droidfish/DroidFish/jni/stockfish/thread.h
2013-11-30 19:12:34 +00:00

180 lines
5.0 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef THREAD_H_INCLUDED
#define THREAD_H_INCLUDED
#include <vector>
#include "material.h"
#include "movepick.h"
#include "pawns.h"
#include "position.h"
#include "search.h"
const int MAX_THREADS = 64; // Because SplitPoint::slavesMask is a uint64_t
const int MAX_SPLITPOINTS_PER_THREAD = 8;
struct Mutex {
Mutex() { lock_init(l); }
~Mutex() { lock_destroy(l); }
void lock() { lock_grab(l); }
void unlock() { lock_release(l); }
private:
friend struct ConditionVariable;
Lock l;
};
struct ConditionVariable {
ConditionVariable() { cond_init(c); }
~ConditionVariable() { cond_destroy(c); }
void wait(Mutex& m) { cond_wait(c, m.l); }
void wait_for(Mutex& m, int ms) { timed_wait(c, m.l, ms); }
void notify_one() { cond_signal(c); }
private:
WaitCondition c;
};
struct Thread;
struct SplitPoint {
// Const data after split point has been setup
const Position* pos;
const Search::Stack* ss;
Thread* masterThread;
Depth depth;
Value beta;
int nodeType;
Move threatMove;
bool cutNode;
// Const pointers to shared data
MovePicker* movePicker;
SplitPoint* parentSplitPoint;
// Shared data
Mutex mutex;
volatile uint64_t slavesMask;
volatile int64_t nodes;
volatile Value alpha;
volatile Value bestValue;
volatile Move bestMove;
volatile int moveCount;
volatile bool cutoff;
};
/// ThreadBase struct is the base of the hierarchy from where we derive all the
/// specialized thread classes.
struct ThreadBase {
ThreadBase() : exit(false) {}
virtual ~ThreadBase() {}
virtual void idle_loop() = 0;
void notify_one();
void wait_for(volatile const bool& b);
Mutex mutex;
ConditionVariable sleepCondition;
NativeHandle handle;
volatile bool exit;
};
/// Thread struct keeps together all the thread related stuff like locks, state
/// and especially split points. We also use per-thread pawn and material hash
/// tables so that once we get a pointer to an entry its life time is unlimited
/// and we don't have to care about someone changing the entry under our feet.
struct Thread : public ThreadBase {
Thread();
virtual void idle_loop();
bool cutoff_occurred() const;
bool available_to(const Thread* master) const;
template <bool Fake>
void split(Position& pos, const Search::Stack* ss, Value alpha, Value beta, Value* bestValue, Move* bestMove,
Depth depth, Move threatMove, int moveCount, MovePicker* movePicker, int nodeType, bool cutNode);
SplitPoint splitPoints[MAX_SPLITPOINTS_PER_THREAD];
Material::Table materialTable;
Endgames endgames;
Pawns::Table pawnsTable;
Position* activePosition;
size_t idx;
int maxPly;
SplitPoint* volatile activeSplitPoint;
volatile int splitPointsSize;
volatile bool searching;
};
/// MainThread and TimerThread are derived classes used to characterize the two
/// special threads: the main one and the recurring timer.
struct MainThread : public Thread {
MainThread() : thinking(true) {} // Avoid a race with start_thinking()
virtual void idle_loop();
volatile bool thinking;
};
struct TimerThread : public ThreadBase {
TimerThread() : run(false) {}
virtual void idle_loop();
bool run;
static const int Resolution = 5; // msec between two check_time() calls
};
/// ThreadPool struct handles all the threads related stuff like init, starting,
/// parking and, the most important, launching a slave thread at a split point.
/// All the access to shared thread data is done through this class.
struct ThreadPool : public std::vector<Thread*> {
void init(); // No c'tor and d'tor, threads rely on globals that should
void exit(); // be initialized and valid during the whole thread lifetime.
MainThread* main() { return static_cast<MainThread*>((*this)[0]); }
void read_uci_options();
Thread* available_slave(const Thread* master) const;
void wait_for_think_finished();
void start_thinking(const Position&, const Search::LimitsType&,
const std::vector<Move>&, Search::StateStackPtr&);
bool sleepWhileIdle;
Depth minimumSplitDepth;
size_t maxThreadsPerSplitPoint;
Mutex mutex;
ConditionVariable sleepCondition;
TimerThread* timer;
};
extern ThreadPool Threads;
#endif // #ifndef THREAD_H_INCLUDED