mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2024-12-02 16:32:59 +01:00
327 lines
10 KiB
C++
327 lines
10 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
|
|
#include "bitboard.h"
|
|
#include "misc.h"
|
|
|
|
uint8_t PopCnt16[1 << 16];
|
|
int SquareDistance[SQUARE_NB][SQUARE_NB];
|
|
|
|
Bitboard SquareBB[SQUARE_NB];
|
|
Bitboard FileBB[FILE_NB];
|
|
Bitboard RankBB[RANK_NB];
|
|
Bitboard AdjacentFilesBB[FILE_NB];
|
|
Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
|
|
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
|
|
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
|
|
Bitboard DistanceRingBB[SQUARE_NB][8];
|
|
Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
|
|
Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
|
|
Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
|
|
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
|
|
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
|
|
|
|
Magic RookMagics[SQUARE_NB];
|
|
Magic BishopMagics[SQUARE_NB];
|
|
|
|
namespace {
|
|
|
|
// De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
|
|
const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL;
|
|
const uint32_t DeBruijn32 = 0x783A9B23;
|
|
|
|
int MSBTable[256]; // To implement software msb()
|
|
Square BSFTable[SQUARE_NB]; // To implement software bitscan
|
|
Bitboard RookTable[0x19000]; // To store rook attacks
|
|
Bitboard BishopTable[0x1480]; // To store bishop attacks
|
|
|
|
void init_magics(Bitboard table[], Magic magics[], Direction directions[]);
|
|
|
|
// bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
|
|
// Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
|
|
|
|
unsigned bsf_index(Bitboard b) {
|
|
b ^= b - 1;
|
|
return Is64Bit ? (b * DeBruijn64) >> 58
|
|
: ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
|
|
}
|
|
|
|
|
|
// popcount16() counts the non-zero bits using SWAR-Popcount algorithm
|
|
|
|
unsigned popcount16(unsigned u) {
|
|
u -= (u >> 1) & 0x5555U;
|
|
u = ((u >> 2) & 0x3333U) + (u & 0x3333U);
|
|
u = ((u >> 4) + u) & 0x0F0FU;
|
|
return (u * 0x0101U) >> 8;
|
|
}
|
|
}
|
|
|
|
#ifdef NO_BSF
|
|
|
|
/// Software fall-back of lsb() and msb() for CPU lacking hardware support
|
|
|
|
Square lsb(Bitboard b) {
|
|
assert(b);
|
|
return BSFTable[bsf_index(b)];
|
|
}
|
|
|
|
Square msb(Bitboard b) {
|
|
|
|
assert(b);
|
|
unsigned b32;
|
|
int result = 0;
|
|
|
|
if (b > 0xFFFFFFFF)
|
|
{
|
|
b >>= 32;
|
|
result = 32;
|
|
}
|
|
|
|
b32 = unsigned(b);
|
|
|
|
if (b32 > 0xFFFF)
|
|
{
|
|
b32 >>= 16;
|
|
result += 16;
|
|
}
|
|
|
|
if (b32 > 0xFF)
|
|
{
|
|
b32 >>= 8;
|
|
result += 8;
|
|
}
|
|
|
|
return Square(result + MSBTable[b32]);
|
|
}
|
|
|
|
#endif // ifdef NO_BSF
|
|
|
|
|
|
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
|
|
/// to be printed to standard output. Useful for debugging.
|
|
|
|
const std::string Bitboards::pretty(Bitboard b) {
|
|
|
|
std::string s = "+---+---+---+---+---+---+---+---+\n";
|
|
|
|
for (Rank r = RANK_8; r >= RANK_1; --r)
|
|
{
|
|
for (File f = FILE_A; f <= FILE_H; ++f)
|
|
s += b & make_square(f, r) ? "| X " : "| ";
|
|
|
|
s += "|\n+---+---+---+---+---+---+---+---+\n";
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
/// Bitboards::init() initializes various bitboard tables. It is called at
|
|
/// startup and relies on global objects to be already zero-initialized.
|
|
|
|
void Bitboards::init() {
|
|
|
|
for (unsigned i = 0; i < (1 << 16); ++i)
|
|
PopCnt16[i] = (uint8_t) popcount16(i);
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
|
{
|
|
SquareBB[s] = 1ULL << s;
|
|
BSFTable[bsf_index(SquareBB[s])] = s;
|
|
}
|
|
|
|
for (Bitboard b = 2; b < 256; ++b)
|
|
MSBTable[b] = MSBTable[b - 1] + !more_than_one(b);
|
|
|
|
for (File f = FILE_A; f <= FILE_H; ++f)
|
|
FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
|
|
|
|
for (Rank r = RANK_1; r <= RANK_8; ++r)
|
|
RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
|
|
|
|
for (File f = FILE_A; f <= FILE_H; ++f)
|
|
AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
|
|
|
|
for (Rank r = RANK_1; r < RANK_8; ++r)
|
|
ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]);
|
|
|
|
for (Color c = WHITE; c <= BLACK; ++c)
|
|
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
|
{
|
|
ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)];
|
|
PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
|
|
PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s];
|
|
}
|
|
|
|
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
|
|
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
|
|
if (s1 != s2)
|
|
{
|
|
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
|
|
DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
|
|
}
|
|
|
|
int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } };
|
|
|
|
for (Color c = WHITE; c <= BLACK; ++c)
|
|
for (PieceType pt : { PAWN, KNIGHT, KING })
|
|
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
|
for (int i = 0; steps[pt][i]; ++i)
|
|
{
|
|
Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]);
|
|
|
|
if (is_ok(to) && distance(s, to) < 3)
|
|
{
|
|
if (pt == PAWN)
|
|
PawnAttacks[c][s] |= to;
|
|
else
|
|
PseudoAttacks[pt][s] |= to;
|
|
}
|
|
}
|
|
|
|
Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST };
|
|
Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
|
|
|
|
init_magics(RookTable, RookMagics, RookDirections);
|
|
init_magics(BishopTable, BishopMagics, BishopDirections);
|
|
|
|
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
|
|
{
|
|
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
|
|
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0);
|
|
|
|
for (PieceType pt : { BISHOP, ROOK })
|
|
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
|
|
{
|
|
if (!(PseudoAttacks[pt][s1] & s2))
|
|
continue;
|
|
|
|
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
|
|
BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) {
|
|
|
|
Bitboard attack = 0;
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
for (Square s = sq + directions[i];
|
|
is_ok(s) && distance(s, s - directions[i]) == 1;
|
|
s += directions[i])
|
|
{
|
|
attack |= s;
|
|
|
|
if (occupied & s)
|
|
break;
|
|
}
|
|
|
|
return attack;
|
|
}
|
|
|
|
|
|
// init_magics() computes all rook and bishop attacks at startup. Magic
|
|
// bitboards are used to look up attacks of sliding pieces. As a reference see
|
|
// chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
|
|
// use the so called "fancy" approach.
|
|
|
|
void init_magics(Bitboard table[], Magic magics[], Direction directions[]) {
|
|
|
|
// Optimal PRNG seeds to pick the correct magics in the shortest time
|
|
int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 },
|
|
{ 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } };
|
|
|
|
Bitboard occupancy[4096], reference[4096], edges, b;
|
|
int epoch[4096] = {}, cnt = 0, size = 0;
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
|
{
|
|
// Board edges are not considered in the relevant occupancies
|
|
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
|
|
|
|
// Given a square 's', the mask is the bitboard of sliding attacks from
|
|
// 's' computed on an empty board. The index must be big enough to contain
|
|
// all the attacks for each possible subset of the mask and so is 2 power
|
|
// the number of 1s of the mask. Hence we deduce the size of the shift to
|
|
// apply to the 64 or 32 bits word to get the index.
|
|
Magic& m = magics[s];
|
|
m.mask = sliding_attack(directions, s, 0) & ~edges;
|
|
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
|
|
|
|
// Set the offset for the attacks table of the square. We have individual
|
|
// table sizes for each square with "Fancy Magic Bitboards".
|
|
m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
|
|
|
|
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
|
|
// store the corresponding sliding attack bitboard in reference[].
|
|
b = size = 0;
|
|
do {
|
|
occupancy[size] = b;
|
|
reference[size] = sliding_attack(directions, s, b);
|
|
|
|
if (HasPext)
|
|
m.attacks[pext(b, m.mask)] = reference[size];
|
|
|
|
size++;
|
|
b = (b - m.mask) & m.mask;
|
|
} while (b);
|
|
|
|
if (HasPext)
|
|
continue;
|
|
|
|
PRNG rng(seeds[Is64Bit][rank_of(s)]);
|
|
|
|
// Find a magic for square 's' picking up an (almost) random number
|
|
// until we find the one that passes the verification test.
|
|
for (int i = 0; i < size; )
|
|
{
|
|
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
|
|
m.magic = rng.sparse_rand<Bitboard>();
|
|
|
|
// A good magic must map every possible occupancy to an index that
|
|
// looks up the correct sliding attack in the attacks[s] database.
|
|
// Note that we build up the database for square 's' as a side
|
|
// effect of verifying the magic. Keep track of the attempt count
|
|
// and save it in epoch[], little speed-up trick to avoid resetting
|
|
// m.attacks[] after every failed attempt.
|
|
for (++cnt, i = 0; i < size; ++i)
|
|
{
|
|
unsigned idx = m.index(occupancy[i]);
|
|
|
|
if (epoch[idx] < cnt)
|
|
{
|
|
epoch[idx] = cnt;
|
|
m.attacks[idx] = reference[i];
|
|
}
|
|
else if (m.attacks[idx] != reference[i])
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|