMoves is still
// valid, although it refers to previous iteration.
if (Signals.stop)
break;
// When failing high/low give some update (without cluttering
// the UI) before a re-search.
if ( mainThread
&& multiPV == 1
&& (bestValue <= alpha || bestValue >= beta)
&& Time.elapsed() > 3000)
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
// In case of failing low/high increase aspiration window and
// re-search, otherwise exit the loop.
if (bestValue <= alpha)
{
beta = (alpha + beta) / 2;
alpha = std::max(bestValue - delta, -VALUE_INFINITE);
if (mainThread)
{
mainThread->failedLow = true;
Signals.stopOnPonderhit = false;
}
}
else if (bestValue >= beta)
{
alpha = (alpha + beta) / 2;
beta = std::min(bestValue + delta, VALUE_INFINITE);
}
else
break;
delta += delta / 4 + 5;
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
}
// Sort the PV lines searched so far and update the GUI
std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1);
if (!mainThread)
break;
if (Signals.stop)
sync_cout << "info nodes " << Threads.nodes_searched()
<< " time " << Time.elapsed() << sync_endl;
else if (PVIdx + 1 == multiPV || Time.elapsed() > 3000)
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
}
if (!Signals.stop)
completedDepth = rootDepth;
if (!mainThread)
continue;
// If skill level is enabled and time is up, pick a sub-optimal best move
if (skill.enabled() && skill.time_to_pick(rootDepth))
skill.pick_best(multiPV);
// Have we found a "mate in x"?
if ( Limits.mate
&& bestValue >= VALUE_MATE_IN_MAX_PLY
&& VALUE_MATE - bestValue <= 2 * Limits.mate)
Signals.stop = true;
// Do we have time for the next iteration? Can we stop searching now?
if (Limits.use_time_management())
{
if (!Signals.stop && !Signals.stopOnPonderhit)
{
// Take some extra time if the best move has changed
if (rootDepth > 4 * ONE_PLY && multiPV == 1)
Time.pv_instability(mainThread->bestMoveChanges);
// Stop the search if only one legal move is available or all
// of the available time has been used or we matched an easyMove
// from the previous search and just did a fast verification.
if ( rootMoves.size() == 1
|| Time.elapsed() > Time.available() * (mainThread->failedLow ? 641 : 315) / 640
|| (mainThread->easyMovePlayed = ( rootMoves[0].pv[0] == easyMove
&& mainThread->bestMoveChanges < 0.03
&& Time.elapsed() > Time.available() / 8)))
{
// If we are allowed to ponder do not stop the search now but
// keep pondering until the GUI sends "ponderhit" or "stop".
if (Limits.ponder)
Signals.stopOnPonderhit = true;
else
Signals.stop = true;
}
}
if (rootMoves[0].pv.size() >= 3)
EasyMove.update(rootPos, rootMoves[0].pv);
else
EasyMove.clear();
}
}
if (!mainThread)
return;
// Clear any candidate easy move that wasn't stable for the last search
// iterations; the second condition prevents consecutive fast moves.
if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed)
EasyMove.clear();
// If skill level is enabled, swap best PV line with the sub-optimal one
if (skill.enabled())
std::swap(rootMoves[0], *std::find(rootMoves.begin(),
rootMoves.end(), skill.best_move(multiPV)));
}
namespace {
// search<>() is the main search function for both PV and non-PV nodes
template <NodeType NT>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
const bool RootNode = NT == Root;
const bool PvNode = NT == PV || NT == Root;
assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(DEPTH_ZERO < depth && depth < DEPTH_MAX);
Move pv[MAX_PLY+1], quietsSearched[64];
StateInfo st;
TTEntry* tte;
Key posKey;
Move ttMove, move, excludedMove, bestMove;
Depth extension, newDepth, predictedDepth;
Value bestValue, value, ttValue, eval, nullValue, futilityValue;
bool ttHit, inCheck, givesCheck, singularExtensionNode, improving;
bool captureOrPromotion, doFullDepthSearch;
int moveCount, quietCount;
// Step 1. Initialize node
Thread* thisThread = pos.this_thread();
inCheck = pos.checkers();
moveCount = quietCount = ss->moveCount = 0;
bestValue = -VALUE_INFINITE;
ss->ply = (ss-1)->ply + 1;
// Check for available remaining time
if (thisThread->resetCalls.load(std::memory_order_relaxed))
{
thisThread->resetCalls = false;
thisThread->callsCnt = 0;
}
if (++thisThread->callsCnt > 4096)
{
for (Thread* th : Threads)
th->resetCalls = true;
check_time();
}
// Used to send selDepth info to GUI
if (PvNode && thisThread->maxPly < ss->ply)
thisThread->maxPly = ss->ply;
if (!RootNode)
{
// Step 2. Check for aborted search and immediate draw
if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY)
return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos)
: DrawValue[pos.side_to_move()];
// Step 3. Mate distance pruning. Even if we mate at the next move our score
// would be at best mate_in(ss->ply+1), but if alpha is already bigger because
// a shorter mate was found upward in the tree then there is no need to search
// because we will never beat the current alpha. Same logic but with reversed
// signs applies also in the opposite condition of being mated instead of giving
// mate. In this case return a fail-high score.
alpha = std::max(mated_in(ss->ply), alpha);
beta = std::min(mate_in(ss->ply+1), beta);
if (alpha >= beta)
return alpha;
}
assert(0 <= ss->ply && ss->ply < MAX_PLY);
ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
(ss+1)->skipEarlyPruning = false;
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
// Step 4. Transposition table lookup. We don't want the score of a partial
// search to overwrite a previous full search TT value, so we use a different
// position key in case of an excluded move.
excludedMove = ss->excludedMove;
posKey = excludedMove ? pos.exclusion_key() : pos.key();
tte = TT.probe(posKey, ttHit);
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
ttMove = RootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0]
: ttHit ? tte->move() : MOVE_NONE;
// At non-PV nodes we check for an early TT cutoff
if ( !PvNode
&& ttHit
&& tte->depth() >= depth
&& ttValue != VALUE_NONE // Possible in case of TT access race
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
: (tte->bound() & BOUND_UPPER)))
{
ss->currentMove = ttMove; // Can be MOVE_NONE
// If ttMove is quiet, update killers, history, counter move on TT hit
if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove))
update_stats(pos, ss, ttMove, depth, nullptr, 0);
return ttValue;
}
// Step 4a. Tablebase probe
if (!RootNode && TB::Cardinality)
{
int piecesCnt = pos.count<ALL_PIECES>(WHITE) + pos.count<ALL_PIECES>(BLACK);
if ( piecesCnt <= TB::Cardinality
&& (piecesCnt < TB::Cardinality || depth >= TB::ProbeDepth)
&& pos.rule50_count() == 0)
{
int found, v = Tablebases::probe_wdl(pos, &found);
if (found)
{
TB::Hits++;
int drawScore = TB::UseRule50 ? 1 : 0;
value = v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply
: v > drawScore ? VALUE_MATE - MAX_PLY - ss->ply
: VALUE_DRAW + 2 * v * drawScore;
tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT,
std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY),
MOVE_NONE, VALUE_NONE, TT.generation());
return value;
}
}
}
// Step 5. Evaluate the position statically
if (inCheck)
{
ss->staticEval = eval = VALUE_NONE;
goto moves_loop;
}
else if (ttHit)
{
// Never assume anything on values stored in TT
if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE)
eval = ss->staticEval = evaluate(pos);
// Can ttValue be used as a better position evaluation?
if (ttValue != VALUE_NONE)
if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))
eval = ttValue;
}
else
{
eval = ss->staticEval =
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
: -(ss-1)->staticEval + 2 * Eval::Tempo;
tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
ss->staticEval, TT.generation());
}
if (ss->skipEarlyPruning)
goto moves_loop;
// Step 6. Razoring (skipped when in check)
if ( !PvNode
&& depth < 4 * ONE_PLY
&& eval + razor_margin[depth] <= alpha
&& ttMove == MOVE_NONE)
{
if ( depth <= ONE_PLY
&& eval + razor_margin[3 * ONE_PLY] <= alpha)
return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO);
Value ralpha = alpha - razor_margin[depth];
Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO);
if (v <= ralpha)
return v;
}
// Step 7. Futility pruning: child node (skipped when in check)
if ( !RootNode
&& depth < 7 * ONE_PLY
&& eval - futility_margin(depth) >= beta
&& eval < VALUE_KNOWN_WIN // Do not return unproven wins
&& pos.non_pawn_material(pos.side_to_move()))
return eval - futility_margin(depth);
// Step 8. Null move search with verification search (is omitted in PV nodes)
if ( !PvNode
&& depth >= 2 * ONE_PLY
&& eval >= beta
&& pos.non_pawn_material(pos.side_to_move()))
{
ss->currentMove = MOVE_NULL;
assert(eval - beta >= 0);
// Null move dynamic reduction based on depth and value
Depth R = ((823 + 67 * depth) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY;
pos.do_null_move(st);
(ss+1)->skipEarlyPruning = true;
nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO)
: - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
(ss+1)->skipEarlyPruning = false;
pos.undo_null_move();
if (nullValue >= beta)
{
// Do not return unproven mate scores
if (nullValue >= VALUE_MATE_IN_MAX_PLY)
nullValue = beta;
if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN)
return nullValue;
// Do verification search at high depths
ss->skipEarlyPruning = true;
Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO)
: search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
ss->skipEarlyPruning = false;
if (v >= beta)
return nullValue;
}
}
// Step 9. ProbCut (skipped when in check)
// If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
// and a reduced search returns a value much above beta, we can (almost)
// safely prune the previous move.
if ( !PvNode
&& depth >= 5 * ONE_PLY
&& abs(beta) < VALUE_MATE_IN_MAX_PLY)
{
Value rbeta = std::min(beta + 200, VALUE_INFINITE);
Depth rdepth = depth - 4 * ONE_PLY;
assert(rdepth >= ONE_PLY);
assert((ss-1)->currentMove != MOVE_NONE);
assert((ss-1)->currentMove != MOVE_NULL);
MovePicker mp(pos, ttMove, thisThread->history, PieceValue[MG][pos.captured_piece_type()]);
CheckInfo ci(pos);
while ((move = mp.next_move()) != MOVE_NONE)
if (pos.legal(move, ci.pinned))
{
ss->currentMove = move;
pos.do_move(move, st, pos.gives_check(move, ci));
value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode);
pos.undo_move(move);
if (value >= rbeta)
return value;
}
}
// Step 10. Internal iterative deepening (skipped when in check)
if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
&& !ttMove
&& (PvNode || ss->staticEval + 256 >= beta))
{
Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4);
ss->skipEarlyPruning = true;
search<PvNode ? PV : NonPV>(pos, ss, alpha, beta, d, true);
ss->skipEarlyPruning = false;
tte = TT.probe(posKey, ttHit);
ttMove = ttHit ? tte->move() : MOVE_NONE;
}
moves_loop: // When in check search starts from here
Square prevSq = to_sq((ss-1)->currentMove);
Move cm = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
const CounterMovesStats& cmh = CounterMovesHistory[pos.piece_on(prevSq)][prevSq];
MovePicker mp(pos, ttMove, depth, thisThread->history, cmh, cm, ss);
CheckInfo ci(pos);
value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
improving = ss->staticEval >= (ss-2)->staticEval
|| ss->staticEval == VALUE_NONE
||(ss-2)->staticEval == VALUE_NONE;
singularExtensionNode = !RootNode
&& depth >= 8 * ONE_PLY
&& ttMove != MOVE_NONE
/* && ttValue != VALUE_NONE Already implicit in the next condition */
&& abs(ttValue) < VALUE_KNOWN_WIN
&& !excludedMove // Recursive singular search is not allowed
&& (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 3 * ONE_PLY;
// Step 11. Loop through moves
// Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
while ((move = mp.next_move()) != MOVE_NONE)
{
assert(is_ok(move));
if (move == excludedMove)
continue;
// At root obey the "searchmoves" option and skip moves not listed in Root
// Move List. As a consequence any illegal move is also skipped. In MultiPV
// mode we also skip PV moves which have been already searched.
if (RootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx,
thisThread->rootMoves.end(), move))
continue;
ss->moveCount = ++moveCount;
if (RootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
sync_cout << "info depth " << depth / ONE_PLY
<< " currmove " << UCI::move(move, pos.is_chess960())
<< " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl;
if (PvNode)
(ss+1)->pv = nullptr;
extension = DEPTH_ZERO;
captureOrPromotion = pos.capture_or_promotion(move);
givesCheck = type_of(move) == NORMAL && !ci.dcCandidates
? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
: pos.gives_check(move, ci);
// Step 12. Extend checks
if (givesCheck && pos.see_sign(move) >= VALUE_ZERO)
extension = ONE_PLY;
// Singular extension search. If all moves but one fail low on a search of
// (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
// is singular and should be extended. To verify this we do a reduced search
// on all the other moves but the ttMove and if the result is lower than
// ttValue minus a margin then we extend the ttMove.
if ( singularExtensionNode
&& move == ttMove
&& !extension
&& pos.legal(move, ci.pinned))
{
Value rBeta = ttValue - 2 * depth / ONE_PLY;
ss->excludedMove = move;
ss->skipEarlyPruning = true;
value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode);
ss->skipEarlyPruning = false;
ss->excludedMove = MOVE_NONE;
if (value < rBeta)
extension = ONE_PLY;
}
// Update the current move (this must be done after singular extension search)
newDepth = depth - ONE_PLY + extension;
// Step 13. Pruning at shallow depth
if ( !RootNode
&& !captureOrPromotion
&& !inCheck
&& !givesCheck
&& !pos.advanced_pawn_push(move)
&& bestValue > VALUE_MATED_IN_MAX_PLY)
{
// Move count based pruning
if ( depth < 16 * ONE_PLY
&& moveCount >= FutilityMoveCounts[improving][depth])
continue;
// History based pruning
if ( depth <= 4 * ONE_PLY
&& move != ss->killers[0]
&& thisThread->history[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO
&& cmh[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO)
continue;
predictedDepth = newDepth - reduction<PvNode>(improving, depth, moveCount);
// Futility pruning: parent node
if (predictedDepth < 7 * ONE_PLY)
{
futilityValue = ss->staticEval + futility_margin(predictedDepth) + 256;
if (futilityValue <= alpha)
{
bestValue = std::max(bestValue, futilityValue);
continue;
}
}
// Prune moves with negative SEE at low depths
if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO)
continue;
}
// Speculative prefetch as early as possible
prefetch(TT.first_entry(pos.key_after(move)));
// Check for legality just before making the move
if (!RootNode && !pos.legal(move, ci.pinned))
{
ss->moveCount = --moveCount;
continue;
}
ss->currentMove = move;
// Step 14. Make the move
pos.do_move(move, st, givesCheck);
// Step 15. Reduced depth search (LMR). If the move fails high it will be
// re-searched at full depth.
if ( depth >= 3 * ONE_PLY
&& moveCount > 1
&& !captureOrPromotion)
{
Depth r = reduction<PvNode>(improving, depth, moveCount);
// Increase reduction for cut nodes and moves with a bad history
if ( (!PvNode && cutNode)
|| ( thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] < VALUE_ZERO
&& cmh[pos.piece_on(to_sq(move))][to_sq(move)] <= VALUE_ZERO))
r += ONE_PLY;
// Decrease reduction for moves with a good history
if ( thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] > VALUE_ZERO
&& cmh[pos.piece_on(to_sq(move))][to_sq(move)] > VALUE_ZERO)
r = std::max(DEPTH_ZERO, r - ONE_PLY);
// Decrease reduction for moves that escape a capture
if ( r
&& type_of(move) == NORMAL
&& type_of(pos.piece_on(to_sq(move))) != PAWN
&& pos.see(make_move(to_sq(move), from_sq(move))) < VALUE_ZERO)
r = std::max(DEPTH_ZERO, r - ONE_PLY);
Depth d = std::max(newDepth - r, ONE_PLY);
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
doFullDepthSearch = (value > alpha && r != DEPTH_ZERO);
}
else
doFullDepthSearch = !PvNode || moveCount > 1;
// Step 16. Full depth search, when LMR is skipped or fails high
if (doFullDepthSearch)
value = newDepth < ONE_PLY ?
givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
: -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
: - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
// For PV nodes only, do a full PV search on the first move or after a fail
// high (in the latter case search only if value < beta), otherwise let the
// parent node fail low with value <= alpha and to try another move.
if (PvNode && (moveCount == 1 || (value > alpha && (RootNode || value < beta))))
{
(ss+1)->pv = pv;
(ss+1)->pv[0] = MOVE_NONE;
value = newDepth < ONE_PLY ?
givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
: -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
: - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
}
// Step 17. Undo move
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 18. Check for new best move
// Finished searching the move. If a stop occurred, the return value of
// the search cannot be trusted, and we return immediately without
// updating best move, PV and TT.
if (Signals.stop.load(std::memory_order_relaxed))
return VALUE_ZERO;
if (RootNode)
{
RootMove& rm = *std::find(thisThread->rootMoves.begin(),
thisThread->rootMoves.end(), move);
// PV move or new best move ?
if (moveCount == 1 || value > alpha)
{
rm.score = value;
rm.pv.resize(1);
assert((ss+1)->pv);
for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
rm.pv.push_back(*m);
// We record how often the best move has been changed in each
// iteration. This information is used for time management: When
// the best move changes frequently, we allocate some more time.
if (moveCount > 1 && thisThread == Threads.main())
++static_cast<MainThread*>(thisThread)->bestMoveChanges;
}
else
// All other moves but the PV are set to the lowest value: this is
// not a problem when sorting because the sort is stable and the
// move position in the list is preserved - just the PV is pushed up.
rm.score = -VALUE_INFINITE;
}
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
// If there is an easy move for this position, clear it if unstable
if ( PvNode
&& thisThread == Threads.main()
&& EasyMove.get(pos.key())
&& (move != EasyMove.get(pos.key()) || moveCount > 1))
EasyMove.clear();
bestMove = move;
if (PvNode && !RootNode) // Update pv even in fail-high case
update_pv(ss->pv, move, (ss+1)->pv);
if (PvNode && value < beta) // Update alpha! Always alpha < beta
alpha = value;
else
{
assert(value >= beta); // Fail high
break;
}
}
}
if (!captureOrPromotion && move != bestMove && quietCount < 64)
quietsSearched[quietCount++] = move;
}
// Following condition would detect a stop only after move loop has been
// completed. But in this case bestValue is valid because we have fully
// searched our subtree, and we can anyhow save the result in TT.
/*
if (Signals.stop)
return VALUE_DRAW;
*/
// Step 20. Check for mate and stalemate
// All legal moves have been searched and if there are no legal moves, it
// must be mate or stalemate. If we are in a singular extension search then
// return a fail low score.
if (!moveCount)
bestValue = excludedMove ? alpha
: inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
// Quiet best move: update killers, history and countermoves
else if (bestMove && !pos.capture_or_promotion(bestMove))
update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount);
// Bonus for prior countermove that caused the fail low
else if ( depth >= 3 * ONE_PLY
&& !bestMove
&& !inCheck
&& !pos.captured_piece_type()
&& is_ok((ss - 1)->currentMove)
&& is_ok((ss - 2)->currentMove))
{
Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
Square prevPrevSq = to_sq((ss - 2)->currentMove);
CounterMovesStats& prevCmh = CounterMovesHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
prevCmh.update(pos.piece_on(prevSq), prevSq, bonus);
}
tte->save(posKey, value_to_tt(bestValue, ss->ply),
bestValue >= beta ? BOUND_LOWER :
PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
depth, bestMove, ss->staticEval, TT.generation());
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// qsearch() is the quiescence search function, which is called by the main
// search function when the remaining depth is zero (or, to be more precise,
// less than ONE_PLY).
template <NodeType NT, bool InCheck>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
const bool PvNode = NT == PV;
assert(NT == PV || NT == NonPV);
assert(InCheck == !!pos.checkers());
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(depth <= DEPTH_ZERO);
Move pv[MAX_PLY+1];
StateInfo st;
TTEntry* tte;
Key posKey;
Move ttMove, move, bestMove;
Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
bool ttHit, givesCheck, evasionPrunable;
Depth ttDepth;
if (PvNode)
{
oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
(ss+1)->pv = pv;
ss->pv[0] = MOVE_NONE;
}
ss->currentMove = bestMove = MOVE_NONE;
ss->ply = (ss-1)->ply + 1;
// Check for an instant draw or if the maximum ply has been reached
if (pos.is_draw() || ss->ply >= MAX_PLY)
return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos)
: DrawValue[pos.side_to_move()];
assert(0 <= ss->ply && ss->ply < MAX_PLY);
// Decide whether or not to include checks: this fixes also the type of
// TT entry depth that we are going to use. Note that in qsearch we use
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
: DEPTH_QS_NO_CHECKS;
// Transposition table lookup
posKey = pos.key();
tte = TT.probe(posKey, ttHit);
ttMove = ttHit ? tte->move() : MOVE_NONE;
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
if ( !PvNode
&& ttHit
&& tte->depth() >= ttDepth
&& ttValue != VALUE_NONE // Only in case of TT access race
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
: (tte->bound() & BOUND_UPPER)))
{
ss->currentMove = ttMove; // Can be MOVE_NONE
return ttValue;
}
// Evaluate the position statically
if (InCheck)
{
ss->staticEval = VALUE_NONE;
bestValue = futilityBase = -VALUE_INFINITE;
}
else
{
if (ttHit)
{
// Never assume anything on values stored in TT
if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
ss->staticEval = bestValue = evaluate(pos);
// Can ttValue be used as a better position evaluation?
if (ttValue != VALUE_NONE)
if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))
bestValue = ttValue;
}
else
ss->staticEval = bestValue =
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
: -(ss-1)->staticEval + 2 * Eval::Tempo;
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
{
if (!ttHit)
tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation());
return bestValue;
}
if (PvNode && bestValue > alpha)
alpha = bestValue;
futilityBase = bestValue + 128;
}
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
// be generated.
MovePicker mp(pos, ttMove, depth, pos.this_thread()->history, to_sq((ss-1)->currentMove));
CheckInfo ci(pos);
// Loop through the moves until no moves remain or a beta cutoff occurs
while ((move = mp.next_move()) != MOVE_NONE)
{
assert(is_ok(move));
givesCheck = type_of(move) == NORMAL && !ci.dcCandidates
? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
: pos.gives_check(move, ci);
// Futility pruning
if ( !InCheck
&& !givesCheck
&& futilityBase > -VALUE_KNOWN_WIN
&& !pos.advanced_pawn_push(move))
{
assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
if (futilityValue <= alpha)
{
bestValue = std::max(bestValue, futilityValue);
continue;
}
if (futilityBase <= alpha && pos.see(move) <= VALUE_ZERO)
{
bestValue = std::max(bestValue, futilityBase);
continue;
}
}
// Detect non-capture evasions that are candidates to be pruned
evasionPrunable = InCheck
&& bestValue > VALUE_MATED_IN_MAX_PLY
&& !pos.capture(move);
// Don't search moves with negative SEE values
if ( (!InCheck || evasionPrunable)
&& type_of(move) != PROMOTION
&& pos.see_sign(move) < VALUE_ZERO)
continue;
// Speculative prefetch as early as possible
prefetch(TT.first_entry(pos.key_after(move)));
// Check for legality just before making the move
if (!pos.legal(move, ci.pinned))
continue;
ss->currentMove = move;
// Make and search the move
pos.do_move(move, st, givesCheck);
value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
: -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Check for new best move
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
if (PvNode) // Update pv even in fail-high case
update_pv(ss->pv, move, (ss+1)->pv);
if (PvNode && value < beta) // Update alpha here!
{
alpha = value;
bestMove = move;
}
else // Fail high
{
tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
ttDepth, move, ss->staticEval, TT.generation());
return value;
}
}
}
}
// All legal moves have been searched. A special case: If we're in check
// and no legal moves were found, it is checkmate.
if (InCheck && bestValue == -VALUE_INFINITE)
return mated_in(ss->ply); // Plies to mate from the root
tte->save(posKey, value_to_tt(bestValue, ss->ply),
PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
ttDepth, bestMove, ss->staticEval, TT.generation());
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
// "plies to mate from the current position". Non-mate scores are unchanged.
// The function is called before storing a value in the transposition table.
Value value_to_tt(Value v, int ply) {
assert(v != VALUE_NONE);
return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
: v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
}
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
// from the transposition table (which refers to the plies to mate/be mated
// from current position) to "plies to mate/be mated from the root".
Value value_from_tt(Value v, int ply) {
return v == VALUE_NONE ? VALUE_NONE
: v >= VALUE_MATE_IN_MAX_PLY ? v - ply
: v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
}
// update_pv() adds current move and appends child pv[]
void update_pv(Move* pv, Move move, Move* childPv) {
for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
*pv++ = *childPv++;
*pv = MOVE_NONE;
}
// update_stats() updates killers, history, countermove and countermove
// history when a new quiet best move is found.
void update_stats(const Position& pos, Stack* ss, Move move,
Depth depth, Move* quiets, int quietsCnt) {
if (ss->killers[0] != move)
{
ss->killers[1] = ss->killers[0];
ss->killers[0] = move;
}
Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
Square prevSq = to_sq((ss-1)->currentMove);
CounterMovesStats& cmh = CounterMovesHistory[pos.piece_on(prevSq)][prevSq];
Thread* thisThread = pos.this_thread();
thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus);
if (is_ok((ss-1)->currentMove))
{
thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move);
cmh.update(pos.moved_piece(move), to_sq(move), bonus);
}
// Decrease all the other played quiet moves
for (int i = 0; i < quietsCnt; ++i)
{
thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
if (is_ok((ss-1)->currentMove))
cmh.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
}
// Extra penalty for a quiet TT move in previous ply when it gets refuted
if ( (ss-1)->moveCount == 1
&& !pos.captured_piece_type()
&& is_ok((ss-2)->currentMove))
{
Square prevPrevSq = to_sq((ss-2)->currentMove);
CounterMovesStats& prevCmh = CounterMovesHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
prevCmh.update(pos.piece_on(prevSq), prevSq, -bonus - 2 * (depth + 1) / ONE_PLY);
}
}
// When playing with strength handicap, choose best move among a set of RootMoves
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
Move Skill::pick_best(size_t multiPV) {
const Search::RootMoveVector& rootMoves = Threads.main()->rootMoves;
static PRNG rng(now()); // PRNG sequence should be non-deterministic
// RootMoves are already sorted by score in descending order
Value topScore = rootMoves[0].score;
int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
int weakness = 120 - 2 * level;
int maxScore = -VALUE_INFINITE;
// Choose best move. For each move score we add two terms, both dependent on
// weakness. One deterministic and bigger for weaker levels, and one random,
// then we choose the move with the resulting highest score.
for (size_t i = 0; i < multiPV; ++i)
{
// This is our magic formula
int push = ( weakness * int(topScore - rootMoves[i].score)
+ delta * (rng.rand<unsigned>() % weakness)) / 128;
if (rootMoves[i].score + push > maxScore)
{
maxScore = rootMoves[i].score + push;
best = rootMoves[i].pv[0];
}
}
return best;
}
// check_time() is used to print debug info and, more importantly, to detect
// when we are out of available time and thus stop the search.
void check_time() {
static TimePoint lastInfoTime = now();
int elapsed = Time.elapsed();
TimePoint tick = Limits.startTime + elapsed;
if (tick - lastInfoTime >= 1000)
{
lastInfoTime = tick;
dbg_print();
}
// An engine may not stop pondering until told so by the GUI
if (Limits.ponder)
return;
if ( (Limits.use_time_management() && elapsed > Time.maximum() - 10)
|| (Limits.movetime && elapsed >= Limits.movetime)
|| (Limits.nodes && Threads.nodes_searched() >= Limits.nodes))
Signals.stop = true;
}
} // namespace
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
/// that all (if any) unsearched PV lines are sent using a previous search score.
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
std::stringstream ss;
int elapsed = Time.elapsed() + 1;
const Search::RootMoveVector& rootMoves = pos.this_thread()->rootMoves;
size_t PVIdx = pos.this_thread()->PVIdx;
size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
uint64_t nodes_searched = Threads.nodes_searched();
for (size_t i = 0; i < multiPV; ++i)
{
bool updated = (i <= PVIdx);
if (depth == ONE_PLY && !updated)
continue;
Depth d = updated ? depth : depth - ONE_PLY;
Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY;
v = tb ? TB::Score : v;
if (ss.rdbuf()->in_avail()) // Not at first line
ss << "\n";
ss << "info"
<< " depth " << d / ONE_PLY
<< " seldepth " << pos.this_thread()->maxPly
<< " multipv " << i + 1
<< " score " << UCI::value(v);
if (!tb && i == PVIdx)
ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
ss << " nodes " << nodes_searched
<< " nps " << nodes_searched * 1000 / elapsed;
if (elapsed > 1000) // Earlier makes little sense
ss << " hashfull " << TT.hashfull();
ss << " tbhits " << TB::Hits
<< " time " << elapsed
<< " pv";
for (Move m : rootMoves[i].pv)
ss << " " << UCI::move(m, pos.is_chess960());
}
return ss.str();
}
/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
/// inserts the PV back into the TT. This makes sure the old PV moves are searched
/// first, even if the old TT entries have been overwritten.
void RootMove::insert_pv_in_tt(Position& pos) {
StateInfo state[MAX_PLY], *st = state;
bool ttHit;
for (Move m : pv)
{
assert(MoveList<LEGAL>(pos).contains(m));
TTEntry* tte = TT.probe(pos.key(), ttHit);
if (!ttHit || tte->move() != m) // Don't overwrite correct entries
tte->save(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE,
m, VALUE_NONE, TT.generation());
pos.do_move(m, *st++, pos.gives_check(m, CheckInfo(pos)));
}
for (size_t i = pv.size(); i > 0; )
pos.undo_move(pv[--i]);
}
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
/// before exiting the search, for instance in case we stop the search during a
/// fail high at root. We try hard to have a ponder move to return to the GUI,
/// otherwise in case of 'ponder on' we have nothing to think on.
bool RootMove::extract_ponder_from_tt(Position& pos)
{
StateInfo st;
bool ttHit;
assert(pv.size() == 1);
pos.do_move(pv[0], st, pos.gives_check(pv[0], CheckInfo(pos)));
TTEntry* tte = TT.probe(pos.key(), ttHit);
pos.undo_move(pv[0]);
if (ttHit)
{
Move m = tte->move(); // Local copy to be SMP safe
if (MoveList<LEGAL>(pos).contains(m))
return pv.push_back(m), true;
}
return false;
}