droidfish/DroidFish/jni/stockfish/timeman.cpp

113 lines
3.9 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include "search.h"
#include "timeman.h"
#include "uci.h"
TimeManagement Time; // Our global time management object
namespace {
enum TimeType { OptimumTime, MaxTime };
int remaining(int myTime, int myInc, int moveOverhead, int movesToGo,
int moveNum, bool ponder, TimeType type) {
if (myTime <= 0)
return 0;
double ratio; // Which ratio of myTime we are going to use
// Usage of increment follows quadratic distribution with the maximum at move 25
double inc = myInc * std::max(55.0, 120 - 0.12 * (moveNum - 25) * (moveNum - 25));
// In moves-to-go we distribute time according to a quadratic function with
// the maximum around move 20 for 40 moves in y time case.
if (movesToGo)
{
ratio = (type == OptimumTime ? 1.0 : 6.0) / std::min(50, movesToGo);
if (moveNum <= 40)
ratio *= 1.1 - 0.001 * (moveNum - 20) * (moveNum - 20);
else
ratio *= 1.5;
ratio *= 1 + inc / (myTime * 8.5);
}
// Otherwise we increase usage of remaining time as the game goes on
else
{
double k = 1 + 20 * moveNum / (500.0 + moveNum);
ratio = (type == OptimumTime ? 0.017 : 0.07) * (k + inc / myTime);
}
int time = int(std::min(1.0, ratio) * std::max(0, myTime - moveOverhead));
if (type == OptimumTime && ponder)
time = 5 * time / 4;
return time;
}
} // namespace
/// init() is called at the beginning of the search and calculates the allowed
/// thinking time out of the time control and current game ply. We support four
/// different kinds of time controls, passed in 'limits':
///
/// inc == 0 && movestogo == 0 means: x basetime [sudden death!]
/// inc == 0 && movestogo != 0 means: x moves in y minutes
/// inc > 0 && movestogo == 0 means: x basetime + z increment
/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment
void TimeManagement::init(Search::LimitsType& limits, Color us, int ply)
{
int moveOverhead = Options["Move Overhead"];
int npmsec = Options["nodestime"];
bool ponder = Options["Ponder"];
// If we have to play in 'nodes as time' mode, then convert from time
// to nodes, and use resulting values in time management formulas.
// WARNING: Given npms (nodes per millisecond) must be much lower then
// the real engine speed to avoid time losses.
if (npmsec)
{
if (!availableNodes) // Only once at game start
availableNodes = npmsec * limits.time[us]; // Time is in msec
// Convert from millisecs to nodes
limits.time[us] = (int)availableNodes;
limits.inc[us] *= npmsec;
limits.npmsec = npmsec;
}
int moveNum = (ply + 1) / 2;
startTime = limits.startTime;
optimumTime = remaining(limits.time[us], limits.inc[us], moveOverhead,
limits.movestogo, moveNum, ponder, OptimumTime);
maximumTime = remaining(limits.time[us], limits.inc[us], moveOverhead,
limits.movestogo, moveNum, ponder, MaxTime);
}