mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-01-07 16:05:22 +01:00
1620 lines
56 KiB
C++
1620 lines
56 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstring> // For std::memset
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
#include "evaluate.h"
|
|
#include "misc.h"
|
|
#include "movegen.h"
|
|
#include "movepick.h"
|
|
#include "search.h"
|
|
#include "timeman.h"
|
|
#include "thread.h"
|
|
#include "tt.h"
|
|
#include "uci.h"
|
|
#include "syzygy/tbprobe.h"
|
|
|
|
namespace Search {
|
|
|
|
SignalsType Signals;
|
|
LimitsType Limits;
|
|
StateStackPtr SetupStates;
|
|
}
|
|
|
|
namespace Tablebases {
|
|
|
|
int Cardinality;
|
|
uint64_t Hits;
|
|
bool RootInTB;
|
|
bool UseRule50;
|
|
Depth ProbeDepth;
|
|
Value Score;
|
|
}
|
|
|
|
namespace TB = Tablebases;
|
|
|
|
using std::string;
|
|
using Eval::evaluate;
|
|
using namespace Search;
|
|
|
|
namespace {
|
|
|
|
// Different node types, used as template parameter
|
|
enum NodeType { Root, PV, NonPV };
|
|
|
|
// Razoring and futility margin based on depth
|
|
const int razor_margin[4] = { 483, 570, 603, 554 };
|
|
Value futility_margin(Depth d) { return Value(200 * d); }
|
|
|
|
// Futility and reductions lookup tables, initialized at startup
|
|
int FutilityMoveCounts[2][16]; // [improving][depth]
|
|
Depth Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
|
|
|
|
template <bool PvNode> Depth reduction(bool i, Depth d, int mn) {
|
|
return Reductions[PvNode][i][std::min(d, 63 * ONE_PLY)][std::min(mn, 63)];
|
|
}
|
|
|
|
// Skill struct is used to implement strength limiting
|
|
struct Skill {
|
|
Skill(int l) : level(l) {}
|
|
bool enabled() const { return level < 20; }
|
|
bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
|
|
Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); }
|
|
Move pick_best(size_t multiPV);
|
|
|
|
int level;
|
|
Move best = MOVE_NONE;
|
|
};
|
|
|
|
// EasyMoveManager struct is used to detect a so called 'easy move'; when PV is
|
|
// stable across multiple search iterations we can fast return the best move.
|
|
struct EasyMoveManager {
|
|
|
|
void clear() {
|
|
stableCnt = 0;
|
|
expectedPosKey = 0;
|
|
pv[0] = pv[1] = pv[2] = MOVE_NONE;
|
|
}
|
|
|
|
Move get(Key key) const {
|
|
return expectedPosKey == key ? pv[2] : MOVE_NONE;
|
|
}
|
|
|
|
void update(Position& pos, const std::vector<Move>& newPv) {
|
|
|
|
assert(newPv.size() >= 3);
|
|
|
|
// Keep track of how many times in a row 3rd ply remains stable
|
|
stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0;
|
|
|
|
if (!std::equal(newPv.begin(), newPv.begin() + 3, pv))
|
|
{
|
|
std::copy(newPv.begin(), newPv.begin() + 3, pv);
|
|
|
|
StateInfo st[2];
|
|
pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0], CheckInfo(pos)));
|
|
pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1], CheckInfo(pos)));
|
|
expectedPosKey = pos.key();
|
|
pos.undo_move(newPv[1]);
|
|
pos.undo_move(newPv[0]);
|
|
}
|
|
}
|
|
|
|
int stableCnt;
|
|
Key expectedPosKey;
|
|
Move pv[3];
|
|
};
|
|
|
|
EasyMoveManager EasyMove;
|
|
Value DrawValue[COLOR_NB];
|
|
CounterMovesHistoryStats CounterMovesHistory;
|
|
|
|
template <NodeType NT>
|
|
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
|
|
|
|
template <NodeType NT, bool InCheck>
|
|
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
|
|
|
|
Value value_to_tt(Value v, int ply);
|
|
Value value_from_tt(Value v, int ply);
|
|
void update_pv(Move* pv, Move move, Move* childPv);
|
|
void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt);
|
|
void check_time();
|
|
|
|
} // namespace
|
|
|
|
|
|
/// Search::init() is called during startup to initialize various lookup tables
|
|
|
|
void Search::init() {
|
|
|
|
const double K[][2] = {{ 0.799, 2.281 }, { 0.484, 3.023 }};
|
|
|
|
for (int pv = 0; pv <= 1; ++pv)
|
|
for (int imp = 0; imp <= 1; ++imp)
|
|
for (int d = 1; d < 64; ++d)
|
|
for (int mc = 1; mc < 64; ++mc)
|
|
{
|
|
double r = K[pv][0] + log(d) * log(mc) / K[pv][1];
|
|
|
|
if (r >= 1.5)
|
|
Reductions[pv][imp][d][mc] = int(r) * ONE_PLY;
|
|
|
|
// Increase reduction when eval is not improving
|
|
if (!pv && !imp && Reductions[pv][imp][d][mc] >= 2 * ONE_PLY)
|
|
Reductions[pv][imp][d][mc] += ONE_PLY;
|
|
}
|
|
|
|
for (int d = 0; d < 16; ++d)
|
|
{
|
|
FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8));
|
|
FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8));
|
|
}
|
|
}
|
|
|
|
|
|
/// Search::clear() resets to zero search state, to obtain reproducible results
|
|
|
|
void Search::clear() {
|
|
|
|
TT.clear();
|
|
CounterMovesHistory.clear();
|
|
|
|
for (Thread* th : Threads)
|
|
{
|
|
th->history.clear();
|
|
th->counterMoves.clear();
|
|
}
|
|
}
|
|
|
|
|
|
/// Search::perft() is our utility to verify move generation. All the leaf nodes
|
|
/// up to the given depth are generated and counted and the sum returned.
|
|
template<bool Root>
|
|
uint64_t Search::perft(Position& pos, Depth depth) {
|
|
|
|
StateInfo st;
|
|
uint64_t cnt, nodes = 0;
|
|
CheckInfo ci(pos);
|
|
const bool leaf = (depth == 2 * ONE_PLY);
|
|
|
|
for (const auto& m : MoveList<LEGAL>(pos))
|
|
{
|
|
if (Root && depth <= ONE_PLY)
|
|
cnt = 1, nodes++;
|
|
else
|
|
{
|
|
pos.do_move(m, st, pos.gives_check(m, ci));
|
|
cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
|
|
nodes += cnt;
|
|
pos.undo_move(m);
|
|
}
|
|
if (Root)
|
|
sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
|
|
}
|
|
return nodes;
|
|
}
|
|
|
|
template uint64_t Search::perft<true>(Position&, Depth);
|
|
|
|
|
|
/// MainThread::search() is called by the main thread when the program receives
|
|
/// the UCI 'go' command. It searches from root position and at the end prints
|
|
/// the "bestmove" to output.
|
|
|
|
void MainThread::search() {
|
|
|
|
Color us = rootPos.side_to_move();
|
|
Time.init(Limits, us, rootPos.game_ply());
|
|
|
|
int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns
|
|
DrawValue[ us] = VALUE_DRAW - Value(contempt);
|
|
DrawValue[~us] = VALUE_DRAW + Value(contempt);
|
|
|
|
TB::Hits = 0;
|
|
TB::RootInTB = false;
|
|
TB::UseRule50 = Options["Syzygy50MoveRule"];
|
|
TB::ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY;
|
|
TB::Cardinality = Options["SyzygyProbeLimit"];
|
|
|
|
// Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality
|
|
if (TB::Cardinality > TB::MaxCardinality)
|
|
{
|
|
TB::Cardinality = TB::MaxCardinality;
|
|
TB::ProbeDepth = DEPTH_ZERO;
|
|
}
|
|
|
|
if (rootMoves.empty())
|
|
{
|
|
rootMoves.push_back(RootMove(MOVE_NONE));
|
|
sync_cout << "info depth 0 score "
|
|
<< UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
|
|
<< sync_endl;
|
|
}
|
|
else
|
|
{
|
|
if (TB::Cardinality >= rootPos.count<ALL_PIECES>(WHITE)
|
|
+ rootPos.count<ALL_PIECES>(BLACK))
|
|
{
|
|
// If the current root position is in the tablebases then RootMoves
|
|
// contains only moves that preserve the draw or win.
|
|
TB::RootInTB = Tablebases::root_probe(rootPos, rootMoves, TB::Score);
|
|
|
|
if (TB::RootInTB)
|
|
TB::Cardinality = 0; // Do not probe tablebases during the search
|
|
|
|
else // If DTZ tables are missing, use WDL tables as a fallback
|
|
{
|
|
// Filter out moves that do not preserve a draw or win
|
|
TB::RootInTB = Tablebases::root_probe_wdl(rootPos, rootMoves, TB::Score);
|
|
|
|
// Only probe during search if winning
|
|
if (TB::Score <= VALUE_DRAW)
|
|
TB::Cardinality = 0;
|
|
}
|
|
|
|
if (TB::RootInTB)
|
|
{
|
|
TB::Hits = rootMoves.size();
|
|
|
|
if (!TB::UseRule50)
|
|
TB::Score = TB::Score > VALUE_DRAW ? VALUE_MATE - MAX_PLY - 1
|
|
: TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1
|
|
: VALUE_DRAW;
|
|
}
|
|
}
|
|
|
|
for (Thread* th : Threads)
|
|
{
|
|
th->maxPly = 0;
|
|
th->rootDepth = DEPTH_ZERO;
|
|
if (th != this)
|
|
{
|
|
th->rootPos = Position(rootPos, th);
|
|
th->rootMoves = rootMoves;
|
|
th->start_searching();
|
|
}
|
|
}
|
|
|
|
Thread::search(); // Let's start searching!
|
|
}
|
|
|
|
// When playing in 'nodes as time' mode, subtract the searched nodes from
|
|
// the available ones before to exit.
|
|
if (Limits.npmsec)
|
|
Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
|
|
|
|
// When we reach the maximum depth, we can arrive here without a raise of
|
|
// Signals.stop. However, if we are pondering or in an infinite search,
|
|
// the UCI protocol states that we shouldn't print the best move before the
|
|
// GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
|
|
// until the GUI sends one of those commands (which also raises Signals.stop).
|
|
if (!Signals.stop && (Limits.ponder || Limits.infinite))
|
|
{
|
|
Signals.stopOnPonderhit = true;
|
|
wait(Signals.stop);
|
|
}
|
|
|
|
// Stop the threads if not already stopped
|
|
Signals.stop = true;
|
|
|
|
// Wait until all threads have finished
|
|
for (Thread* th : Threads)
|
|
if (th != this)
|
|
th->wait_for_search_finished();
|
|
|
|
// Check if there are threads with a better score than main thread
|
|
Thread* bestThread = this;
|
|
if ( !this->easyMovePlayed
|
|
&& Options["MultiPV"] == 1
|
|
&& !Skill(Options["Skill Level"]).enabled())
|
|
{
|
|
for (Thread* th : Threads)
|
|
if ( th->completedDepth > bestThread->completedDepth
|
|
&& th->rootMoves[0].score > bestThread->rootMoves[0].score)
|
|
bestThread = th;
|
|
}
|
|
|
|
// Send new PV when needed
|
|
if (bestThread != this)
|
|
sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
|
|
|
|
sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
|
|
|
|
if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
|
|
std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
|
|
|
|
std::cout << sync_endl;
|
|
}
|
|
|
|
|
|
// Thread::search() is the main iterative deepening loop. It calls search()
|
|
// repeatedly with increasing depth until the allocated thinking time has been
|
|
// consumed, user stops the search, or the maximum search depth is reached.
|
|
|
|
void Thread::search() {
|
|
|
|
Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2)
|
|
Value bestValue, alpha, beta, delta;
|
|
Move easyMove = MOVE_NONE;
|
|
MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
|
|
|
|
std::memset(ss-2, 0, 5 * sizeof(Stack));
|
|
|
|
bestValue = delta = alpha = -VALUE_INFINITE;
|
|
beta = VALUE_INFINITE;
|
|
completedDepth = DEPTH_ZERO;
|
|
|
|
if (mainThread)
|
|
{
|
|
easyMove = EasyMove.get(rootPos.key());
|
|
EasyMove.clear();
|
|
mainThread->easyMovePlayed = mainThread->failedLow = false;
|
|
mainThread->bestMoveChanges = 0;
|
|
TT.new_search();
|
|
}
|
|
|
|
size_t multiPV = Options["MultiPV"];
|
|
Skill skill(Options["Skill Level"]);
|
|
|
|
// When playing with strength handicap enable MultiPV search that we will
|
|
// use behind the scenes to retrieve a set of possible moves.
|
|
if (skill.enabled())
|
|
multiPV = std::max(multiPV, (size_t)4);
|
|
|
|
multiPV = std::min(multiPV, rootMoves.size());
|
|
|
|
// Iterative deepening loop until requested to stop or target depth reached
|
|
while (++rootDepth < DEPTH_MAX && !Signals.stop && (!Limits.depth || rootDepth <= Limits.depth))
|
|
{
|
|
// Set up the new depth for the helper threads skipping in average each
|
|
// 2nd ply (using a half density map similar to a Hadamard matrix).
|
|
if (!mainThread)
|
|
{
|
|
int d = rootDepth + rootPos.game_ply();
|
|
|
|
if (idx <= 6 || idx > 24)
|
|
{
|
|
if (((d + idx) >> (msb(idx + 1) - 1)) % 2)
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
// Table of values of 6 bits with 3 of them set
|
|
static const int HalfDensityMap[] = {
|
|
0x07, 0x0b, 0x0d, 0x0e, 0x13, 0x16, 0x19, 0x1a, 0x1c,
|
|
0x23, 0x25, 0x26, 0x29, 0x2c, 0x31, 0x32, 0x34, 0x38
|
|
};
|
|
|
|
if ((HalfDensityMap[idx - 7] >> (d % 6)) & 1)
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Age out PV variability metric
|
|
if (mainThread)
|
|
mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false;
|
|
|
|
// Save the last iteration's scores before first PV line is searched and
|
|
// all the move scores except the (new) PV are set to -VALUE_INFINITE.
|
|
for (RootMove& rm : rootMoves)
|
|
rm.previousScore = rm.score;
|
|
|
|
// MultiPV loop. We perform a full root search for each PV line
|
|
for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx)
|
|
{
|
|
// Reset aspiration window starting size
|
|
if (rootDepth >= 5 * ONE_PLY)
|
|
{
|
|
delta = Value(18);
|
|
alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE);
|
|
beta = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE);
|
|
}
|
|
|
|
// Start with a small aspiration window and, in the case of a fail
|
|
// high/low, re-search with a bigger window until we're not failing
|
|
// high/low anymore.
|
|
while (true)
|
|
{
|
|
bestValue = ::search<Root>(rootPos, ss, alpha, beta, rootDepth, false);
|
|
|
|
// Bring the best move to the front. It is critical that sorting
|
|
// is done with a stable algorithm because all the values but the
|
|
// first and eventually the new best one are set to -VALUE_INFINITE
|
|
// and we want to keep the same order for all the moves except the
|
|
// new PV that goes to the front. Note that in case of MultiPV
|
|
// search the already searched PV lines are preserved.
|
|
std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end());
|
|
|
|
// Write PV back to transposition table in case the relevant
|
|
// entries have been overwritten during the search.
|
|
for (size_t i = 0; i <= PVIdx; ++i)
|
|
rootMoves[i].insert_pv_in_tt(rootPos);
|
|
|
|
// If search has been stopped break immediately. Sorting and
|
|
// writing PV back to TT is safe because RootMoves is still
|
|
// valid, although it refers to previous iteration.
|
|
if (Signals.stop)
|
|
break;
|
|
|
|
// When failing high/low give some update (without cluttering
|
|
// the UI) before a re-search.
|
|
if ( mainThread
|
|
&& multiPV == 1
|
|
&& (bestValue <= alpha || bestValue >= beta)
|
|
&& Time.elapsed() > 3000)
|
|
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
|
|
|
|
// In case of failing low/high increase aspiration window and
|
|
// re-search, otherwise exit the loop.
|
|
if (bestValue <= alpha)
|
|
{
|
|
beta = (alpha + beta) / 2;
|
|
alpha = std::max(bestValue - delta, -VALUE_INFINITE);
|
|
|
|
if (mainThread)
|
|
{
|
|
mainThread->failedLow = true;
|
|
Signals.stopOnPonderhit = false;
|
|
}
|
|
}
|
|
else if (bestValue >= beta)
|
|
{
|
|
alpha = (alpha + beta) / 2;
|
|
beta = std::min(bestValue + delta, VALUE_INFINITE);
|
|
}
|
|
else
|
|
break;
|
|
|
|
delta += delta / 4 + 5;
|
|
|
|
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
|
|
}
|
|
|
|
// Sort the PV lines searched so far and update the GUI
|
|
std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1);
|
|
|
|
if (!mainThread)
|
|
break;
|
|
|
|
if (Signals.stop)
|
|
sync_cout << "info nodes " << Threads.nodes_searched()
|
|
<< " time " << Time.elapsed() << sync_endl;
|
|
|
|
else if (PVIdx + 1 == multiPV || Time.elapsed() > 3000)
|
|
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
|
|
}
|
|
|
|
if (!Signals.stop)
|
|
completedDepth = rootDepth;
|
|
|
|
if (!mainThread)
|
|
continue;
|
|
|
|
// If skill level is enabled and time is up, pick a sub-optimal best move
|
|
if (skill.enabled() && skill.time_to_pick(rootDepth))
|
|
skill.pick_best(multiPV);
|
|
|
|
// Have we found a "mate in x"?
|
|
if ( Limits.mate
|
|
&& bestValue >= VALUE_MATE_IN_MAX_PLY
|
|
&& VALUE_MATE - bestValue <= 2 * Limits.mate)
|
|
Signals.stop = true;
|
|
|
|
// Do we have time for the next iteration? Can we stop searching now?
|
|
if (Limits.use_time_management())
|
|
{
|
|
if (!Signals.stop && !Signals.stopOnPonderhit)
|
|
{
|
|
// Take some extra time if the best move has changed
|
|
if (rootDepth > 4 * ONE_PLY && multiPV == 1)
|
|
Time.pv_instability(mainThread->bestMoveChanges);
|
|
|
|
// Stop the search if only one legal move is available or all
|
|
// of the available time has been used or we matched an easyMove
|
|
// from the previous search and just did a fast verification.
|
|
if ( rootMoves.size() == 1
|
|
|| Time.elapsed() > Time.available() * (mainThread->failedLow ? 641 : 315) / 640
|
|
|| (mainThread->easyMovePlayed = ( rootMoves[0].pv[0] == easyMove
|
|
&& mainThread->bestMoveChanges < 0.03
|
|
&& Time.elapsed() > Time.available() / 8)))
|
|
{
|
|
// If we are allowed to ponder do not stop the search now but
|
|
// keep pondering until the GUI sends "ponderhit" or "stop".
|
|
if (Limits.ponder)
|
|
Signals.stopOnPonderhit = true;
|
|
else
|
|
Signals.stop = true;
|
|
}
|
|
}
|
|
|
|
if (rootMoves[0].pv.size() >= 3)
|
|
EasyMove.update(rootPos, rootMoves[0].pv);
|
|
else
|
|
EasyMove.clear();
|
|
}
|
|
}
|
|
|
|
if (!mainThread)
|
|
return;
|
|
|
|
// Clear any candidate easy move that wasn't stable for the last search
|
|
// iterations; the second condition prevents consecutive fast moves.
|
|
if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed)
|
|
EasyMove.clear();
|
|
|
|
// If skill level is enabled, swap best PV line with the sub-optimal one
|
|
if (skill.enabled())
|
|
std::swap(rootMoves[0], *std::find(rootMoves.begin(),
|
|
rootMoves.end(), skill.best_move(multiPV)));
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
// search<>() is the main search function for both PV and non-PV nodes
|
|
|
|
template <NodeType NT>
|
|
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
|
|
|
|
const bool RootNode = NT == Root;
|
|
const bool PvNode = NT == PV || NT == Root;
|
|
|
|
assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
|
|
assert(PvNode || (alpha == beta - 1));
|
|
assert(DEPTH_ZERO < depth && depth < DEPTH_MAX);
|
|
|
|
Move pv[MAX_PLY+1], quietsSearched[64];
|
|
StateInfo st;
|
|
TTEntry* tte;
|
|
Key posKey;
|
|
Move ttMove, move, excludedMove, bestMove;
|
|
Depth extension, newDepth, predictedDepth;
|
|
Value bestValue, value, ttValue, eval, nullValue, futilityValue;
|
|
bool ttHit, inCheck, givesCheck, singularExtensionNode, improving;
|
|
bool captureOrPromotion, doFullDepthSearch;
|
|
int moveCount, quietCount;
|
|
|
|
// Step 1. Initialize node
|
|
Thread* thisThread = pos.this_thread();
|
|
inCheck = pos.checkers();
|
|
moveCount = quietCount = ss->moveCount = 0;
|
|
bestValue = -VALUE_INFINITE;
|
|
ss->ply = (ss-1)->ply + 1;
|
|
|
|
// Check for available remaining time
|
|
if (thisThread->resetCalls.load(std::memory_order_relaxed))
|
|
{
|
|
thisThread->resetCalls = false;
|
|
thisThread->callsCnt = 0;
|
|
}
|
|
if (++thisThread->callsCnt > 4096)
|
|
{
|
|
for (Thread* th : Threads)
|
|
th->resetCalls = true;
|
|
|
|
check_time();
|
|
}
|
|
|
|
// Used to send selDepth info to GUI
|
|
if (PvNode && thisThread->maxPly < ss->ply)
|
|
thisThread->maxPly = ss->ply;
|
|
|
|
if (!RootNode)
|
|
{
|
|
// Step 2. Check for aborted search and immediate draw
|
|
if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY)
|
|
return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos)
|
|
: DrawValue[pos.side_to_move()];
|
|
|
|
// Step 3. Mate distance pruning. Even if we mate at the next move our score
|
|
// would be at best mate_in(ss->ply+1), but if alpha is already bigger because
|
|
// a shorter mate was found upward in the tree then there is no need to search
|
|
// because we will never beat the current alpha. Same logic but with reversed
|
|
// signs applies also in the opposite condition of being mated instead of giving
|
|
// mate. In this case return a fail-high score.
|
|
alpha = std::max(mated_in(ss->ply), alpha);
|
|
beta = std::min(mate_in(ss->ply+1), beta);
|
|
if (alpha >= beta)
|
|
return alpha;
|
|
}
|
|
|
|
assert(0 <= ss->ply && ss->ply < MAX_PLY);
|
|
|
|
ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
|
|
(ss+1)->skipEarlyPruning = false;
|
|
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
|
|
|
|
// Step 4. Transposition table lookup. We don't want the score of a partial
|
|
// search to overwrite a previous full search TT value, so we use a different
|
|
// position key in case of an excluded move.
|
|
excludedMove = ss->excludedMove;
|
|
posKey = excludedMove ? pos.exclusion_key() : pos.key();
|
|
tte = TT.probe(posKey, ttHit);
|
|
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
|
|
ttMove = RootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0]
|
|
: ttHit ? tte->move() : MOVE_NONE;
|
|
|
|
// At non-PV nodes we check for an early TT cutoff
|
|
if ( !PvNode
|
|
&& ttHit
|
|
&& tte->depth() >= depth
|
|
&& ttValue != VALUE_NONE // Possible in case of TT access race
|
|
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
|
|
: (tte->bound() & BOUND_UPPER)))
|
|
{
|
|
ss->currentMove = ttMove; // Can be MOVE_NONE
|
|
|
|
// If ttMove is quiet, update killers, history, counter move on TT hit
|
|
if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove))
|
|
update_stats(pos, ss, ttMove, depth, nullptr, 0);
|
|
|
|
return ttValue;
|
|
}
|
|
|
|
// Step 4a. Tablebase probe
|
|
if (!RootNode && TB::Cardinality)
|
|
{
|
|
int piecesCnt = pos.count<ALL_PIECES>(WHITE) + pos.count<ALL_PIECES>(BLACK);
|
|
|
|
if ( piecesCnt <= TB::Cardinality
|
|
&& (piecesCnt < TB::Cardinality || depth >= TB::ProbeDepth)
|
|
&& pos.rule50_count() == 0)
|
|
{
|
|
int found, v = Tablebases::probe_wdl(pos, &found);
|
|
|
|
if (found)
|
|
{
|
|
TB::Hits++;
|
|
|
|
int drawScore = TB::UseRule50 ? 1 : 0;
|
|
|
|
value = v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply
|
|
: v > drawScore ? VALUE_MATE - MAX_PLY - ss->ply
|
|
: VALUE_DRAW + 2 * v * drawScore;
|
|
|
|
tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT,
|
|
std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY),
|
|
MOVE_NONE, VALUE_NONE, TT.generation());
|
|
|
|
return value;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step 5. Evaluate the position statically
|
|
if (inCheck)
|
|
{
|
|
ss->staticEval = eval = VALUE_NONE;
|
|
goto moves_loop;
|
|
}
|
|
|
|
else if (ttHit)
|
|
{
|
|
// Never assume anything on values stored in TT
|
|
if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE)
|
|
eval = ss->staticEval = evaluate(pos);
|
|
|
|
// Can ttValue be used as a better position evaluation?
|
|
if (ttValue != VALUE_NONE)
|
|
if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))
|
|
eval = ttValue;
|
|
}
|
|
else
|
|
{
|
|
eval = ss->staticEval =
|
|
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
|
|
: -(ss-1)->staticEval + 2 * Eval::Tempo;
|
|
|
|
tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
|
|
ss->staticEval, TT.generation());
|
|
}
|
|
|
|
if (ss->skipEarlyPruning)
|
|
goto moves_loop;
|
|
|
|
// Step 6. Razoring (skipped when in check)
|
|
if ( !PvNode
|
|
&& depth < 4 * ONE_PLY
|
|
&& eval + razor_margin[depth] <= alpha
|
|
&& ttMove == MOVE_NONE)
|
|
{
|
|
if ( depth <= ONE_PLY
|
|
&& eval + razor_margin[3 * ONE_PLY] <= alpha)
|
|
return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO);
|
|
|
|
Value ralpha = alpha - razor_margin[depth];
|
|
Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO);
|
|
if (v <= ralpha)
|
|
return v;
|
|
}
|
|
|
|
// Step 7. Futility pruning: child node (skipped when in check)
|
|
if ( !RootNode
|
|
&& depth < 7 * ONE_PLY
|
|
&& eval - futility_margin(depth) >= beta
|
|
&& eval < VALUE_KNOWN_WIN // Do not return unproven wins
|
|
&& pos.non_pawn_material(pos.side_to_move()))
|
|
return eval - futility_margin(depth);
|
|
|
|
// Step 8. Null move search with verification search (is omitted in PV nodes)
|
|
if ( !PvNode
|
|
&& depth >= 2 * ONE_PLY
|
|
&& eval >= beta
|
|
&& pos.non_pawn_material(pos.side_to_move()))
|
|
{
|
|
ss->currentMove = MOVE_NULL;
|
|
|
|
assert(eval - beta >= 0);
|
|
|
|
// Null move dynamic reduction based on depth and value
|
|
Depth R = ((823 + 67 * depth) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY;
|
|
|
|
pos.do_null_move(st);
|
|
(ss+1)->skipEarlyPruning = true;
|
|
nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO)
|
|
: - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
|
|
(ss+1)->skipEarlyPruning = false;
|
|
pos.undo_null_move();
|
|
|
|
if (nullValue >= beta)
|
|
{
|
|
// Do not return unproven mate scores
|
|
if (nullValue >= VALUE_MATE_IN_MAX_PLY)
|
|
nullValue = beta;
|
|
|
|
if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN)
|
|
return nullValue;
|
|
|
|
// Do verification search at high depths
|
|
ss->skipEarlyPruning = true;
|
|
Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO)
|
|
: search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
|
|
ss->skipEarlyPruning = false;
|
|
|
|
if (v >= beta)
|
|
return nullValue;
|
|
}
|
|
}
|
|
|
|
// Step 9. ProbCut (skipped when in check)
|
|
// If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
|
|
// and a reduced search returns a value much above beta, we can (almost)
|
|
// safely prune the previous move.
|
|
if ( !PvNode
|
|
&& depth >= 5 * ONE_PLY
|
|
&& abs(beta) < VALUE_MATE_IN_MAX_PLY)
|
|
{
|
|
Value rbeta = std::min(beta + 200, VALUE_INFINITE);
|
|
Depth rdepth = depth - 4 * ONE_PLY;
|
|
|
|
assert(rdepth >= ONE_PLY);
|
|
assert((ss-1)->currentMove != MOVE_NONE);
|
|
assert((ss-1)->currentMove != MOVE_NULL);
|
|
|
|
MovePicker mp(pos, ttMove, thisThread->history, PieceValue[MG][pos.captured_piece_type()]);
|
|
CheckInfo ci(pos);
|
|
|
|
while ((move = mp.next_move()) != MOVE_NONE)
|
|
if (pos.legal(move, ci.pinned))
|
|
{
|
|
ss->currentMove = move;
|
|
pos.do_move(move, st, pos.gives_check(move, ci));
|
|
value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode);
|
|
pos.undo_move(move);
|
|
if (value >= rbeta)
|
|
return value;
|
|
}
|
|
}
|
|
|
|
// Step 10. Internal iterative deepening (skipped when in check)
|
|
if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
|
|
&& !ttMove
|
|
&& (PvNode || ss->staticEval + 256 >= beta))
|
|
{
|
|
Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4);
|
|
ss->skipEarlyPruning = true;
|
|
search<PvNode ? PV : NonPV>(pos, ss, alpha, beta, d, true);
|
|
ss->skipEarlyPruning = false;
|
|
|
|
tte = TT.probe(posKey, ttHit);
|
|
ttMove = ttHit ? tte->move() : MOVE_NONE;
|
|
}
|
|
|
|
moves_loop: // When in check search starts from here
|
|
|
|
Square prevSq = to_sq((ss-1)->currentMove);
|
|
Move cm = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
|
|
const CounterMovesStats& cmh = CounterMovesHistory[pos.piece_on(prevSq)][prevSq];
|
|
|
|
MovePicker mp(pos, ttMove, depth, thisThread->history, cmh, cm, ss);
|
|
CheckInfo ci(pos);
|
|
value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
|
|
improving = ss->staticEval >= (ss-2)->staticEval
|
|
|| ss->staticEval == VALUE_NONE
|
|
||(ss-2)->staticEval == VALUE_NONE;
|
|
|
|
singularExtensionNode = !RootNode
|
|
&& depth >= 8 * ONE_PLY
|
|
&& ttMove != MOVE_NONE
|
|
/* && ttValue != VALUE_NONE Already implicit in the next condition */
|
|
&& abs(ttValue) < VALUE_KNOWN_WIN
|
|
&& !excludedMove // Recursive singular search is not allowed
|
|
&& (tte->bound() & BOUND_LOWER)
|
|
&& tte->depth() >= depth - 3 * ONE_PLY;
|
|
|
|
// Step 11. Loop through moves
|
|
// Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
|
|
while ((move = mp.next_move()) != MOVE_NONE)
|
|
{
|
|
assert(is_ok(move));
|
|
|
|
if (move == excludedMove)
|
|
continue;
|
|
|
|
// At root obey the "searchmoves" option and skip moves not listed in Root
|
|
// Move List. As a consequence any illegal move is also skipped. In MultiPV
|
|
// mode we also skip PV moves which have been already searched.
|
|
if (RootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx,
|
|
thisThread->rootMoves.end(), move))
|
|
continue;
|
|
|
|
ss->moveCount = ++moveCount;
|
|
|
|
if (RootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
|
|
sync_cout << "info depth " << depth / ONE_PLY
|
|
<< " currmove " << UCI::move(move, pos.is_chess960())
|
|
<< " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl;
|
|
|
|
if (PvNode)
|
|
(ss+1)->pv = nullptr;
|
|
|
|
extension = DEPTH_ZERO;
|
|
captureOrPromotion = pos.capture_or_promotion(move);
|
|
|
|
givesCheck = type_of(move) == NORMAL && !ci.dcCandidates
|
|
? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
|
|
: pos.gives_check(move, ci);
|
|
|
|
// Step 12. Extend checks
|
|
if (givesCheck && pos.see_sign(move) >= VALUE_ZERO)
|
|
extension = ONE_PLY;
|
|
|
|
// Singular extension search. If all moves but one fail low on a search of
|
|
// (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
|
|
// is singular and should be extended. To verify this we do a reduced search
|
|
// on all the other moves but the ttMove and if the result is lower than
|
|
// ttValue minus a margin then we extend the ttMove.
|
|
if ( singularExtensionNode
|
|
&& move == ttMove
|
|
&& !extension
|
|
&& pos.legal(move, ci.pinned))
|
|
{
|
|
Value rBeta = ttValue - 2 * depth / ONE_PLY;
|
|
ss->excludedMove = move;
|
|
ss->skipEarlyPruning = true;
|
|
value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode);
|
|
ss->skipEarlyPruning = false;
|
|
ss->excludedMove = MOVE_NONE;
|
|
|
|
if (value < rBeta)
|
|
extension = ONE_PLY;
|
|
}
|
|
|
|
// Update the current move (this must be done after singular extension search)
|
|
newDepth = depth - ONE_PLY + extension;
|
|
|
|
// Step 13. Pruning at shallow depth
|
|
if ( !RootNode
|
|
&& !captureOrPromotion
|
|
&& !inCheck
|
|
&& !givesCheck
|
|
&& !pos.advanced_pawn_push(move)
|
|
&& bestValue > VALUE_MATED_IN_MAX_PLY)
|
|
{
|
|
// Move count based pruning
|
|
if ( depth < 16 * ONE_PLY
|
|
&& moveCount >= FutilityMoveCounts[improving][depth])
|
|
continue;
|
|
|
|
// History based pruning
|
|
if ( depth <= 4 * ONE_PLY
|
|
&& move != ss->killers[0]
|
|
&& thisThread->history[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO
|
|
&& cmh[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO)
|
|
continue;
|
|
|
|
predictedDepth = newDepth - reduction<PvNode>(improving, depth, moveCount);
|
|
|
|
// Futility pruning: parent node
|
|
if (predictedDepth < 7 * ONE_PLY)
|
|
{
|
|
futilityValue = ss->staticEval + futility_margin(predictedDepth) + 256;
|
|
|
|
if (futilityValue <= alpha)
|
|
{
|
|
bestValue = std::max(bestValue, futilityValue);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Prune moves with negative SEE at low depths
|
|
if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO)
|
|
continue;
|
|
}
|
|
|
|
// Speculative prefetch as early as possible
|
|
prefetch(TT.first_entry(pos.key_after(move)));
|
|
|
|
// Check for legality just before making the move
|
|
if (!RootNode && !pos.legal(move, ci.pinned))
|
|
{
|
|
ss->moveCount = --moveCount;
|
|
continue;
|
|
}
|
|
|
|
ss->currentMove = move;
|
|
|
|
// Step 14. Make the move
|
|
pos.do_move(move, st, givesCheck);
|
|
|
|
// Step 15. Reduced depth search (LMR). If the move fails high it will be
|
|
// re-searched at full depth.
|
|
if ( depth >= 3 * ONE_PLY
|
|
&& moveCount > 1
|
|
&& !captureOrPromotion)
|
|
{
|
|
Depth r = reduction<PvNode>(improving, depth, moveCount);
|
|
|
|
// Increase reduction for cut nodes and moves with a bad history
|
|
if ( (!PvNode && cutNode)
|
|
|| ( thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] < VALUE_ZERO
|
|
&& cmh[pos.piece_on(to_sq(move))][to_sq(move)] <= VALUE_ZERO))
|
|
r += ONE_PLY;
|
|
|
|
// Decrease reduction for moves with a good history
|
|
if ( thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] > VALUE_ZERO
|
|
&& cmh[pos.piece_on(to_sq(move))][to_sq(move)] > VALUE_ZERO)
|
|
r = std::max(DEPTH_ZERO, r - ONE_PLY);
|
|
|
|
// Decrease reduction for moves that escape a capture
|
|
if ( r
|
|
&& type_of(move) == NORMAL
|
|
&& type_of(pos.piece_on(to_sq(move))) != PAWN
|
|
&& pos.see(make_move(to_sq(move), from_sq(move))) < VALUE_ZERO)
|
|
r = std::max(DEPTH_ZERO, r - ONE_PLY);
|
|
|
|
Depth d = std::max(newDepth - r, ONE_PLY);
|
|
|
|
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
|
|
|
|
doFullDepthSearch = (value > alpha && r != DEPTH_ZERO);
|
|
}
|
|
else
|
|
doFullDepthSearch = !PvNode || moveCount > 1;
|
|
|
|
// Step 16. Full depth search, when LMR is skipped or fails high
|
|
if (doFullDepthSearch)
|
|
value = newDepth < ONE_PLY ?
|
|
givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
|
|
: -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
|
|
: - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
|
|
|
|
// For PV nodes only, do a full PV search on the first move or after a fail
|
|
// high (in the latter case search only if value < beta), otherwise let the
|
|
// parent node fail low with value <= alpha and to try another move.
|
|
if (PvNode && (moveCount == 1 || (value > alpha && (RootNode || value < beta))))
|
|
{
|
|
(ss+1)->pv = pv;
|
|
(ss+1)->pv[0] = MOVE_NONE;
|
|
|
|
value = newDepth < ONE_PLY ?
|
|
givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
|
|
: -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
|
|
: - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
|
|
}
|
|
|
|
// Step 17. Undo move
|
|
pos.undo_move(move);
|
|
|
|
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
|
|
|
// Step 18. Check for new best move
|
|
// Finished searching the move. If a stop occurred, the return value of
|
|
// the search cannot be trusted, and we return immediately without
|
|
// updating best move, PV and TT.
|
|
if (Signals.stop.load(std::memory_order_relaxed))
|
|
return VALUE_ZERO;
|
|
|
|
if (RootNode)
|
|
{
|
|
RootMove& rm = *std::find(thisThread->rootMoves.begin(),
|
|
thisThread->rootMoves.end(), move);
|
|
|
|
// PV move or new best move ?
|
|
if (moveCount == 1 || value > alpha)
|
|
{
|
|
rm.score = value;
|
|
rm.pv.resize(1);
|
|
|
|
assert((ss+1)->pv);
|
|
|
|
for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
|
|
rm.pv.push_back(*m);
|
|
|
|
// We record how often the best move has been changed in each
|
|
// iteration. This information is used for time management: When
|
|
// the best move changes frequently, we allocate some more time.
|
|
if (moveCount > 1 && thisThread == Threads.main())
|
|
++static_cast<MainThread*>(thisThread)->bestMoveChanges;
|
|
}
|
|
else
|
|
// All other moves but the PV are set to the lowest value: this is
|
|
// not a problem when sorting because the sort is stable and the
|
|
// move position in the list is preserved - just the PV is pushed up.
|
|
rm.score = -VALUE_INFINITE;
|
|
}
|
|
|
|
if (value > bestValue)
|
|
{
|
|
bestValue = value;
|
|
|
|
if (value > alpha)
|
|
{
|
|
// If there is an easy move for this position, clear it if unstable
|
|
if ( PvNode
|
|
&& thisThread == Threads.main()
|
|
&& EasyMove.get(pos.key())
|
|
&& (move != EasyMove.get(pos.key()) || moveCount > 1))
|
|
EasyMove.clear();
|
|
|
|
bestMove = move;
|
|
|
|
if (PvNode && !RootNode) // Update pv even in fail-high case
|
|
update_pv(ss->pv, move, (ss+1)->pv);
|
|
|
|
if (PvNode && value < beta) // Update alpha! Always alpha < beta
|
|
alpha = value;
|
|
else
|
|
{
|
|
assert(value >= beta); // Fail high
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!captureOrPromotion && move != bestMove && quietCount < 64)
|
|
quietsSearched[quietCount++] = move;
|
|
}
|
|
|
|
// Following condition would detect a stop only after move loop has been
|
|
// completed. But in this case bestValue is valid because we have fully
|
|
// searched our subtree, and we can anyhow save the result in TT.
|
|
/*
|
|
if (Signals.stop)
|
|
return VALUE_DRAW;
|
|
*/
|
|
|
|
// Step 20. Check for mate and stalemate
|
|
// All legal moves have been searched and if there are no legal moves, it
|
|
// must be mate or stalemate. If we are in a singular extension search then
|
|
// return a fail low score.
|
|
if (!moveCount)
|
|
bestValue = excludedMove ? alpha
|
|
: inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
|
|
|
|
// Quiet best move: update killers, history and countermoves
|
|
else if (bestMove && !pos.capture_or_promotion(bestMove))
|
|
update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount);
|
|
|
|
// Bonus for prior countermove that caused the fail low
|
|
else if ( depth >= 3 * ONE_PLY
|
|
&& !bestMove
|
|
&& !inCheck
|
|
&& !pos.captured_piece_type()
|
|
&& is_ok((ss - 1)->currentMove)
|
|
&& is_ok((ss - 2)->currentMove))
|
|
{
|
|
Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
|
|
Square prevPrevSq = to_sq((ss - 2)->currentMove);
|
|
CounterMovesStats& prevCmh = CounterMovesHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
|
|
prevCmh.update(pos.piece_on(prevSq), prevSq, bonus);
|
|
}
|
|
|
|
tte->save(posKey, value_to_tt(bestValue, ss->ply),
|
|
bestValue >= beta ? BOUND_LOWER :
|
|
PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
|
|
depth, bestMove, ss->staticEval, TT.generation());
|
|
|
|
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
|
|
// qsearch() is the quiescence search function, which is called by the main
|
|
// search function when the remaining depth is zero (or, to be more precise,
|
|
// less than ONE_PLY).
|
|
|
|
template <NodeType NT, bool InCheck>
|
|
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
|
|
|
|
const bool PvNode = NT == PV;
|
|
|
|
assert(NT == PV || NT == NonPV);
|
|
assert(InCheck == !!pos.checkers());
|
|
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
|
|
assert(PvNode || (alpha == beta - 1));
|
|
assert(depth <= DEPTH_ZERO);
|
|
|
|
Move pv[MAX_PLY+1];
|
|
StateInfo st;
|
|
TTEntry* tte;
|
|
Key posKey;
|
|
Move ttMove, move, bestMove;
|
|
Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
|
|
bool ttHit, givesCheck, evasionPrunable;
|
|
Depth ttDepth;
|
|
|
|
if (PvNode)
|
|
{
|
|
oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
|
|
(ss+1)->pv = pv;
|
|
ss->pv[0] = MOVE_NONE;
|
|
}
|
|
|
|
ss->currentMove = bestMove = MOVE_NONE;
|
|
ss->ply = (ss-1)->ply + 1;
|
|
|
|
// Check for an instant draw or if the maximum ply has been reached
|
|
if (pos.is_draw() || ss->ply >= MAX_PLY)
|
|
return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos)
|
|
: DrawValue[pos.side_to_move()];
|
|
|
|
assert(0 <= ss->ply && ss->ply < MAX_PLY);
|
|
|
|
// Decide whether or not to include checks: this fixes also the type of
|
|
// TT entry depth that we are going to use. Note that in qsearch we use
|
|
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
|
|
ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
|
|
: DEPTH_QS_NO_CHECKS;
|
|
|
|
// Transposition table lookup
|
|
posKey = pos.key();
|
|
tte = TT.probe(posKey, ttHit);
|
|
ttMove = ttHit ? tte->move() : MOVE_NONE;
|
|
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
|
|
|
|
if ( !PvNode
|
|
&& ttHit
|
|
&& tte->depth() >= ttDepth
|
|
&& ttValue != VALUE_NONE // Only in case of TT access race
|
|
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
|
|
: (tte->bound() & BOUND_UPPER)))
|
|
{
|
|
ss->currentMove = ttMove; // Can be MOVE_NONE
|
|
return ttValue;
|
|
}
|
|
|
|
// Evaluate the position statically
|
|
if (InCheck)
|
|
{
|
|
ss->staticEval = VALUE_NONE;
|
|
bestValue = futilityBase = -VALUE_INFINITE;
|
|
}
|
|
else
|
|
{
|
|
if (ttHit)
|
|
{
|
|
// Never assume anything on values stored in TT
|
|
if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
|
|
ss->staticEval = bestValue = evaluate(pos);
|
|
|
|
// Can ttValue be used as a better position evaluation?
|
|
if (ttValue != VALUE_NONE)
|
|
if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))
|
|
bestValue = ttValue;
|
|
}
|
|
else
|
|
ss->staticEval = bestValue =
|
|
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
|
|
: -(ss-1)->staticEval + 2 * Eval::Tempo;
|
|
|
|
// Stand pat. Return immediately if static value is at least beta
|
|
if (bestValue >= beta)
|
|
{
|
|
if (!ttHit)
|
|
tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
|
|
DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation());
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
if (PvNode && bestValue > alpha)
|
|
alpha = bestValue;
|
|
|
|
futilityBase = bestValue + 128;
|
|
}
|
|
|
|
// Initialize a MovePicker object for the current position, and prepare
|
|
// to search the moves. Because the depth is <= 0 here, only captures,
|
|
// queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
|
|
// be generated.
|
|
MovePicker mp(pos, ttMove, depth, pos.this_thread()->history, to_sq((ss-1)->currentMove));
|
|
CheckInfo ci(pos);
|
|
|
|
// Loop through the moves until no moves remain or a beta cutoff occurs
|
|
while ((move = mp.next_move()) != MOVE_NONE)
|
|
{
|
|
assert(is_ok(move));
|
|
|
|
givesCheck = type_of(move) == NORMAL && !ci.dcCandidates
|
|
? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
|
|
: pos.gives_check(move, ci);
|
|
|
|
// Futility pruning
|
|
if ( !InCheck
|
|
&& !givesCheck
|
|
&& futilityBase > -VALUE_KNOWN_WIN
|
|
&& !pos.advanced_pawn_push(move))
|
|
{
|
|
assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
|
|
|
|
futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
|
|
|
|
if (futilityValue <= alpha)
|
|
{
|
|
bestValue = std::max(bestValue, futilityValue);
|
|
continue;
|
|
}
|
|
|
|
if (futilityBase <= alpha && pos.see(move) <= VALUE_ZERO)
|
|
{
|
|
bestValue = std::max(bestValue, futilityBase);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Detect non-capture evasions that are candidates to be pruned
|
|
evasionPrunable = InCheck
|
|
&& bestValue > VALUE_MATED_IN_MAX_PLY
|
|
&& !pos.capture(move);
|
|
|
|
// Don't search moves with negative SEE values
|
|
if ( (!InCheck || evasionPrunable)
|
|
&& type_of(move) != PROMOTION
|
|
&& pos.see_sign(move) < VALUE_ZERO)
|
|
continue;
|
|
|
|
// Speculative prefetch as early as possible
|
|
prefetch(TT.first_entry(pos.key_after(move)));
|
|
|
|
// Check for legality just before making the move
|
|
if (!pos.legal(move, ci.pinned))
|
|
continue;
|
|
|
|
ss->currentMove = move;
|
|
|
|
// Make and search the move
|
|
pos.do_move(move, st, givesCheck);
|
|
value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
|
|
: -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
|
|
pos.undo_move(move);
|
|
|
|
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
|
|
|
// Check for new best move
|
|
if (value > bestValue)
|
|
{
|
|
bestValue = value;
|
|
|
|
if (value > alpha)
|
|
{
|
|
if (PvNode) // Update pv even in fail-high case
|
|
update_pv(ss->pv, move, (ss+1)->pv);
|
|
|
|
if (PvNode && value < beta) // Update alpha here!
|
|
{
|
|
alpha = value;
|
|
bestMove = move;
|
|
}
|
|
else // Fail high
|
|
{
|
|
tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
|
|
ttDepth, move, ss->staticEval, TT.generation());
|
|
|
|
return value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// All legal moves have been searched. A special case: If we're in check
|
|
// and no legal moves were found, it is checkmate.
|
|
if (InCheck && bestValue == -VALUE_INFINITE)
|
|
return mated_in(ss->ply); // Plies to mate from the root
|
|
|
|
tte->save(posKey, value_to_tt(bestValue, ss->ply),
|
|
PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
|
|
ttDepth, bestMove, ss->staticEval, TT.generation());
|
|
|
|
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
|
|
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
|
|
// "plies to mate from the current position". Non-mate scores are unchanged.
|
|
// The function is called before storing a value in the transposition table.
|
|
|
|
Value value_to_tt(Value v, int ply) {
|
|
|
|
assert(v != VALUE_NONE);
|
|
|
|
return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
|
|
: v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
|
|
}
|
|
|
|
|
|
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
|
|
// from the transposition table (which refers to the plies to mate/be mated
|
|
// from current position) to "plies to mate/be mated from the root".
|
|
|
|
Value value_from_tt(Value v, int ply) {
|
|
|
|
return v == VALUE_NONE ? VALUE_NONE
|
|
: v >= VALUE_MATE_IN_MAX_PLY ? v - ply
|
|
: v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
|
|
}
|
|
|
|
|
|
// update_pv() adds current move and appends child pv[]
|
|
|
|
void update_pv(Move* pv, Move move, Move* childPv) {
|
|
|
|
for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
|
|
*pv++ = *childPv++;
|
|
*pv = MOVE_NONE;
|
|
}
|
|
|
|
|
|
// update_stats() updates killers, history, countermove and countermove
|
|
// history when a new quiet best move is found.
|
|
|
|
void update_stats(const Position& pos, Stack* ss, Move move,
|
|
Depth depth, Move* quiets, int quietsCnt) {
|
|
|
|
if (ss->killers[0] != move)
|
|
{
|
|
ss->killers[1] = ss->killers[0];
|
|
ss->killers[0] = move;
|
|
}
|
|
|
|
Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
|
|
|
|
Square prevSq = to_sq((ss-1)->currentMove);
|
|
CounterMovesStats& cmh = CounterMovesHistory[pos.piece_on(prevSq)][prevSq];
|
|
Thread* thisThread = pos.this_thread();
|
|
|
|
thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus);
|
|
|
|
if (is_ok((ss-1)->currentMove))
|
|
{
|
|
thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move);
|
|
cmh.update(pos.moved_piece(move), to_sq(move), bonus);
|
|
}
|
|
|
|
// Decrease all the other played quiet moves
|
|
for (int i = 0; i < quietsCnt; ++i)
|
|
{
|
|
thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
|
|
|
|
if (is_ok((ss-1)->currentMove))
|
|
cmh.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
|
|
}
|
|
|
|
// Extra penalty for a quiet TT move in previous ply when it gets refuted
|
|
if ( (ss-1)->moveCount == 1
|
|
&& !pos.captured_piece_type()
|
|
&& is_ok((ss-2)->currentMove))
|
|
{
|
|
Square prevPrevSq = to_sq((ss-2)->currentMove);
|
|
CounterMovesStats& prevCmh = CounterMovesHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
|
|
prevCmh.update(pos.piece_on(prevSq), prevSq, -bonus - 2 * (depth + 1) / ONE_PLY);
|
|
}
|
|
}
|
|
|
|
|
|
// When playing with strength handicap, choose best move among a set of RootMoves
|
|
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
|
|
|
|
Move Skill::pick_best(size_t multiPV) {
|
|
|
|
const Search::RootMoveVector& rootMoves = Threads.main()->rootMoves;
|
|
static PRNG rng(now()); // PRNG sequence should be non-deterministic
|
|
|
|
// RootMoves are already sorted by score in descending order
|
|
Value topScore = rootMoves[0].score;
|
|
int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
|
|
int weakness = 120 - 2 * level;
|
|
int maxScore = -VALUE_INFINITE;
|
|
|
|
// Choose best move. For each move score we add two terms, both dependent on
|
|
// weakness. One deterministic and bigger for weaker levels, and one random,
|
|
// then we choose the move with the resulting highest score.
|
|
for (size_t i = 0; i < multiPV; ++i)
|
|
{
|
|
// This is our magic formula
|
|
int push = ( weakness * int(topScore - rootMoves[i].score)
|
|
+ delta * (rng.rand<unsigned>() % weakness)) / 128;
|
|
|
|
if (rootMoves[i].score + push > maxScore)
|
|
{
|
|
maxScore = rootMoves[i].score + push;
|
|
best = rootMoves[i].pv[0];
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
|
|
// check_time() is used to print debug info and, more importantly, to detect
|
|
// when we are out of available time and thus stop the search.
|
|
|
|
void check_time() {
|
|
|
|
static TimePoint lastInfoTime = now();
|
|
|
|
int elapsed = Time.elapsed();
|
|
TimePoint tick = Limits.startTime + elapsed;
|
|
|
|
if (tick - lastInfoTime >= 1000)
|
|
{
|
|
lastInfoTime = tick;
|
|
dbg_print();
|
|
}
|
|
|
|
// An engine may not stop pondering until told so by the GUI
|
|
if (Limits.ponder)
|
|
return;
|
|
|
|
if ( (Limits.use_time_management() && elapsed > Time.maximum() - 10)
|
|
|| (Limits.movetime && elapsed >= Limits.movetime)
|
|
|| (Limits.nodes && Threads.nodes_searched() >= Limits.nodes))
|
|
Signals.stop = true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
|
|
/// that all (if any) unsearched PV lines are sent using a previous search score.
|
|
|
|
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
|
|
|
|
std::stringstream ss;
|
|
int elapsed = Time.elapsed() + 1;
|
|
const Search::RootMoveVector& rootMoves = pos.this_thread()->rootMoves;
|
|
size_t PVIdx = pos.this_thread()->PVIdx;
|
|
size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
|
|
uint64_t nodes_searched = Threads.nodes_searched();
|
|
|
|
for (size_t i = 0; i < multiPV; ++i)
|
|
{
|
|
bool updated = (i <= PVIdx);
|
|
|
|
if (depth == ONE_PLY && !updated)
|
|
continue;
|
|
|
|
Depth d = updated ? depth : depth - ONE_PLY;
|
|
Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
|
|
|
|
bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY;
|
|
v = tb ? TB::Score : v;
|
|
|
|
if (ss.rdbuf()->in_avail()) // Not at first line
|
|
ss << "\n";
|
|
|
|
ss << "info"
|
|
<< " depth " << d / ONE_PLY
|
|
<< " seldepth " << pos.this_thread()->maxPly
|
|
<< " multipv " << i + 1
|
|
<< " score " << UCI::value(v);
|
|
|
|
if (!tb && i == PVIdx)
|
|
ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
|
|
|
|
ss << " nodes " << nodes_searched
|
|
<< " nps " << nodes_searched * 1000 / elapsed;
|
|
|
|
if (elapsed > 1000) // Earlier makes little sense
|
|
ss << " hashfull " << TT.hashfull();
|
|
|
|
ss << " tbhits " << TB::Hits
|
|
<< " time " << elapsed
|
|
<< " pv";
|
|
|
|
for (Move m : rootMoves[i].pv)
|
|
ss << " " << UCI::move(m, pos.is_chess960());
|
|
}
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
|
|
/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
|
|
/// inserts the PV back into the TT. This makes sure the old PV moves are searched
|
|
/// first, even if the old TT entries have been overwritten.
|
|
|
|
void RootMove::insert_pv_in_tt(Position& pos) {
|
|
|
|
StateInfo state[MAX_PLY], *st = state;
|
|
bool ttHit;
|
|
|
|
for (Move m : pv)
|
|
{
|
|
assert(MoveList<LEGAL>(pos).contains(m));
|
|
|
|
TTEntry* tte = TT.probe(pos.key(), ttHit);
|
|
|
|
if (!ttHit || tte->move() != m) // Don't overwrite correct entries
|
|
tte->save(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE,
|
|
m, VALUE_NONE, TT.generation());
|
|
|
|
pos.do_move(m, *st++, pos.gives_check(m, CheckInfo(pos)));
|
|
}
|
|
|
|
for (size_t i = pv.size(); i > 0; )
|
|
pos.undo_move(pv[--i]);
|
|
}
|
|
|
|
|
|
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
|
|
/// before exiting the search, for instance in case we stop the search during a
|
|
/// fail high at root. We try hard to have a ponder move to return to the GUI,
|
|
/// otherwise in case of 'ponder on' we have nothing to think on.
|
|
|
|
bool RootMove::extract_ponder_from_tt(Position& pos)
|
|
{
|
|
StateInfo st;
|
|
bool ttHit;
|
|
|
|
assert(pv.size() == 1);
|
|
|
|
pos.do_move(pv[0], st, pos.gives_check(pv[0], CheckInfo(pos)));
|
|
TTEntry* tte = TT.probe(pos.key(), ttHit);
|
|
pos.undo_move(pv[0]);
|
|
|
|
if (ttHit)
|
|
{
|
|
Move m = tte->move(); // Local copy to be SMP safe
|
|
if (MoveList<LEGAL>(pos).contains(m))
|
|
return pv.push_back(m), true;
|
|
}
|
|
|
|
return false;
|
|
}
|