droidfish/DroidFish/jni/stockfish/bitboard.cpp
2018-02-01 18:45:14 +01:00

327 lines
10 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include "bitboard.h"
#include "misc.h"
uint8_t PopCnt16[1 << 16];
int SquareDistance[SQUARE_NB][SQUARE_NB];
Bitboard SquareBB[SQUARE_NB];
Bitboard FileBB[FILE_NB];
Bitboard RankBB[RANK_NB];
Bitboard AdjacentFilesBB[FILE_NB];
Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
Bitboard DistanceRingBB[SQUARE_NB][8];
Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
Magic RookMagics[SQUARE_NB];
Magic BishopMagics[SQUARE_NB];
namespace {
// De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL;
const uint32_t DeBruijn32 = 0x783A9B23;
int MSBTable[256]; // To implement software msb()
Square BSFTable[SQUARE_NB]; // To implement software bitscan
Bitboard RookTable[0x19000]; // To store rook attacks
Bitboard BishopTable[0x1480]; // To store bishop attacks
void init_magics(Bitboard table[], Magic magics[], Direction directions[]);
// bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
// Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
unsigned bsf_index(Bitboard b) {
b ^= b - 1;
return Is64Bit ? (b * DeBruijn64) >> 58
: ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
}
// popcount16() counts the non-zero bits using SWAR-Popcount algorithm
unsigned popcount16(unsigned u) {
u -= (u >> 1) & 0x5555U;
u = ((u >> 2) & 0x3333U) + (u & 0x3333U);
u = ((u >> 4) + u) & 0x0F0FU;
return (u * 0x0101U) >> 8;
}
}
#ifdef NO_BSF
/// Software fall-back of lsb() and msb() for CPU lacking hardware support
Square lsb(Bitboard b) {
assert(b);
return BSFTable[bsf_index(b)];
}
Square msb(Bitboard b) {
assert(b);
unsigned b32;
int result = 0;
if (b > 0xFFFFFFFF)
{
b >>= 32;
result = 32;
}
b32 = unsigned(b);
if (b32 > 0xFFFF)
{
b32 >>= 16;
result += 16;
}
if (b32 > 0xFF)
{
b32 >>= 8;
result += 8;
}
return Square(result + MSBTable[b32]);
}
#endif // ifdef NO_BSF
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
/// to be printed to standard output. Useful for debugging.
const std::string Bitboards::pretty(Bitboard b) {
std::string s = "+---+---+---+---+---+---+---+---+\n";
for (Rank r = RANK_8; r >= RANK_1; --r)
{
for (File f = FILE_A; f <= FILE_H; ++f)
s += b & make_square(f, r) ? "| X " : "| ";
s += "|\n+---+---+---+---+---+---+---+---+\n";
}
return s;
}
/// Bitboards::init() initializes various bitboard tables. It is called at
/// startup and relies on global objects to be already zero-initialized.
void Bitboards::init() {
for (unsigned i = 0; i < (1 << 16); ++i)
PopCnt16[i] = (uint8_t) popcount16(i);
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
SquareBB[s] = 1ULL << s;
BSFTable[bsf_index(SquareBB[s])] = s;
}
for (Bitboard b = 2; b < 256; ++b)
MSBTable[b] = MSBTable[b - 1] + !more_than_one(b);
for (File f = FILE_A; f <= FILE_H; ++f)
FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
for (Rank r = RANK_1; r <= RANK_8; ++r)
RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
for (File f = FILE_A; f <= FILE_H; ++f)
AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
for (Rank r = RANK_1; r < RANK_8; ++r)
ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]);
for (Color c = WHITE; c <= BLACK; ++c)
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)];
PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s];
}
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
if (s1 != s2)
{
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
}
int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } };
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt : { PAWN, KNIGHT, KING })
for (Square s = SQ_A1; s <= SQ_H8; ++s)
for (int i = 0; steps[pt][i]; ++i)
{
Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]);
if (is_ok(to) && distance(s, to) < 3)
{
if (pt == PAWN)
PawnAttacks[c][s] |= to;
else
PseudoAttacks[pt][s] |= to;
}
}
Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST };
Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
init_magics(RookTable, RookMagics, RookDirections);
init_magics(BishopTable, BishopMagics, BishopDirections);
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
{
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0);
for (PieceType pt : { BISHOP, ROOK })
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
if (!(PseudoAttacks[pt][s1] & s2))
continue;
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]);
}
}
}
namespace {
Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) {
Bitboard attack = 0;
for (int i = 0; i < 4; ++i)
for (Square s = sq + directions[i];
is_ok(s) && distance(s, s - directions[i]) == 1;
s += directions[i])
{
attack |= s;
if (occupied & s)
break;
}
return attack;
}
// init_magics() computes all rook and bishop attacks at startup. Magic
// bitboards are used to look up attacks of sliding pieces. As a reference see
// chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
// use the so called "fancy" approach.
void init_magics(Bitboard table[], Magic magics[], Direction directions[]) {
// Optimal PRNG seeds to pick the correct magics in the shortest time
int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 },
{ 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } };
Bitboard occupancy[4096], reference[4096], edges, b;
int epoch[4096] = {}, cnt = 0, size = 0;
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
// Board edges are not considered in the relevant occupancies
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
// Given a square 's', the mask is the bitboard of sliding attacks from
// 's' computed on an empty board. The index must be big enough to contain
// all the attacks for each possible subset of the mask and so is 2 power
// the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index.
Magic& m = magics[s];
m.mask = sliding_attack(directions, s, 0) & ~edges;
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
// Set the offset for the attacks table of the square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attack bitboard in reference[].
b = size = 0;
do {
occupancy[size] = b;
reference[size] = sliding_attack(directions, s, b);
if (HasPext)
m.attacks[pext(b, m.mask)] = reference[size];
size++;
b = (b - m.mask) & m.mask;
} while (b);
if (HasPext)
continue;
PRNG rng(seeds[Is64Bit][rank_of(s)]);
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
for (int i = 0; i < size; )
{
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
m.magic = rng.sparse_rand<Bitboard>();
// A good magic must map every possible occupancy to an index that
// looks up the correct sliding attack in the attacks[s] database.
// Note that we build up the database for square 's' as a side
// effect of verifying the magic. Keep track of the attempt count
// and save it in epoch[], little speed-up trick to avoid resetting
// m.attacks[] after every failed attempt.
for (++cnt, i = 0; i < size; ++i)
{
unsigned idx = m.index(occupancy[i]);
if (epoch[idx] < cnt)
{
epoch[idx] = cnt;
m.attacks[idx] = reference[i];
}
else if (m.attacks[idx] != reference[i])
break;
}
}
}
}
}