mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2024-12-05 01:35:50 +01:00
1041 lines
41 KiB
C++
1041 lines
41 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <cassert>
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
#include <algorithm>
|
|
|
|
#include "bitcount.h"
|
|
#include "evaluate.h"
|
|
#include "material.h"
|
|
#include "pawns.h"
|
|
#include "thread.h"
|
|
#include "ucioption.h"
|
|
|
|
namespace {
|
|
|
|
enum ExtendedPieceType { // Used for tracing
|
|
PST = 8, IMBALANCE, MOBILITY, THREAT, PASSED, SPACE, TOTAL
|
|
};
|
|
|
|
namespace Tracing {
|
|
|
|
Score scores[COLOR_NB][TOTAL + 1];
|
|
std::stringstream stream;
|
|
|
|
void add(int idx, Score term_w, Score term_b = SCORE_ZERO);
|
|
void row(const char* name, int idx);
|
|
std::string do_trace(const Position& pos);
|
|
}
|
|
|
|
// Struct EvalInfo contains various information computed and collected
|
|
// by the evaluation functions.
|
|
struct EvalInfo {
|
|
|
|
// Pointers to material and pawn hash table entries
|
|
Material::Entry* mi;
|
|
Pawns::Entry* pi;
|
|
|
|
// attackedBy[color][piece type] is a bitboard representing all squares
|
|
// attacked by a given color and piece type, attackedBy[color][ALL_PIECES]
|
|
// contains all squares attacked by the given color.
|
|
Bitboard attackedBy[COLOR_NB][PIECE_TYPE_NB];
|
|
|
|
// kingRing[color] is the zone around the king which is considered
|
|
// by the king safety evaluation. This consists of the squares directly
|
|
// adjacent to the king, and the three (or two, for a king on an edge file)
|
|
// squares two ranks in front of the king. For instance, if black's king
|
|
// is on g8, kingRing[BLACK] is a bitboard containing the squares f8, h8,
|
|
// f7, g7, h7, f6, g6 and h6.
|
|
Bitboard kingRing[COLOR_NB];
|
|
|
|
// kingAttackersCount[color] is the number of pieces of the given color
|
|
// which attack a square in the kingRing of the enemy king.
|
|
int kingAttackersCount[COLOR_NB];
|
|
|
|
// kingAttackersWeight[color] is the sum of the "weight" of the pieces of the
|
|
// given color which attack a square in the kingRing of the enemy king. The
|
|
// weights of the individual piece types are given by the variables
|
|
// QueenAttackWeight, RookAttackWeight, BishopAttackWeight and
|
|
// KnightAttackWeight in evaluate.cpp
|
|
int kingAttackersWeight[COLOR_NB];
|
|
|
|
// kingAdjacentZoneAttacksCount[color] is the number of attacks to squares
|
|
// directly adjacent to the king of the given color. Pieces which attack
|
|
// more than one square are counted multiple times. For instance, if black's
|
|
// king is on g8 and there's a white knight on g5, this knight adds
|
|
// 2 to kingAdjacentZoneAttacksCount[BLACK].
|
|
int kingAdjacentZoneAttacksCount[COLOR_NB];
|
|
|
|
Bitboard pinnedPieces[COLOR_NB];
|
|
};
|
|
|
|
// Evaluation grain size, must be a power of 2
|
|
const int GrainSize = 4;
|
|
|
|
// Evaluation weights, initialized from UCI options
|
|
enum { Mobility, PawnStructure, PassedPawns, Space, KingDangerUs, KingDangerThem };
|
|
Score Weights[6];
|
|
|
|
typedef Value V;
|
|
#define S(mg, eg) make_score(mg, eg)
|
|
|
|
// Internal evaluation weights. These are applied on top of the evaluation
|
|
// weights read from UCI parameters. The purpose is to be able to change
|
|
// the evaluation weights while keeping the default values of the UCI
|
|
// parameters at 100, which looks prettier.
|
|
//
|
|
// Values modified by Joona Kiiski
|
|
const Score WeightsInternal[] = {
|
|
S(289, 344), S(233, 201), S(221, 273), S(46, 0), S(271, 0), S(307, 0)
|
|
};
|
|
|
|
// MobilityBonus[PieceType][attacked] contains bonuses for middle and end
|
|
// game, indexed by piece type and number of attacked squares not occupied by
|
|
// friendly pieces.
|
|
const Score MobilityBonus[][32] = {
|
|
{}, {},
|
|
{ S(-35,-30), S(-22,-20), S(-9,-10), S( 3, 0), S(15, 10), S(27, 20), // Knights
|
|
S( 37, 28), S( 42, 31), S(44, 33) },
|
|
{ S(-22,-27), S( -8,-13), S( 6, 1), S(20, 15), S(34, 29), S(48, 43), // Bishops
|
|
S( 60, 55), S( 68, 63), S(74, 68), S(77, 72), S(80, 75), S(82, 77),
|
|
S( 84, 79), S( 86, 81) },
|
|
{ S(-17,-33), S(-11,-16), S(-5, 0), S( 1, 16), S( 7, 32), S(13, 48), // Rooks
|
|
S( 18, 64), S( 22, 80), S(26, 96), S(29,109), S(31,115), S(33,119),
|
|
S( 35,122), S( 36,123), S(37,124) },
|
|
{ S(-12,-20), S( -8,-13), S(-5, -7), S(-2, -1), S( 1, 5), S( 4, 11), // Queens
|
|
S( 7, 17), S( 10, 23), S(13, 29), S(16, 34), S(18, 38), S(20, 40),
|
|
S( 22, 41), S( 23, 41), S(24, 41), S(25, 41), S(25, 41), S(25, 41),
|
|
S( 25, 41), S( 25, 41), S(25, 41), S(25, 41), S(25, 41), S(25, 41),
|
|
S( 25, 41), S( 25, 41), S(25, 41), S(25, 41) }
|
|
};
|
|
|
|
// Outpost[PieceType][Square] contains bonuses of knights and bishops, indexed
|
|
// by piece type and square (from white's point of view).
|
|
const Value Outpost[][SQUARE_NB] = {
|
|
{
|
|
// A B C D E F G H
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // Knights
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
|
|
V(0), V(0), V(4), V(8), V(8), V(4), V(0), V(0),
|
|
V(0), V(4),V(17),V(26),V(26),V(17), V(4), V(0),
|
|
V(0), V(8),V(26),V(35),V(35),V(26), V(8), V(0),
|
|
V(0), V(4),V(17),V(17),V(17),V(17), V(4), V(0) },
|
|
{
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // Bishops
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
|
|
V(0), V(0), V(5), V(5), V(5), V(5), V(0), V(0),
|
|
V(0), V(5),V(10),V(10),V(10),V(10), V(5), V(0),
|
|
V(0),V(10),V(21),V(21),V(21),V(21),V(10), V(0),
|
|
V(0), V(5), V(8), V(8), V(8), V(8), V(5), V(0) }
|
|
};
|
|
|
|
// Threat[attacking][attacked] contains bonuses according to which piece
|
|
// type attacks which one.
|
|
const Score Threat[][PIECE_TYPE_NB] = {
|
|
{}, {},
|
|
{ S(0, 0), S( 7, 39), S( 0, 0), S(24, 49), S(41,100), S(41,100) }, // KNIGHT
|
|
{ S(0, 0), S( 7, 39), S(24, 49), S( 0, 0), S(41,100), S(41,100) }, // BISHOP
|
|
{ S(0, 0), S( 0, 22), S(15, 49), S(15, 49), S( 0, 0), S(24, 49) }, // ROOK
|
|
{ S(0, 0), S(15, 39), S(15, 39), S(15, 39), S(15, 39), S( 0, 0) } // QUEEN
|
|
};
|
|
|
|
// ThreatenedByPawn[PieceType] contains a penalty according to which piece
|
|
// type is attacked by an enemy pawn.
|
|
const Score ThreatenedByPawn[] = {
|
|
S(0, 0), S(0, 0), S(56, 70), S(56, 70), S(76, 99), S(86, 118)
|
|
};
|
|
|
|
#undef S
|
|
|
|
const Score Tempo = make_score(24, 11);
|
|
const Score BishopPin = make_score(66, 11);
|
|
const Score RookOn7th = make_score(11, 20);
|
|
const Score QueenOn7th = make_score( 3, 8);
|
|
const Score RookOnPawn = make_score(10, 28);
|
|
const Score QueenOnPawn = make_score( 4, 20);
|
|
const Score RookOpenFile = make_score(43, 21);
|
|
const Score RookSemiopenFile = make_score(19, 10);
|
|
const Score BishopPawns = make_score( 8, 12);
|
|
const Score KnightPawns = make_score( 8, 4);
|
|
const Score MinorBehindPawn = make_score(16, 0);
|
|
const Score UndefendedMinor = make_score(25, 10);
|
|
const Score TrappedRook = make_score(90, 0);
|
|
const Score Unstoppable = make_score( 0, 20);
|
|
|
|
// Penalty for a bishop on a1/h1 (a8/h8 for black) which is trapped by
|
|
// a friendly pawn on b2/g2 (b7/g7 for black). This can obviously only
|
|
// happen in Chess960 games.
|
|
const Score TrappedBishopA1H1 = make_score(50, 50);
|
|
|
|
// The SpaceMask[Color] contains the area of the board which is considered
|
|
// by the space evaluation. In the middle game, each side is given a bonus
|
|
// based on how many squares inside this area are safe and available for
|
|
// friendly minor pieces.
|
|
const Bitboard SpaceMask[] = {
|
|
(FileCBB | FileDBB | FileEBB | FileFBB) & (Rank2BB | Rank3BB | Rank4BB),
|
|
(FileCBB | FileDBB | FileEBB | FileFBB) & (Rank7BB | Rank6BB | Rank5BB)
|
|
};
|
|
|
|
// King danger constants and variables. The king danger scores are taken
|
|
// from the KingDanger[]. Various little "meta-bonuses" measuring
|
|
// the strength of the enemy attack are added up into an integer, which
|
|
// is used as an index to KingDanger[].
|
|
//
|
|
// KingAttackWeights[PieceType] contains king attack weights by piece type
|
|
const int KingAttackWeights[] = { 0, 0, 2, 2, 3, 5 };
|
|
|
|
// Bonuses for enemy's safe checks
|
|
const int QueenContactCheck = 24;
|
|
const int RookContactCheck = 16;
|
|
const int QueenCheck = 12;
|
|
const int RookCheck = 8;
|
|
const int BishopCheck = 2;
|
|
const int KnightCheck = 3;
|
|
|
|
// KingExposed[Square] contains penalties based on the position of the
|
|
// defending king, indexed by king's square (from white's point of view).
|
|
const int KingExposed[] = {
|
|
2, 0, 2, 5, 5, 2, 0, 2,
|
|
2, 2, 4, 8, 8, 4, 2, 2,
|
|
7, 10, 12, 12, 12, 12, 10, 7,
|
|
15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15
|
|
};
|
|
|
|
// KingDanger[Color][attackUnits] contains the actual king danger weighted
|
|
// scores, indexed by color and by a calculated integer number.
|
|
Score KingDanger[COLOR_NB][128];
|
|
|
|
// Function prototypes
|
|
template<bool Trace>
|
|
Value do_evaluate(const Position& pos);
|
|
|
|
template<Color Us>
|
|
void init_eval_info(const Position& pos, EvalInfo& ei);
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_pieces_of_color(const Position& pos, EvalInfo& ei, Score* mobility);
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_king(const Position& pos, const EvalInfo& ei);
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_threats(const Position& pos, const EvalInfo& ei);
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_passed_pawns(const Position& pos, const EvalInfo& ei);
|
|
|
|
template<Color Us>
|
|
int evaluate_space(const Position& pos, const EvalInfo& ei);
|
|
|
|
Score evaluate_unstoppable_pawns(const Position& pos, Color us, const EvalInfo& ei);
|
|
|
|
Value interpolate(const Score& v, Phase ph, ScaleFactor sf);
|
|
Score apply_weight(Score v, Score w);
|
|
Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight);
|
|
double to_cp(Value v);
|
|
}
|
|
|
|
|
|
namespace Eval {
|
|
|
|
/// evaluate() is the main evaluation function. It always computes two
|
|
/// values, an endgame score and a middle game score, and interpolates
|
|
/// between them based on the remaining material.
|
|
|
|
Value evaluate(const Position& pos) {
|
|
return do_evaluate<false>(pos);
|
|
}
|
|
|
|
|
|
/// trace() is like evaluate() but instead of a value returns a string suitable
|
|
/// to be print on stdout with the detailed descriptions and values of each
|
|
/// evaluation term. Used mainly for debugging.
|
|
std::string trace(const Position& pos) {
|
|
return Tracing::do_trace(pos);
|
|
}
|
|
|
|
|
|
/// init() computes evaluation weights from the corresponding UCI parameters
|
|
/// and setup king tables.
|
|
|
|
void init() {
|
|
|
|
Weights[Mobility] = weight_option("Mobility (Midgame)", "Mobility (Endgame)", WeightsInternal[Mobility]);
|
|
Weights[PawnStructure] = weight_option("Pawn Structure (Midgame)", "Pawn Structure (Endgame)", WeightsInternal[PawnStructure]);
|
|
Weights[PassedPawns] = weight_option("Passed Pawns (Midgame)", "Passed Pawns (Endgame)", WeightsInternal[PassedPawns]);
|
|
Weights[Space] = weight_option("Space", "Space", WeightsInternal[Space]);
|
|
Weights[KingDangerUs] = weight_option("Cowardice", "Cowardice", WeightsInternal[KingDangerUs]);
|
|
Weights[KingDangerThem] = weight_option("Aggressiveness", "Aggressiveness", WeightsInternal[KingDangerThem]);
|
|
|
|
const int MaxSlope = 30;
|
|
const int Peak = 1280;
|
|
|
|
for (int t = 0, i = 1; i < 100; ++i)
|
|
{
|
|
t = std::min(Peak, std::min(int(0.4 * i * i), t + MaxSlope));
|
|
|
|
KingDanger[1][i] = apply_weight(make_score(t, 0), Weights[KingDangerUs]);
|
|
KingDanger[0][i] = apply_weight(make_score(t, 0), Weights[KingDangerThem]);
|
|
}
|
|
}
|
|
|
|
} // namespace Eval
|
|
|
|
|
|
namespace {
|
|
|
|
template<bool Trace>
|
|
Value do_evaluate(const Position& pos) {
|
|
|
|
assert(!pos.checkers());
|
|
|
|
EvalInfo ei;
|
|
Score score, mobility[2] = { SCORE_ZERO, SCORE_ZERO };
|
|
Thread* th = pos.this_thread();
|
|
|
|
// Initialize score by reading the incrementally updated scores included
|
|
// in the position object (material + piece square tables) and adding
|
|
// Tempo bonus. Score is computed from the point of view of white.
|
|
score = pos.psq_score() + (pos.side_to_move() == WHITE ? Tempo : -Tempo);
|
|
|
|
// Probe the material hash table
|
|
ei.mi = Material::probe(pos, th->materialTable, th->endgames);
|
|
score += ei.mi->material_value();
|
|
|
|
// If we have a specialized evaluation function for the current material
|
|
// configuration, call it and return.
|
|
if (ei.mi->specialized_eval_exists())
|
|
return ei.mi->evaluate(pos);
|
|
|
|
// Probe the pawn hash table
|
|
ei.pi = Pawns::probe(pos, th->pawnsTable);
|
|
score += apply_weight(ei.pi->pawns_value(), Weights[PawnStructure]);
|
|
|
|
// Initialize attack and king safety bitboards
|
|
init_eval_info<WHITE>(pos, ei);
|
|
init_eval_info<BLACK>(pos, ei);
|
|
|
|
// Evaluate pieces and mobility
|
|
score += evaluate_pieces_of_color<WHITE, Trace>(pos, ei, mobility)
|
|
- evaluate_pieces_of_color<BLACK, Trace>(pos, ei, mobility);
|
|
|
|
score += apply_weight(mobility[WHITE] - mobility[BLACK], Weights[Mobility]);
|
|
|
|
// Evaluate kings after all other pieces because we need complete attack
|
|
// information when computing the king safety evaluation.
|
|
score += evaluate_king<WHITE, Trace>(pos, ei)
|
|
- evaluate_king<BLACK, Trace>(pos, ei);
|
|
|
|
// Evaluate tactical threats, we need full attack information including king
|
|
score += evaluate_threats<WHITE, Trace>(pos, ei)
|
|
- evaluate_threats<BLACK, Trace>(pos, ei);
|
|
|
|
// Evaluate passed pawns, we need full attack information including king
|
|
score += evaluate_passed_pawns<WHITE, Trace>(pos, ei)
|
|
- evaluate_passed_pawns<BLACK, Trace>(pos, ei);
|
|
|
|
// If one side has only a king, score for potential unstoppable pawns
|
|
if (!pos.non_pawn_material(WHITE) || !pos.non_pawn_material(BLACK))
|
|
score += evaluate_unstoppable_pawns(pos, WHITE, ei)
|
|
- evaluate_unstoppable_pawns(pos, BLACK, ei);
|
|
|
|
// Evaluate space for both sides, only in middle-game.
|
|
if (ei.mi->space_weight())
|
|
{
|
|
int s = evaluate_space<WHITE>(pos, ei) - evaluate_space<BLACK>(pos, ei);
|
|
score += apply_weight(s * ei.mi->space_weight(), Weights[Space]);
|
|
}
|
|
|
|
// Scale winning side if position is more drawish that what it appears
|
|
ScaleFactor sf = eg_value(score) > VALUE_DRAW ? ei.mi->scale_factor(pos, WHITE)
|
|
: ei.mi->scale_factor(pos, BLACK);
|
|
|
|
// If we don't already have an unusual scale factor, check for opposite
|
|
// colored bishop endgames, and use a lower scale for those.
|
|
if ( ei.mi->game_phase() < PHASE_MIDGAME
|
|
&& pos.opposite_bishops()
|
|
&& sf == SCALE_FACTOR_NORMAL)
|
|
{
|
|
// Only the two bishops ?
|
|
if ( pos.non_pawn_material(WHITE) == BishopValueMg
|
|
&& pos.non_pawn_material(BLACK) == BishopValueMg)
|
|
{
|
|
// Check for KBP vs KB with only a single pawn that is almost
|
|
// certainly a draw or at least two pawns.
|
|
bool one_pawn = (pos.count<PAWN>(WHITE) + pos.count<PAWN>(BLACK) == 1);
|
|
sf = one_pawn ? ScaleFactor(8) : ScaleFactor(32);
|
|
}
|
|
else
|
|
// Endgame with opposite-colored bishops, but also other pieces. Still
|
|
// a bit drawish, but not as drawish as with only the two bishops.
|
|
sf = ScaleFactor(50);
|
|
}
|
|
|
|
Value v = interpolate(score, ei.mi->game_phase(), sf);
|
|
|
|
// In case of tracing add all single evaluation contributions for both white and black
|
|
if (Trace)
|
|
{
|
|
Tracing::add(PST, pos.psq_score());
|
|
Tracing::add(IMBALANCE, ei.mi->material_value());
|
|
Tracing::add(PAWN, ei.pi->pawns_value());
|
|
Score w = ei.mi->space_weight() * evaluate_space<WHITE>(pos, ei);
|
|
Score b = ei.mi->space_weight() * evaluate_space<BLACK>(pos, ei);
|
|
Tracing::add(SPACE, apply_weight(w, Weights[Space]), apply_weight(b, Weights[Space]));
|
|
Tracing::add(TOTAL, score);
|
|
Tracing::stream << "\nScaling: " << std::noshowpos
|
|
<< std::setw(6) << 100.0 * ei.mi->game_phase() / 128.0 << "% MG, "
|
|
<< std::setw(6) << 100.0 * (1.0 - ei.mi->game_phase() / 128.0) << "% * "
|
|
<< std::setw(6) << (100.0 * sf) / SCALE_FACTOR_NORMAL << "% EG.\n"
|
|
<< "Total evaluation: " << to_cp(v);
|
|
}
|
|
|
|
return pos.side_to_move() == WHITE ? v : -v;
|
|
}
|
|
|
|
|
|
// init_eval_info() initializes king bitboards for given color adding
|
|
// pawn attacks. To be done at the beginning of the evaluation.
|
|
|
|
template<Color Us>
|
|
void init_eval_info(const Position& pos, EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
const Square Down = (Us == WHITE ? DELTA_S : DELTA_N);
|
|
|
|
ei.pinnedPieces[Us] = pos.pinned_pieces(Us);
|
|
|
|
Bitboard b = ei.attackedBy[Them][KING] = pos.attacks_from<KING>(pos.king_square(Them));
|
|
ei.attackedBy[Us][PAWN] = ei.pi->pawn_attacks(Us);
|
|
|
|
// Init king safety tables only if we are going to use them
|
|
if (pos.count<QUEEN>(Us) && pos.non_pawn_material(Us) > QueenValueMg + PawnValueMg)
|
|
{
|
|
ei.kingRing[Them] = b | shift_bb<Down>(b);
|
|
b &= ei.attackedBy[Us][PAWN];
|
|
ei.kingAttackersCount[Us] = b ? popcount<Max15>(b) / 2 : 0;
|
|
ei.kingAdjacentZoneAttacksCount[Us] = ei.kingAttackersWeight[Us] = 0;
|
|
}
|
|
else
|
|
ei.kingRing[Them] = ei.kingAttackersCount[Us] = 0;
|
|
}
|
|
|
|
|
|
// evaluate_outposts() evaluates bishop and knight outposts squares
|
|
|
|
template<PieceType Piece, Color Us>
|
|
Score evaluate_outposts(const Position& pos, EvalInfo& ei, Square s) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
assert (Piece == BISHOP || Piece == KNIGHT);
|
|
|
|
// Initial bonus based on square
|
|
Value bonus = Outpost[Piece == BISHOP][relative_square(Us, s)];
|
|
|
|
// Increase bonus if supported by pawn, especially if the opponent has
|
|
// no minor piece which can exchange the outpost piece.
|
|
if (bonus && (ei.attackedBy[Us][PAWN] & s))
|
|
{
|
|
if ( !pos.pieces(Them, KNIGHT)
|
|
&& !(squares_of_color(s) & pos.pieces(Them, BISHOP)))
|
|
bonus += bonus + bonus / 2;
|
|
else
|
|
bonus += bonus / 2;
|
|
}
|
|
|
|
return make_score(bonus, bonus);
|
|
}
|
|
|
|
|
|
// evaluate_pieces() assigns bonuses and penalties to the pieces of a given color
|
|
|
|
template<PieceType Piece, Color Us, bool Trace>
|
|
Score evaluate_pieces(const Position& pos, EvalInfo& ei, Score* mobility, Bitboard mobilityArea) {
|
|
|
|
Bitboard b;
|
|
Square s;
|
|
Score score = SCORE_ZERO;
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
const Square* pl = pos.list<Piece>(Us);
|
|
|
|
ei.attackedBy[Us][Piece] = 0;
|
|
|
|
while ((s = *pl++) != SQ_NONE)
|
|
{
|
|
// Find attacked squares, including x-ray attacks for bishops and rooks
|
|
b = Piece == BISHOP ? attacks_bb<BISHOP>(s, pos.pieces() ^ pos.pieces(Us, QUEEN))
|
|
: Piece == ROOK ? attacks_bb< ROOK>(s, pos.pieces() ^ pos.pieces(Us, ROOK, QUEEN))
|
|
: pos.attacks_from<Piece>(s);
|
|
|
|
if (ei.pinnedPieces[Us] & s)
|
|
b &= LineBB[pos.king_square(Us)][s];
|
|
|
|
ei.attackedBy[Us][Piece] |= b;
|
|
|
|
if (b & ei.kingRing[Them])
|
|
{
|
|
ei.kingAttackersCount[Us]++;
|
|
ei.kingAttackersWeight[Us] += KingAttackWeights[Piece];
|
|
Bitboard bb = b & ei.attackedBy[Them][KING];
|
|
if (bb)
|
|
ei.kingAdjacentZoneAttacksCount[Us] += popcount<Max15>(bb);
|
|
}
|
|
|
|
int mob = Piece != QUEEN ? popcount<Max15>(b & mobilityArea)
|
|
: popcount<Full >(b & mobilityArea);
|
|
|
|
mobility[Us] += MobilityBonus[Piece][mob];
|
|
|
|
// Decrease score if we are attacked by an enemy pawn. Remaining part
|
|
// of threat evaluation must be done later when we have full attack info.
|
|
if (ei.attackedBy[Them][PAWN] & s)
|
|
score -= ThreatenedByPawn[Piece];
|
|
|
|
// Otherwise give a bonus if we are a bishop and can pin a piece or can
|
|
// give a discovered check through an x-ray attack.
|
|
else if ( Piece == BISHOP
|
|
&& (PseudoAttacks[Piece][pos.king_square(Them)] & s)
|
|
&& !more_than_one(BetweenBB[s][pos.king_square(Them)] & pos.pieces()))
|
|
score += BishopPin;
|
|
|
|
// Penalty for bishop with same coloured pawns
|
|
if (Piece == BISHOP)
|
|
score -= BishopPawns * ei.pi->pawns_on_same_color_squares(Us, s);
|
|
|
|
// Penalty for knight when there are few enemy pawns
|
|
if (Piece == KNIGHT)
|
|
score -= KnightPawns * std::max(5 - pos.count<PAWN>(Them), 0);
|
|
|
|
if (Piece == BISHOP || Piece == KNIGHT)
|
|
{
|
|
// Bishop and knight outposts squares
|
|
if (!(pos.pieces(Them, PAWN) & pawn_attack_span(Us, s)))
|
|
score += evaluate_outposts<Piece, Us>(pos, ei, s);
|
|
|
|
// Bishop or knight behind a pawn
|
|
if ( relative_rank(Us, s) < RANK_5
|
|
&& (pos.pieces(PAWN) & (s + pawn_push(Us))))
|
|
score += MinorBehindPawn;
|
|
}
|
|
|
|
if ( (Piece == ROOK || Piece == QUEEN)
|
|
&& relative_rank(Us, s) >= RANK_5)
|
|
{
|
|
// Major piece on 7th rank and enemy king trapped on 8th
|
|
if ( relative_rank(Us, s) == RANK_7
|
|
&& relative_rank(Us, pos.king_square(Them)) == RANK_8)
|
|
score += Piece == ROOK ? RookOn7th : QueenOn7th;
|
|
|
|
// Major piece attacking enemy pawns on the same rank/file
|
|
Bitboard pawns = pos.pieces(Them, PAWN) & PseudoAttacks[ROOK][s];
|
|
if (pawns)
|
|
score += popcount<Max15>(pawns) * (Piece == ROOK ? RookOnPawn : QueenOnPawn);
|
|
}
|
|
|
|
// Special extra evaluation for rooks
|
|
if (Piece == ROOK)
|
|
{
|
|
// Give a bonus for a rook on a open or semi-open file
|
|
if (ei.pi->semiopen(Us, file_of(s)))
|
|
score += ei.pi->semiopen(Them, file_of(s)) ? RookOpenFile : RookSemiopenFile;
|
|
|
|
if (mob > 3 || ei.pi->semiopen(Us, file_of(s)))
|
|
continue;
|
|
|
|
Square ksq = pos.king_square(Us);
|
|
|
|
// Penalize rooks which are trapped inside a king. Penalize more if
|
|
// king has lost right to castle.
|
|
if ( ((file_of(ksq) < FILE_E) == (file_of(s) < file_of(ksq)))
|
|
&& (rank_of(ksq) == rank_of(s) || relative_rank(Us, ksq) == RANK_1)
|
|
&& !ei.pi->semiopen_on_side(Us, file_of(ksq), file_of(ksq) < FILE_E))
|
|
score -= (TrappedRook - make_score(mob * 8, 0)) * (pos.can_castle(Us) ? 1 : 2);
|
|
}
|
|
|
|
// An important Chess960 pattern: A cornered bishop blocked by a friendly
|
|
// pawn diagonally in front of it is a very serious problem, especially
|
|
// when that pawn is also blocked.
|
|
if ( Piece == BISHOP
|
|
&& pos.is_chess960()
|
|
&& (s == relative_square(Us, SQ_A1) || s == relative_square(Us, SQ_H1)))
|
|
{
|
|
const enum Piece P = make_piece(Us, PAWN);
|
|
Square d = pawn_push(Us) + (file_of(s) == FILE_A ? DELTA_E : DELTA_W);
|
|
if (pos.piece_on(s + d) == P)
|
|
score -= !pos.empty(s + d + pawn_push(Us)) ? TrappedBishopA1H1 * 4
|
|
: pos.piece_on(s + d + d) == P ? TrappedBishopA1H1 * 2
|
|
: TrappedBishopA1H1;
|
|
}
|
|
}
|
|
|
|
if (Trace)
|
|
Tracing::scores[Us][Piece] = score;
|
|
|
|
return score;
|
|
}
|
|
|
|
|
|
// evaluate_pieces_of_color() assigns bonuses and penalties to all the
|
|
// pieces of a given color.
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_pieces_of_color(const Position& pos, EvalInfo& ei, Score* mobility) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
// Do not include in mobility squares protected by enemy pawns or occupied by our pieces
|
|
const Bitboard mobilityArea = ~(ei.attackedBy[Them][PAWN] | pos.pieces(Us, PAWN, KING));
|
|
|
|
Score score = evaluate_pieces<KNIGHT, Us, Trace>(pos, ei, mobility, mobilityArea)
|
|
+ evaluate_pieces<BISHOP, Us, Trace>(pos, ei, mobility, mobilityArea)
|
|
+ evaluate_pieces<ROOK, Us, Trace>(pos, ei, mobility, mobilityArea)
|
|
+ evaluate_pieces<QUEEN, Us, Trace>(pos, ei, mobility, mobilityArea);
|
|
|
|
// Sum up all attacked squares (updated in evaluate_pieces)
|
|
ei.attackedBy[Us][ALL_PIECES] = ei.attackedBy[Us][PAWN] | ei.attackedBy[Us][KNIGHT]
|
|
| ei.attackedBy[Us][BISHOP] | ei.attackedBy[Us][ROOK]
|
|
| ei.attackedBy[Us][QUEEN] | ei.attackedBy[Us][KING];
|
|
if (Trace)
|
|
Tracing::scores[Us][MOBILITY] = apply_weight(mobility[Us], Weights[Mobility]);
|
|
|
|
return score;
|
|
}
|
|
|
|
|
|
// evaluate_king() assigns bonuses and penalties to a king of a given color
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_king(const Position& pos, const EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Bitboard undefended, b, b1, b2, safe;
|
|
int attackUnits;
|
|
const Square ksq = pos.king_square(Us);
|
|
|
|
// King shelter and enemy pawns storm
|
|
Score score = ei.pi->king_safety<Us>(pos, ksq);
|
|
|
|
// Main king safety evaluation
|
|
if ( ei.kingAttackersCount[Them] >= 2
|
|
&& ei.kingAdjacentZoneAttacksCount[Them])
|
|
{
|
|
// Find the attacked squares around the king which has no defenders
|
|
// apart from the king itself
|
|
undefended = ei.attackedBy[Them][ALL_PIECES]
|
|
& ei.attackedBy[Us][KING]
|
|
& ~( ei.attackedBy[Us][PAWN] | ei.attackedBy[Us][KNIGHT]
|
|
| ei.attackedBy[Us][BISHOP] | ei.attackedBy[Us][ROOK]
|
|
| ei.attackedBy[Us][QUEEN]);
|
|
|
|
// Initialize the 'attackUnits' variable, which is used later on as an
|
|
// index to the KingDanger[] array. The initial value is based on the
|
|
// number and types of the enemy's attacking pieces, the number of
|
|
// attacked and undefended squares around our king, the square of the
|
|
// king, and the quality of the pawn shelter.
|
|
attackUnits = std::min(20, (ei.kingAttackersCount[Them] * ei.kingAttackersWeight[Them]) / 2)
|
|
+ 3 * (ei.kingAdjacentZoneAttacksCount[Them] + popcount<Max15>(undefended))
|
|
+ KingExposed[relative_square(Us, ksq)]
|
|
- mg_value(score) / 32;
|
|
|
|
// Analyse enemy's safe queen contact checks. First find undefended
|
|
// squares around the king attacked by enemy queen...
|
|
b = undefended & ei.attackedBy[Them][QUEEN] & ~pos.pieces(Them);
|
|
if (b)
|
|
{
|
|
// ...then remove squares not supported by another enemy piece
|
|
b &= ( ei.attackedBy[Them][PAWN] | ei.attackedBy[Them][KNIGHT]
|
|
| ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][ROOK]);
|
|
if (b)
|
|
attackUnits += QueenContactCheck
|
|
* popcount<Max15>(b)
|
|
* (Them == pos.side_to_move() ? 2 : 1);
|
|
}
|
|
|
|
// Analyse enemy's safe rook contact checks. First find undefended
|
|
// squares around the king attacked by enemy rooks...
|
|
b = undefended & ei.attackedBy[Them][ROOK] & ~pos.pieces(Them);
|
|
|
|
// Consider only squares where the enemy rook gives check
|
|
b &= PseudoAttacks[ROOK][ksq];
|
|
|
|
if (b)
|
|
{
|
|
// ...then remove squares not supported by another enemy piece
|
|
b &= ( ei.attackedBy[Them][PAWN] | ei.attackedBy[Them][KNIGHT]
|
|
| ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][QUEEN]);
|
|
if (b)
|
|
attackUnits += RookContactCheck
|
|
* popcount<Max15>(b)
|
|
* (Them == pos.side_to_move() ? 2 : 1);
|
|
}
|
|
|
|
// Analyse enemy's safe distance checks for sliders and knights
|
|
safe = ~(pos.pieces(Them) | ei.attackedBy[Us][ALL_PIECES]);
|
|
|
|
b1 = pos.attacks_from<ROOK>(ksq) & safe;
|
|
b2 = pos.attacks_from<BISHOP>(ksq) & safe;
|
|
|
|
// Enemy queen safe checks
|
|
b = (b1 | b2) & ei.attackedBy[Them][QUEEN];
|
|
if (b)
|
|
attackUnits += QueenCheck * popcount<Max15>(b);
|
|
|
|
// Enemy rooks safe checks
|
|
b = b1 & ei.attackedBy[Them][ROOK];
|
|
if (b)
|
|
attackUnits += RookCheck * popcount<Max15>(b);
|
|
|
|
// Enemy bishops safe checks
|
|
b = b2 & ei.attackedBy[Them][BISHOP];
|
|
if (b)
|
|
attackUnits += BishopCheck * popcount<Max15>(b);
|
|
|
|
// Enemy knights safe checks
|
|
b = pos.attacks_from<KNIGHT>(ksq) & ei.attackedBy[Them][KNIGHT] & safe;
|
|
if (b)
|
|
attackUnits += KnightCheck * popcount<Max15>(b);
|
|
|
|
// To index KingDanger[] attackUnits must be in [0, 99] range
|
|
attackUnits = std::min(99, std::max(0, attackUnits));
|
|
|
|
// Finally, extract the king danger score from the KingDanger[]
|
|
// array and subtract the score from evaluation.
|
|
score -= KingDanger[Us == Search::RootColor][attackUnits];
|
|
}
|
|
|
|
if (Trace)
|
|
Tracing::scores[Us][KING] = score;
|
|
|
|
return score;
|
|
}
|
|
|
|
|
|
// evaluate_threats() assigns bonuses according to the type of attacking piece
|
|
// and the type of attacked one.
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_threats(const Position& pos, const EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Bitboard b, undefendedMinors, weakEnemies;
|
|
Score score = SCORE_ZERO;
|
|
|
|
// Undefended minors get penalized even if not under attack
|
|
undefendedMinors = pos.pieces(Them, BISHOP, KNIGHT)
|
|
& ~ei.attackedBy[Them][ALL_PIECES];
|
|
|
|
if (undefendedMinors)
|
|
score += UndefendedMinor;
|
|
|
|
// Enemy pieces not defended by a pawn and under our attack
|
|
weakEnemies = pos.pieces(Them)
|
|
& ~ei.attackedBy[Them][PAWN]
|
|
& ei.attackedBy[Us][ALL_PIECES];
|
|
|
|
// Add bonus according to type of attacked enemy piece and to the
|
|
// type of attacking piece, from knights to queens. Kings are not
|
|
// considered because are already handled in king evaluation.
|
|
if (weakEnemies)
|
|
for (PieceType pt1 = KNIGHT; pt1 < KING; ++pt1)
|
|
{
|
|
b = ei.attackedBy[Us][pt1] & weakEnemies;
|
|
if (b)
|
|
for (PieceType pt2 = PAWN; pt2 < KING; ++pt2)
|
|
if (b & pos.pieces(pt2))
|
|
score += Threat[pt1][pt2];
|
|
}
|
|
|
|
if (Trace)
|
|
Tracing::scores[Us][THREAT] = score;
|
|
|
|
return score;
|
|
}
|
|
|
|
|
|
// evaluate_passed_pawns() evaluates the passed pawns of the given color
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_passed_pawns(const Position& pos, const EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Bitboard b, squaresToQueen, defendedSquares, unsafeSquares, supportingPawns;
|
|
Score score = SCORE_ZERO;
|
|
|
|
b = ei.pi->passed_pawns(Us);
|
|
|
|
while (b)
|
|
{
|
|
Square s = pop_lsb(&b);
|
|
|
|
assert(pos.pawn_passed(Us, s));
|
|
|
|
int r = int(relative_rank(Us, s) - RANK_2);
|
|
int rr = r * (r - 1);
|
|
|
|
// Base bonus based on rank
|
|
Value mbonus = Value(17 * rr);
|
|
Value ebonus = Value(7 * (rr + r + 1));
|
|
|
|
if (rr)
|
|
{
|
|
Square blockSq = s + pawn_push(Us);
|
|
|
|
// Adjust bonus based on kings proximity
|
|
ebonus += Value(square_distance(pos.king_square(Them), blockSq) * 5 * rr)
|
|
- Value(square_distance(pos.king_square(Us ), blockSq) * 2 * rr);
|
|
|
|
// If blockSq is not the queening square then consider also a second push
|
|
if (relative_rank(Us, blockSq) != RANK_8)
|
|
ebonus -= Value(square_distance(pos.king_square(Us), blockSq + pawn_push(Us)) * rr);
|
|
|
|
// If the pawn is free to advance, increase bonus
|
|
if (pos.empty(blockSq))
|
|
{
|
|
squaresToQueen = forward_bb(Us, s);
|
|
|
|
// If there is an enemy rook or queen attacking the pawn from behind,
|
|
// add all X-ray attacks by the rook or queen. Otherwise consider only
|
|
// the squares in the pawn's path attacked or occupied by the enemy.
|
|
if ( unlikely(forward_bb(Them, s) & pos.pieces(Them, ROOK, QUEEN))
|
|
&& (forward_bb(Them, s) & pos.pieces(Them, ROOK, QUEEN) & pos.attacks_from<ROOK>(s)))
|
|
unsafeSquares = squaresToQueen;
|
|
else
|
|
unsafeSquares = squaresToQueen & (ei.attackedBy[Them][ALL_PIECES] | pos.pieces(Them));
|
|
|
|
if ( unlikely(forward_bb(Them, s) & pos.pieces(Us, ROOK, QUEEN))
|
|
&& (forward_bb(Them, s) & pos.pieces(Us, ROOK, QUEEN) & pos.attacks_from<ROOK>(s)))
|
|
defendedSquares = squaresToQueen;
|
|
else
|
|
defendedSquares = squaresToQueen & ei.attackedBy[Us][ALL_PIECES];
|
|
|
|
// If there aren't enemy attacks huge bonus, a bit smaller if at
|
|
// least block square is not attacked, otherwise smallest bonus.
|
|
int k = !unsafeSquares ? 15 : !(unsafeSquares & blockSq) ? 9 : 3;
|
|
|
|
// Big bonus if the path to queen is fully defended, a bit less
|
|
// if at least block square is defended.
|
|
if (defendedSquares == squaresToQueen)
|
|
k += 6;
|
|
|
|
else if (defendedSquares & blockSq)
|
|
k += (unsafeSquares & defendedSquares) == unsafeSquares ? 4 : 2;
|
|
|
|
mbonus += Value(k * rr), ebonus += Value(k * rr);
|
|
}
|
|
} // rr != 0
|
|
|
|
// Increase the bonus if the passed pawn is supported by a friendly pawn
|
|
// on the same rank and a bit smaller if it's on the previous rank.
|
|
supportingPawns = pos.pieces(Us, PAWN) & adjacent_files_bb(file_of(s));
|
|
if (supportingPawns & rank_bb(s))
|
|
ebonus += Value(r * 20);
|
|
|
|
else if (supportingPawns & rank_bb(s - pawn_push(Us)))
|
|
ebonus += Value(r * 12);
|
|
|
|
// Rook pawns are a special case: They are sometimes worse, and
|
|
// sometimes better than other passed pawns. It is difficult to find
|
|
// good rules for determining whether they are good or bad. For now,
|
|
// we try the following: Increase the value for rook pawns if the
|
|
// other side has no pieces apart from a knight, and decrease the
|
|
// value if the other side has a rook or queen.
|
|
if (file_of(s) == FILE_A || file_of(s) == FILE_H)
|
|
{
|
|
if (pos.non_pawn_material(Them) <= KnightValueMg)
|
|
ebonus += ebonus / 4;
|
|
|
|
else if (pos.pieces(Them, ROOK, QUEEN))
|
|
ebonus -= ebonus / 4;
|
|
}
|
|
|
|
if (pos.count<PAWN>(Us) < pos.count<PAWN>(Them))
|
|
ebonus += ebonus / 4;
|
|
|
|
score += make_score(mbonus, ebonus);
|
|
|
|
}
|
|
|
|
if (Trace)
|
|
Tracing::scores[Us][PASSED] = apply_weight(score, Weights[PassedPawns]);
|
|
|
|
// Add the scores to the middle game and endgame eval
|
|
return apply_weight(score, Weights[PassedPawns]);
|
|
}
|
|
|
|
|
|
// evaluate_unstoppable_pawns() scores the most advanced among the passed and
|
|
// candidate pawns. In case opponent has no pieces but pawns, this is somewhat
|
|
// related to the possibility pawns are unstoppable.
|
|
|
|
Score evaluate_unstoppable_pawns(const Position& pos, Color us, const EvalInfo& ei) {
|
|
|
|
Bitboard b = ei.pi->passed_pawns(us) | ei.pi->candidate_pawns(us);
|
|
|
|
if (!b || pos.non_pawn_material(~us))
|
|
return SCORE_ZERO;
|
|
|
|
return Unstoppable * int(relative_rank(us, frontmost_sq(us, b)));
|
|
}
|
|
|
|
|
|
// evaluate_space() computes the space evaluation for a given side. The
|
|
// space evaluation is a simple bonus based on the number of safe squares
|
|
// available for minor pieces on the central four files on ranks 2--4. Safe
|
|
// squares one, two or three squares behind a friendly pawn are counted
|
|
// twice. Finally, the space bonus is scaled by a weight taken from the
|
|
// material hash table. The aim is to improve play on game opening.
|
|
template<Color Us>
|
|
int evaluate_space(const Position& pos, const EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
// Find the safe squares for our pieces inside the area defined by
|
|
// SpaceMask[]. A square is unsafe if it is attacked by an enemy
|
|
// pawn, or if it is undefended and attacked by an enemy piece.
|
|
Bitboard safe = SpaceMask[Us]
|
|
& ~pos.pieces(Us, PAWN)
|
|
& ~ei.attackedBy[Them][PAWN]
|
|
& (ei.attackedBy[Us][ALL_PIECES] | ~ei.attackedBy[Them][ALL_PIECES]);
|
|
|
|
// Find all squares which are at most three squares behind some friendly pawn
|
|
Bitboard behind = pos.pieces(Us, PAWN);
|
|
behind |= (Us == WHITE ? behind >> 8 : behind << 8);
|
|
behind |= (Us == WHITE ? behind >> 16 : behind << 16);
|
|
|
|
// Since SpaceMask[Us] is fully on our half of the board
|
|
assert(unsigned(safe >> (Us == WHITE ? 32 : 0)) == 0);
|
|
|
|
// Count safe + (behind & safe) with a single popcount
|
|
return popcount<Full>((Us == WHITE ? safe << 32 : safe >> 32) | (behind & safe));
|
|
}
|
|
|
|
|
|
// interpolate() interpolates between a middle game and an endgame score,
|
|
// based on game phase. It also scales the return value by a ScaleFactor array.
|
|
|
|
Value interpolate(const Score& v, Phase ph, ScaleFactor sf) {
|
|
|
|
assert(mg_value(v) > -VALUE_INFINITE && mg_value(v) < VALUE_INFINITE);
|
|
assert(eg_value(v) > -VALUE_INFINITE && eg_value(v) < VALUE_INFINITE);
|
|
assert(ph >= PHASE_ENDGAME && ph <= PHASE_MIDGAME);
|
|
|
|
int e = (eg_value(v) * int(sf)) / SCALE_FACTOR_NORMAL;
|
|
int r = (mg_value(v) * int(ph) + e * int(PHASE_MIDGAME - ph)) / PHASE_MIDGAME;
|
|
return Value((r / GrainSize) * GrainSize); // Sign independent
|
|
}
|
|
|
|
// apply_weight() weights score v by score w trying to prevent overflow
|
|
Score apply_weight(Score v, Score w) {
|
|
return make_score((int(mg_value(v)) * mg_value(w)) / 0x100,
|
|
(int(eg_value(v)) * eg_value(w)) / 0x100);
|
|
}
|
|
|
|
// weight_option() computes the value of an evaluation weight, by combining
|
|
// two UCI-configurable weights (midgame and endgame) with an internal weight.
|
|
|
|
Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight) {
|
|
|
|
// Scale option value from 100 to 256
|
|
int mg = Options[mgOpt] * 256 / 100;
|
|
int eg = Options[egOpt] * 256 / 100;
|
|
|
|
return apply_weight(make_score(mg, eg), internalWeight);
|
|
}
|
|
|
|
|
|
// Tracing functions definitions
|
|
|
|
double to_cp(Value v) { return double(v) / double(PawnValueMg); }
|
|
|
|
void Tracing::add(int idx, Score wScore, Score bScore) {
|
|
|
|
scores[WHITE][idx] = wScore;
|
|
scores[BLACK][idx] = bScore;
|
|
}
|
|
|
|
void Tracing::row(const char* name, int idx) {
|
|
|
|
Score wScore = scores[WHITE][idx];
|
|
Score bScore = scores[BLACK][idx];
|
|
|
|
switch (idx) {
|
|
case PST: case IMBALANCE: case PAWN: case TOTAL:
|
|
stream << std::setw(20) << name << " | --- --- | --- --- | "
|
|
<< std::setw(6) << to_cp(mg_value(wScore)) << " "
|
|
<< std::setw(6) << to_cp(eg_value(wScore)) << " \n";
|
|
break;
|
|
default:
|
|
stream << std::setw(20) << name << " | " << std::noshowpos
|
|
<< std::setw(5) << to_cp(mg_value(wScore)) << " "
|
|
<< std::setw(5) << to_cp(eg_value(wScore)) << " | "
|
|
<< std::setw(5) << to_cp(mg_value(bScore)) << " "
|
|
<< std::setw(5) << to_cp(eg_value(bScore)) << " | "
|
|
<< std::showpos
|
|
<< std::setw(6) << to_cp(mg_value(wScore - bScore)) << " "
|
|
<< std::setw(6) << to_cp(eg_value(wScore - bScore)) << " \n";
|
|
}
|
|
}
|
|
|
|
std::string Tracing::do_trace(const Position& pos) {
|
|
|
|
stream.str("");
|
|
stream << std::showpoint << std::showpos << std::fixed << std::setprecision(2);
|
|
std::memset(scores, 0, 2 * (TOTAL + 1) * sizeof(Score));
|
|
|
|
do_evaluate<true>(pos);
|
|
|
|
std::string totals = stream.str();
|
|
stream.str("");
|
|
|
|
stream << std::setw(21) << "Eval term " << "| White | Black | Total \n"
|
|
<< " | MG EG | MG EG | MG EG \n"
|
|
<< "---------------------+-------------+-------------+---------------\n";
|
|
|
|
row("Material, PST, Tempo", PST);
|
|
row("Material imbalance", IMBALANCE);
|
|
row("Pawns", PAWN);
|
|
row("Knights", KNIGHT);
|
|
row("Bishops", BISHOP);
|
|
row("Rooks", ROOK);
|
|
row("Queens", QUEEN);
|
|
row("Mobility", MOBILITY);
|
|
row("King safety", KING);
|
|
row("Threats", THREAT);
|
|
row("Passed pawns", PASSED);
|
|
row("Space", SPACE);
|
|
|
|
stream << "---------------------+-------------+-------------+---------------\n";
|
|
row("Total", TOTAL);
|
|
stream << totals;
|
|
|
|
return stream.str();
|
|
}
|
|
}
|