mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-01-07 16:05:22 +01:00
319 lines
12 KiB
C++
319 lines
12 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
|
|
#include "bitboard.h"
|
|
#include "bitcount.h"
|
|
#include "pawns.h"
|
|
#include "position.h"
|
|
#include "thread.h"
|
|
|
|
namespace {
|
|
|
|
#define V Value
|
|
#define S(mg, eg) make_score(mg, eg)
|
|
|
|
// Isolated pawn penalty by opposed flag and file
|
|
const Score Isolated[2][FILE_NB] = {
|
|
{ S(37, 45), S(54, 52), S(60, 52), S(60, 52),
|
|
S(60, 52), S(60, 52), S(54, 52), S(37, 45) },
|
|
{ S(25, 30), S(36, 35), S(40, 35), S(40, 35),
|
|
S(40, 35), S(40, 35), S(36, 35), S(25, 30) } };
|
|
|
|
// Backward pawn penalty by opposed flag
|
|
const Score Backward[2] = { S(67, 42), S(49, 24) };
|
|
|
|
// Unsupported pawn penalty, for pawns which are neither isolated or backward
|
|
const Score Unsupported = S(20, 10);
|
|
|
|
// Connected pawn bonus by opposed, phalanx, twice supported and rank
|
|
Score Connected[2][2][2][RANK_NB];
|
|
|
|
// Doubled pawn penalty by file
|
|
const Score Doubled[FILE_NB] = {
|
|
S(13, 43), S(20, 48), S(23, 48), S(23, 48),
|
|
S(23, 48), S(23, 48), S(20, 48), S(13, 43) };
|
|
|
|
// Lever bonus by rank
|
|
const Score Lever[RANK_NB] = {
|
|
S( 0, 0), S( 0, 0), S(0, 0), S(0, 0),
|
|
S(20, 20), S(40, 40), S(0, 0), S(0, 0) };
|
|
|
|
// Center bind bonus, when two pawns controls the same central square
|
|
const Score CenterBind = S(16, 0);
|
|
|
|
// Weakness of our pawn shelter in front of the king by [distance from edge][rank]
|
|
const Value ShelterWeakness[][RANK_NB] = {
|
|
{ V( 97), V(21), V(26), V(51), V(87), V( 89), V( 99) },
|
|
{ V(120), V( 0), V(28), V(76), V(88), V(103), V(104) },
|
|
{ V(101), V( 7), V(54), V(78), V(77), V( 92), V(101) },
|
|
{ V( 80), V(11), V(44), V(68), V(87), V( 90), V(119) } };
|
|
|
|
// Danger of enemy pawns moving toward our king by [type][distance from edge][rank]
|
|
const Value StormDanger[][4][RANK_NB] = {
|
|
{ { V( 0), V( 67), V( 134), V(38), V(32) },
|
|
{ V( 0), V( 57), V( 139), V(37), V(22) },
|
|
{ V( 0), V( 43), V( 115), V(43), V(27) },
|
|
{ V( 0), V( 68), V( 124), V(57), V(32) } },
|
|
{ { V(20), V( 43), V( 100), V(56), V(20) },
|
|
{ V(23), V( 20), V( 98), V(40), V(15) },
|
|
{ V(23), V( 39), V( 103), V(36), V(18) },
|
|
{ V(28), V( 19), V( 108), V(42), V(26) } },
|
|
{ { V( 0), V( 0), V( 75), V(14), V( 2) },
|
|
{ V( 0), V( 0), V( 150), V(30), V( 4) },
|
|
{ V( 0), V( 0), V( 160), V(22), V( 5) },
|
|
{ V( 0), V( 0), V( 166), V(24), V(13) } },
|
|
{ { V( 0), V(-283), V(-281), V(57), V(31) },
|
|
{ V( 0), V( 58), V( 141), V(39), V(18) },
|
|
{ V( 0), V( 65), V( 142), V(48), V(32) },
|
|
{ V( 0), V( 60), V( 126), V(51), V(19) } } };
|
|
|
|
// Max bonus for king safety. Corresponds to start position with all the pawns
|
|
// in front of the king and no enemy pawn on the horizon.
|
|
const Value MaxSafetyBonus = V(258);
|
|
|
|
#undef S
|
|
#undef V
|
|
|
|
template<Color Us>
|
|
Score evaluate(const Position& pos, Pawns::Entry* e) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
const Square Up = (Us == WHITE ? DELTA_N : DELTA_S);
|
|
const Square Right = (Us == WHITE ? DELTA_NE : DELTA_SW);
|
|
const Square Left = (Us == WHITE ? DELTA_NW : DELTA_SE);
|
|
|
|
const Bitboard CenterBindMask =
|
|
Us == WHITE ? (FileDBB | FileEBB) & (Rank5BB | Rank6BB | Rank7BB)
|
|
: (FileDBB | FileEBB) & (Rank4BB | Rank3BB | Rank2BB);
|
|
|
|
Bitboard b, neighbours, doubled, supported, phalanx;
|
|
Square s;
|
|
bool passed, isolated, opposed, backward, lever, connected;
|
|
Score score = SCORE_ZERO;
|
|
const Square* pl = pos.squares<PAWN>(Us);
|
|
const Bitboard* pawnAttacksBB = StepAttacksBB[make_piece(Us, PAWN)];
|
|
|
|
Bitboard ourPawns = pos.pieces(Us , PAWN);
|
|
Bitboard theirPawns = pos.pieces(Them, PAWN);
|
|
|
|
e->passedPawns[Us] = e->pawnAttacksSpan[Us] = 0;
|
|
e->kingSquares[Us] = SQ_NONE;
|
|
e->semiopenFiles[Us] = 0xFF;
|
|
e->pawnAttacks[Us] = shift_bb<Right>(ourPawns) | shift_bb<Left>(ourPawns);
|
|
e->pawnsOnSquares[Us][BLACK] = popcount<Max15>(ourPawns & DarkSquares);
|
|
e->pawnsOnSquares[Us][WHITE] = pos.count<PAWN>(Us) - e->pawnsOnSquares[Us][BLACK];
|
|
|
|
// Loop through all pawns of the current color and score each pawn
|
|
while ((s = *pl++) != SQ_NONE)
|
|
{
|
|
assert(pos.piece_on(s) == make_piece(Us, PAWN));
|
|
|
|
File f = file_of(s);
|
|
|
|
e->semiopenFiles[Us] &= ~(1 << f);
|
|
e->pawnAttacksSpan[Us] |= pawn_attack_span(Us, s);
|
|
|
|
// Flag the pawn
|
|
neighbours = ourPawns & adjacent_files_bb(f);
|
|
doubled = ourPawns & forward_bb(Us, s);
|
|
opposed = theirPawns & forward_bb(Us, s);
|
|
passed = !(theirPawns & passed_pawn_mask(Us, s));
|
|
lever = theirPawns & pawnAttacksBB[s];
|
|
phalanx = neighbours & rank_bb(s);
|
|
supported = neighbours & rank_bb(s - Up);
|
|
connected = supported | phalanx;
|
|
isolated = !neighbours;
|
|
|
|
// Test for backward pawn.
|
|
// If the pawn is passed, isolated, lever or connected it cannot be
|
|
// backward. If there are friendly pawns behind on adjacent files
|
|
// or if it is sufficiently advanced, it cannot be backward either.
|
|
if ( (passed | isolated | lever | connected)
|
|
|| (ourPawns & pawn_attack_span(Them, s))
|
|
|| (relative_rank(Us, s) >= RANK_5))
|
|
backward = false;
|
|
else
|
|
{
|
|
// We now know there are no friendly pawns beside or behind this
|
|
// pawn on adjacent files. We now check whether the pawn is
|
|
// backward by looking in the forward direction on the adjacent
|
|
// files, and picking the closest pawn there.
|
|
b = pawn_attack_span(Us, s) & (ourPawns | theirPawns);
|
|
b = pawn_attack_span(Us, s) & rank_bb(backmost_sq(Us, b));
|
|
|
|
// If we have an enemy pawn in the same or next rank, the pawn is
|
|
// backward because it cannot advance without being captured.
|
|
backward = (b | shift_bb<Up>(b)) & theirPawns;
|
|
}
|
|
|
|
assert(opposed | passed | (pawn_attack_span(Us, s) & theirPawns));
|
|
|
|
// Passed pawns will be properly scored in evaluation because we need
|
|
// full attack info to evaluate them. Only the frontmost passed
|
|
// pawn on each file is considered a true passed pawn.
|
|
if (passed && !doubled)
|
|
e->passedPawns[Us] |= s;
|
|
|
|
// Score this pawn
|
|
if (isolated)
|
|
score -= Isolated[opposed][f];
|
|
|
|
else if (backward)
|
|
score -= Backward[opposed];
|
|
|
|
else if (!supported)
|
|
score -= Unsupported;
|
|
|
|
if (connected)
|
|
score += Connected[opposed][!!phalanx][more_than_one(supported)][relative_rank(Us, s)];
|
|
|
|
if (doubled)
|
|
score -= Doubled[f] / distance<Rank>(s, frontmost_sq(Us, doubled));
|
|
|
|
if (lever)
|
|
score += Lever[relative_rank(Us, s)];
|
|
}
|
|
|
|
b = e->semiopenFiles[Us] ^ 0xFF;
|
|
e->pawnSpan[Us] = b ? int(msb(b) - lsb(b)) : 0;
|
|
|
|
b = shift_bb<Right>(ourPawns) & shift_bb<Left>(ourPawns) & CenterBindMask;
|
|
score += CenterBind * popcount<Max15>(b);
|
|
|
|
return score;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace Pawns {
|
|
|
|
/// Pawns::init() initializes some tables needed by evaluation. Instead of using
|
|
/// hard-coded tables, when makes sense, we prefer to calculate them with a formula
|
|
/// to reduce independent parameters and to allow easier tuning and better insight.
|
|
|
|
void init()
|
|
{
|
|
static const int Seed[RANK_NB] = { 0, 6, 15, 10, 57, 75, 135, 258 };
|
|
|
|
for (int opposed = 0; opposed <= 1; ++opposed)
|
|
for (int phalanx = 0; phalanx <= 1; ++phalanx)
|
|
for (int apex = 0; apex <= 1; ++apex)
|
|
for (Rank r = RANK_2; r < RANK_8; ++r)
|
|
{
|
|
int v = (Seed[r] + (phalanx ? (Seed[r + 1] - Seed[r]) / 2 : 0)) >> opposed;
|
|
v += (apex ? v / 2 : 0);
|
|
Connected[opposed][phalanx][apex][r] = make_score(3 * v / 2, v);
|
|
}
|
|
}
|
|
|
|
|
|
/// Pawns::probe() looks up the current position's pawns configuration in
|
|
/// the pawns hash table. It returns a pointer to the Entry if the position
|
|
/// is found. Otherwise a new Entry is computed and stored there, so we don't
|
|
/// have to recompute all when the same pawns configuration occurs again.
|
|
|
|
Entry* probe(const Position& pos) {
|
|
|
|
Key key = pos.pawn_key();
|
|
Entry* e = pos.this_thread()->pawnsTable[key];
|
|
|
|
if (e->key == key)
|
|
return e;
|
|
|
|
e->key = key;
|
|
e->score = evaluate<WHITE>(pos, e) - evaluate<BLACK>(pos, e);
|
|
e->asymmetry = popcount<Max15>(e->semiopenFiles[WHITE] ^ e->semiopenFiles[BLACK]);
|
|
return e;
|
|
}
|
|
|
|
|
|
/// Entry::shelter_storm() calculates shelter and storm penalties for the file
|
|
/// the king is on, as well as the two adjacent files.
|
|
|
|
template<Color Us>
|
|
Value Entry::shelter_storm(const Position& pos, Square ksq) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
enum { NoFriendlyPawn, Unblocked, BlockedByPawn, BlockedByKing };
|
|
|
|
Bitboard b = pos.pieces(PAWN) & (in_front_bb(Us, rank_of(ksq)) | rank_bb(ksq));
|
|
Bitboard ourPawns = b & pos.pieces(Us);
|
|
Bitboard theirPawns = b & pos.pieces(Them);
|
|
Value safety = MaxSafetyBonus;
|
|
File center = std::max(FILE_B, std::min(FILE_G, file_of(ksq)));
|
|
|
|
for (File f = center - File(1); f <= center + File(1); ++f)
|
|
{
|
|
b = ourPawns & file_bb(f);
|
|
Rank rkUs = b ? relative_rank(Us, backmost_sq(Us, b)) : RANK_1;
|
|
|
|
b = theirPawns & file_bb(f);
|
|
Rank rkThem = b ? relative_rank(Us, frontmost_sq(Them, b)) : RANK_1;
|
|
|
|
safety -= ShelterWeakness[std::min(f, FILE_H - f)][rkUs]
|
|
+ StormDanger
|
|
[f == file_of(ksq) && rkThem == relative_rank(Us, ksq) + 1 ? BlockedByKing :
|
|
rkUs == RANK_1 ? NoFriendlyPawn :
|
|
rkThem == rkUs + 1 ? BlockedByPawn : Unblocked]
|
|
[std::min(f, FILE_H - f)][rkThem];
|
|
}
|
|
|
|
return safety;
|
|
}
|
|
|
|
|
|
/// Entry::do_king_safety() calculates a bonus for king safety. It is called only
|
|
/// when king square changes, which is about 20% of total king_safety() calls.
|
|
|
|
template<Color Us>
|
|
Score Entry::do_king_safety(const Position& pos, Square ksq) {
|
|
|
|
kingSquares[Us] = ksq;
|
|
castlingRights[Us] = pos.can_castle(Us);
|
|
int minKingPawnDistance = 0;
|
|
|
|
Bitboard pawns = pos.pieces(Us, PAWN);
|
|
if (pawns)
|
|
while (!(DistanceRingBB[ksq][minKingPawnDistance++] & pawns)) {}
|
|
|
|
if (relative_rank(Us, ksq) > RANK_4)
|
|
return make_score(0, -16 * minKingPawnDistance);
|
|
|
|
Value bonus = shelter_storm<Us>(pos, ksq);
|
|
|
|
// If we can castle use the bonus after the castling if it is bigger
|
|
if (pos.can_castle(MakeCastling<Us, KING_SIDE>::right))
|
|
bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_G1)));
|
|
|
|
if (pos.can_castle(MakeCastling<Us, QUEEN_SIDE>::right))
|
|
bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_C1)));
|
|
|
|
return make_score(bonus, -16 * minKingPawnDistance);
|
|
}
|
|
|
|
// Explicit template instantiation
|
|
template Score Entry::do_king_safety<WHITE>(const Position& pos, Square ksq);
|
|
template Score Entry::do_king_safety<BLACK>(const Position& pos, Square ksq);
|
|
|
|
} // namespace Pawns
|