mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-02-08 13:19:29 +01:00
1803 lines
63 KiB
C++
1803 lines
63 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
#include "book.h"
|
|
#include "evaluate.h"
|
|
#include "movegen.h"
|
|
#include "movepick.h"
|
|
#include "notation.h"
|
|
#include "search.h"
|
|
#include "timeman.h"
|
|
#include "thread.h"
|
|
#include "tt.h"
|
|
#include "ucioption.h"
|
|
|
|
namespace Search {
|
|
|
|
volatile SignalsType Signals;
|
|
LimitsType Limits;
|
|
std::vector<RootMove> RootMoves;
|
|
Position RootPos;
|
|
Color RootColor;
|
|
Time::point SearchTime;
|
|
StateStackPtr SetupStates;
|
|
}
|
|
|
|
using std::string;
|
|
using Eval::evaluate;
|
|
using namespace Search;
|
|
|
|
namespace {
|
|
|
|
// Set to true to force running with one thread. Used for debugging
|
|
const bool FakeSplit = false;
|
|
|
|
// This is the minimum interval in msec between two check_time() calls
|
|
const int TimerResolution = 5;
|
|
|
|
// Different node types, used as template parameter
|
|
enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV };
|
|
|
|
// Dynamic razoring margin based on depth
|
|
inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); }
|
|
|
|
// Futility lookup tables (initialized at startup) and their access functions
|
|
Value FutilityMargins[16][64]; // [depth][moveNumber]
|
|
int FutilityMoveCounts[32]; // [depth]
|
|
|
|
inline Value futility_margin(Depth d, int mn) {
|
|
|
|
return d < 7 * ONE_PLY ? FutilityMargins[std::max(int(d), 1)][std::min(mn, 63)]
|
|
: 2 * VALUE_INFINITE;
|
|
}
|
|
|
|
// Reduction lookup tables (initialized at startup) and their access function
|
|
int8_t Reductions[2][64][64]; // [pv][depth][moveNumber]
|
|
|
|
template <bool PvNode> inline Depth reduction(Depth d, int mn) {
|
|
|
|
return (Depth) Reductions[PvNode][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)];
|
|
}
|
|
|
|
size_t PVSize, PVIdx;
|
|
TimeManager TimeMgr;
|
|
int BestMoveChanges;
|
|
Value DrawValue[COLOR_NB];
|
|
History Hist;
|
|
Gains Gain;
|
|
|
|
template <NodeType NT>
|
|
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
|
|
|
|
template <NodeType NT, bool InCheck>
|
|
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
|
|
|
|
void id_loop(Position& pos);
|
|
Value value_to_tt(Value v, int ply);
|
|
Value value_from_tt(Value v, int ply);
|
|
bool check_is_dangerous(const Position& pos, Move move, Value futilityBase, Value beta);
|
|
bool allows(const Position& pos, Move first, Move second);
|
|
bool refutes(const Position& pos, Move first, Move second);
|
|
string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
|
|
|
|
struct Skill {
|
|
Skill(int l) : level(l), best(MOVE_NONE) {}
|
|
~Skill() {
|
|
if (enabled()) // Swap best PV line with the sub-optimal one
|
|
std::swap(RootMoves[0], *std::find(RootMoves.begin(),
|
|
RootMoves.end(), best ? best : pick_move()));
|
|
}
|
|
|
|
bool enabled() const { return level < 20; }
|
|
bool time_to_pick(int depth) const { return depth == 1 + level; }
|
|
Move pick_move();
|
|
|
|
int level;
|
|
Move best;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
/// Search::init() is called during startup to initialize various lookup tables
|
|
|
|
void Search::init() {
|
|
|
|
int d; // depth (ONE_PLY == 2)
|
|
int hd; // half depth (ONE_PLY == 1)
|
|
int mc; // moveCount
|
|
|
|
// Init reductions array
|
|
for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++)
|
|
{
|
|
double pvRed = log(double(hd)) * log(double(mc)) / 3.0;
|
|
double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
|
|
Reductions[1][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0);
|
|
Reductions[0][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0);
|
|
}
|
|
|
|
// Init futility margins array
|
|
for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
|
|
FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45);
|
|
|
|
// Init futility move count array
|
|
for (d = 0; d < 32; d++)
|
|
FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(double(d), 2.0));
|
|
}
|
|
|
|
|
|
/// Search::perft() is our utility to verify move generation. All the leaf nodes
|
|
/// up to the given depth are generated and counted and the sum returned.
|
|
|
|
size_t Search::perft(Position& pos, Depth depth) {
|
|
|
|
// At the last ply just return the number of legal moves (leaf nodes)
|
|
if (depth == ONE_PLY)
|
|
return MoveList<LEGAL>(pos).size();
|
|
|
|
StateInfo st;
|
|
size_t cnt = 0;
|
|
CheckInfo ci(pos);
|
|
|
|
for (MoveList<LEGAL> ml(pos); !ml.end(); ++ml)
|
|
{
|
|
pos.do_move(ml.move(), st, ci, pos.move_gives_check(ml.move(), ci));
|
|
cnt += perft(pos, depth - ONE_PLY);
|
|
pos.undo_move(ml.move());
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
|
|
/// Search::think() is the external interface to Stockfish's search, and is
|
|
/// called by the main thread when the program receives the UCI 'go' command. It
|
|
/// searches from RootPos and at the end prints the "bestmove" to output.
|
|
|
|
void Search::think() {
|
|
|
|
static PolyglotBook book; // Defined static to initialize the PRNG only once
|
|
|
|
RootColor = RootPos.side_to_move();
|
|
TimeMgr.init(Limits, RootPos.game_ply(), RootColor);
|
|
|
|
if (RootMoves.empty())
|
|
{
|
|
RootMoves.push_back(MOVE_NONE);
|
|
sync_cout << "info depth 0 score "
|
|
<< score_to_uci(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
|
|
<< sync_endl;
|
|
|
|
goto finalize;
|
|
}
|
|
|
|
if (Options["OwnBook"] && !Limits.infinite && !Limits.mate)
|
|
{
|
|
Move bookMove = book.probe(RootPos, Options["Book File"], Options["Best Book Move"]);
|
|
|
|
if (bookMove && std::count(RootMoves.begin(), RootMoves.end(), bookMove))
|
|
{
|
|
std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), bookMove));
|
|
goto finalize;
|
|
}
|
|
}
|
|
|
|
if (Options["Contempt Factor"] && !Options["UCI_AnalyseMode"])
|
|
{
|
|
int cf = Options["Contempt Factor"] * PawnValueMg / 100; // From centipawns
|
|
cf = cf * Material::game_phase(RootPos) / PHASE_MIDGAME; // Scale down with phase
|
|
DrawValue[ RootColor] = VALUE_DRAW - Value(cf);
|
|
DrawValue[~RootColor] = VALUE_DRAW + Value(cf);
|
|
}
|
|
else
|
|
DrawValue[WHITE] = DrawValue[BLACK] = VALUE_DRAW;
|
|
|
|
if (Options["Use Search Log"])
|
|
{
|
|
Log log(Options["Search Log Filename"]);
|
|
log << "\nSearching: " << RootPos.fen()
|
|
<< "\ninfinite: " << Limits.infinite
|
|
<< " ponder: " << Limits.ponder
|
|
<< " time: " << Limits.time[RootColor]
|
|
<< " increment: " << Limits.inc[RootColor]
|
|
<< " moves to go: " << Limits.movestogo
|
|
<< std::endl;
|
|
}
|
|
|
|
// Reset the threads, still sleeping: will be wake up at split time
|
|
for (size_t i = 0; i < Threads.size(); i++)
|
|
Threads[i]->maxPly = 0;
|
|
|
|
Threads.sleepWhileIdle = Options["Use Sleeping Threads"];
|
|
|
|
// Set best timer interval to avoid lagging under time pressure. Timer is
|
|
// used to check for remaining available thinking time.
|
|
Threads.timer->msec =
|
|
Limits.use_time_management() ? std::min(100, std::max(TimeMgr.available_time() / 16, TimerResolution)) :
|
|
Limits.nodes ? 2 * TimerResolution
|
|
: 100;
|
|
|
|
Threads.timer->notify_one(); // Wake up the recurring timer
|
|
|
|
id_loop(RootPos); // Let's start searching !
|
|
|
|
Threads.timer->msec = 0; // Stop the timer
|
|
Threads.sleepWhileIdle = true; // Send idle threads to sleep
|
|
|
|
if (Options["Use Search Log"])
|
|
{
|
|
Time::point elapsed = Time::now() - SearchTime + 1;
|
|
|
|
Log log(Options["Search Log Filename"]);
|
|
log << "Nodes: " << RootPos.nodes_searched()
|
|
<< "\nNodes/second: " << RootPos.nodes_searched() * 1000 / elapsed
|
|
<< "\nBest move: " << move_to_san(RootPos, RootMoves[0].pv[0]);
|
|
|
|
StateInfo st;
|
|
RootPos.do_move(RootMoves[0].pv[0], st);
|
|
log << "\nPonder move: " << move_to_san(RootPos, RootMoves[0].pv[1]) << std::endl;
|
|
RootPos.undo_move(RootMoves[0].pv[0]);
|
|
}
|
|
|
|
finalize:
|
|
|
|
// When we reach max depth we arrive here even without Signals.stop is raised,
|
|
// but if we are pondering or in infinite search, according to UCI protocol,
|
|
// we shouldn't print the best move before the GUI sends a "stop" or "ponderhit"
|
|
// command. We simply wait here until GUI sends one of those commands (that
|
|
// raise Signals.stop).
|
|
if (!Signals.stop && (Limits.ponder || Limits.infinite))
|
|
{
|
|
Signals.stopOnPonderhit = true;
|
|
RootPos.this_thread()->wait_for(Signals.stop);
|
|
}
|
|
|
|
// Best move could be MOVE_NONE when searching on a stalemate position
|
|
sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], RootPos.is_chess960())
|
|
<< " ponder " << move_to_uci(RootMoves[0].pv[1], RootPos.is_chess960())
|
|
<< sync_endl;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
// id_loop() is the main iterative deepening loop. It calls search() repeatedly
|
|
// with increasing depth until the allocated thinking time has been consumed,
|
|
// user stops the search, or the maximum search depth is reached.
|
|
|
|
void id_loop(Position& pos) {
|
|
|
|
Stack ss[MAX_PLY_PLUS_2];
|
|
int depth, prevBestMoveChanges;
|
|
Value bestValue, alpha, beta, delta;
|
|
|
|
memset(ss, 0, 4 * sizeof(Stack));
|
|
depth = BestMoveChanges = 0;
|
|
bestValue = delta = -VALUE_INFINITE;
|
|
ss->currentMove = MOVE_NULL; // Hack to skip update gains
|
|
TT.new_search();
|
|
Hist.clear();
|
|
Gain.clear();
|
|
|
|
PVSize = Options["MultiPV"];
|
|
Skill skill(Options["Skill Level"]);
|
|
|
|
// Do we have to play with skill handicap? In this case enable MultiPV search
|
|
// that we will use behind the scenes to retrieve a set of possible moves.
|
|
if (skill.enabled() && PVSize < 4)
|
|
PVSize = 4;
|
|
|
|
PVSize = std::min(PVSize, RootMoves.size());
|
|
|
|
// Iterative deepening loop until requested to stop or target depth reached
|
|
while (++depth <= MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth))
|
|
{
|
|
// Save last iteration's scores before first PV line is searched and all
|
|
// the move scores but the (new) PV are set to -VALUE_INFINITE.
|
|
for (size_t i = 0; i < RootMoves.size(); i++)
|
|
RootMoves[i].prevScore = RootMoves[i].score;
|
|
|
|
prevBestMoveChanges = BestMoveChanges; // Only sensible when PVSize == 1
|
|
BestMoveChanges = 0;
|
|
|
|
// MultiPV loop. We perform a full root search for each PV line
|
|
for (PVIdx = 0; PVIdx < PVSize; PVIdx++)
|
|
{
|
|
// Set aspiration window default width
|
|
if (depth >= 5 && abs(RootMoves[PVIdx].prevScore) < VALUE_KNOWN_WIN)
|
|
{
|
|
delta = Value(16);
|
|
alpha = RootMoves[PVIdx].prevScore - delta;
|
|
beta = RootMoves[PVIdx].prevScore + delta;
|
|
}
|
|
else
|
|
{
|
|
alpha = -VALUE_INFINITE;
|
|
beta = VALUE_INFINITE;
|
|
}
|
|
|
|
// Start with a small aspiration window and, in case of fail high/low,
|
|
// research with bigger window until not failing high/low anymore.
|
|
while (true)
|
|
{
|
|
// Search starts from ss+1 to allow referencing (ss-1). This is
|
|
// needed by update gains and ss copy when splitting at Root.
|
|
bestValue = search<Root>(pos, ss+1, alpha, beta, depth * ONE_PLY);
|
|
|
|
// Bring to front the best move. It is critical that sorting is
|
|
// done with a stable algorithm because all the values but the first
|
|
// and eventually the new best one are set to -VALUE_INFINITE and
|
|
// we want to keep the same order for all the moves but the new
|
|
// PV that goes to the front. Note that in case of MultiPV search
|
|
// the already searched PV lines are preserved.
|
|
std::stable_sort(RootMoves.begin() + PVIdx, RootMoves.end());
|
|
|
|
// Write PV back to transposition table in case the relevant
|
|
// entries have been overwritten during the search.
|
|
for (size_t i = 0; i <= PVIdx; i++)
|
|
RootMoves[i].insert_pv_in_tt(pos);
|
|
|
|
// If search has been stopped return immediately. Sorting and
|
|
// writing PV back to TT is safe becuase RootMoves is still
|
|
// valid, although refers to previous iteration.
|
|
if (Signals.stop)
|
|
return;
|
|
|
|
// In case of failing high/low increase aspiration window and
|
|
// research, otherwise exit the loop.
|
|
if (bestValue > alpha && bestValue < beta)
|
|
break;
|
|
|
|
// Give some update (without cluttering the UI) before to research
|
|
if (Time::now() - SearchTime > 3000)
|
|
sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
|
|
|
|
if (abs(bestValue) >= VALUE_KNOWN_WIN)
|
|
{
|
|
alpha = -VALUE_INFINITE;
|
|
beta = VALUE_INFINITE;
|
|
}
|
|
else if (bestValue >= beta)
|
|
{
|
|
beta += delta;
|
|
delta += delta / 2;
|
|
}
|
|
else
|
|
{
|
|
Signals.failedLowAtRoot = true;
|
|
Signals.stopOnPonderhit = false;
|
|
|
|
alpha -= delta;
|
|
delta += delta / 2;
|
|
}
|
|
|
|
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
|
|
}
|
|
|
|
// Sort the PV lines searched so far and update the GUI
|
|
std::stable_sort(RootMoves.begin(), RootMoves.begin() + PVIdx + 1);
|
|
|
|
if (PVIdx + 1 == PVSize || Time::now() - SearchTime > 3000)
|
|
sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
|
|
}
|
|
|
|
// Do we need to pick now the sub-optimal best move ?
|
|
if (skill.enabled() && skill.time_to_pick(depth))
|
|
skill.pick_move();
|
|
|
|
if (Options["Use Search Log"])
|
|
{
|
|
Log log(Options["Search Log Filename"]);
|
|
log << pretty_pv(pos, depth, bestValue, Time::now() - SearchTime, &RootMoves[0].pv[0])
|
|
<< std::endl;
|
|
}
|
|
|
|
// Do we have found a "mate in x"?
|
|
if ( Limits.mate
|
|
&& bestValue >= VALUE_MATE_IN_MAX_PLY
|
|
&& VALUE_MATE - bestValue <= 2 * Limits.mate)
|
|
Signals.stop = true;
|
|
|
|
// Do we have time for the next iteration? Can we stop searching now?
|
|
if (Limits.use_time_management() && !Signals.stopOnPonderhit)
|
|
{
|
|
bool stop = false; // Local variable, not the volatile Signals.stop
|
|
|
|
// Take in account some extra time if the best move has changed
|
|
if (depth > 4 && depth < 50 && PVSize == 1)
|
|
TimeMgr.pv_instability(BestMoveChanges, prevBestMoveChanges);
|
|
|
|
// Stop search if most of available time is already consumed. We
|
|
// probably don't have enough time to search the first move at the
|
|
// next iteration anyway.
|
|
if (Time::now() - SearchTime > (TimeMgr.available_time() * 62) / 100)
|
|
stop = true;
|
|
|
|
// Stop search early if one move seems to be much better than others
|
|
if ( depth >= 12
|
|
&& !stop
|
|
&& PVSize == 1
|
|
&& bestValue > VALUE_MATED_IN_MAX_PLY
|
|
&& ( RootMoves.size() == 1
|
|
|| Time::now() - SearchTime > (TimeMgr.available_time() * 20) / 100))
|
|
{
|
|
Value rBeta = bestValue - 2 * PawnValueMg;
|
|
(ss+1)->excludedMove = RootMoves[0].pv[0];
|
|
(ss+1)->skipNullMove = true;
|
|
Value v = search<NonPV>(pos, ss+1, rBeta - 1, rBeta, (depth - 3) * ONE_PLY);
|
|
(ss+1)->skipNullMove = false;
|
|
(ss+1)->excludedMove = MOVE_NONE;
|
|
|
|
if (v < rBeta)
|
|
stop = true;
|
|
}
|
|
|
|
if (stop)
|
|
{
|
|
// If we are allowed to ponder do not stop the search now but
|
|
// keep pondering until GUI sends "ponderhit" or "stop".
|
|
if (Limits.ponder)
|
|
Signals.stopOnPonderhit = true;
|
|
else
|
|
Signals.stop = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// search<>() is the main search function for both PV and non-PV nodes and for
|
|
// normal and SplitPoint nodes. When called just after a split point the search
|
|
// is simpler because we have already probed the hash table, done a null move
|
|
// search, and searched the first move before splitting, we don't have to repeat
|
|
// all this work again. We also don't need to store anything to the hash table
|
|
// here: This is taken care of after we return from the split point.
|
|
|
|
template <NodeType NT>
|
|
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
|
|
|
|
const bool PvNode = (NT == PV || NT == Root || NT == SplitPointPV || NT == SplitPointRoot);
|
|
const bool SpNode = (NT == SplitPointPV || NT == SplitPointNonPV || NT == SplitPointRoot);
|
|
const bool RootNode = (NT == Root || NT == SplitPointRoot);
|
|
|
|
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
|
|
assert(PvNode || (alpha == beta - 1));
|
|
assert(depth > DEPTH_ZERO);
|
|
|
|
Move movesSearched[64];
|
|
StateInfo st;
|
|
const TTEntry *tte;
|
|
SplitPoint* splitPoint;
|
|
Key posKey;
|
|
Move ttMove, move, excludedMove, bestMove, threatMove;
|
|
Depth ext, newDepth;
|
|
Value bestValue, value, ttValue;
|
|
Value eval, nullValue, futilityValue;
|
|
bool inCheck, givesCheck, pvMove, singularExtensionNode;
|
|
bool captureOrPromotion, dangerous, doFullDepthSearch;
|
|
int moveCount, playedMoveCount;
|
|
|
|
// Step 1. Initialize node
|
|
Thread* thisThread = pos.this_thread();
|
|
moveCount = playedMoveCount = 0;
|
|
inCheck = pos.checkers();
|
|
|
|
if (SpNode)
|
|
{
|
|
splitPoint = ss->splitPoint;
|
|
bestMove = splitPoint->bestMove;
|
|
threatMove = splitPoint->threatMove;
|
|
bestValue = splitPoint->bestValue;
|
|
tte = NULL;
|
|
ttMove = excludedMove = MOVE_NONE;
|
|
ttValue = VALUE_NONE;
|
|
|
|
assert(splitPoint->bestValue > -VALUE_INFINITE && splitPoint->moveCount > 0);
|
|
|
|
goto split_point_start;
|
|
}
|
|
|
|
bestValue = -VALUE_INFINITE;
|
|
ss->currentMove = threatMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
|
|
ss->ply = (ss-1)->ply + 1;
|
|
ss->futilityMoveCount = 0;
|
|
(ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
|
|
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
|
|
|
|
// Used to send selDepth info to GUI
|
|
if (PvNode && thisThread->maxPly < ss->ply)
|
|
thisThread->maxPly = ss->ply;
|
|
|
|
if (!RootNode)
|
|
{
|
|
// Step 2. Check for aborted search and immediate draw
|
|
if (Signals.stop || pos.is_draw() || ss->ply > MAX_PLY)
|
|
return DrawValue[pos.side_to_move()];
|
|
|
|
// Step 3. Mate distance pruning. Even if we mate at the next move our score
|
|
// would be at best mate_in(ss->ply+1), but if alpha is already bigger because
|
|
// a shorter mate was found upward in the tree then there is no need to search
|
|
// further, we will never beat current alpha. Same logic but with reversed signs
|
|
// applies also in the opposite condition of being mated instead of giving mate,
|
|
// in this case return a fail-high score.
|
|
alpha = std::max(mated_in(ss->ply), alpha);
|
|
beta = std::min(mate_in(ss->ply+1), beta);
|
|
if (alpha >= beta)
|
|
return alpha;
|
|
}
|
|
|
|
// Step 4. Transposition table lookup
|
|
// We don't want the score of a partial search to overwrite a previous full search
|
|
// TT value, so we use a different position key in case of an excluded move.
|
|
excludedMove = ss->excludedMove;
|
|
posKey = excludedMove ? pos.exclusion_key() : pos.key();
|
|
tte = TT.probe(posKey);
|
|
ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
|
|
ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
|
|
|
|
// At PV nodes we check for exact scores, while at non-PV nodes we check for
|
|
// a fail high/low. Biggest advantage at probing at PV nodes is to have a
|
|
// smooth experience in analysis mode. We don't probe at Root nodes otherwise
|
|
// we should also update RootMoveList to avoid bogus output.
|
|
if ( !RootNode
|
|
&& tte
|
|
&& tte->depth() >= depth
|
|
&& ttValue != VALUE_NONE // Only in case of TT access race
|
|
&& ( PvNode ? tte->type() == BOUND_EXACT
|
|
: ttValue >= beta ? (tte->type() & BOUND_LOWER)
|
|
: (tte->type() & BOUND_UPPER)))
|
|
{
|
|
TT.refresh(tte);
|
|
ss->currentMove = ttMove; // Can be MOVE_NONE
|
|
|
|
if ( ttValue >= beta
|
|
&& ttMove
|
|
&& !pos.is_capture_or_promotion(ttMove)
|
|
&& ttMove != ss->killers[0])
|
|
{
|
|
ss->killers[1] = ss->killers[0];
|
|
ss->killers[0] = ttMove;
|
|
}
|
|
return ttValue;
|
|
}
|
|
|
|
// Step 5. Evaluate the position statically and update parent's gain statistics
|
|
if (inCheck)
|
|
ss->staticEval = ss->evalMargin = eval = VALUE_NONE;
|
|
|
|
else if (tte)
|
|
{
|
|
// Never assume anything on values stored in TT
|
|
if ( (ss->staticEval = eval = tte->eval_value()) == VALUE_NONE
|
|
||(ss->evalMargin = tte->eval_margin()) == VALUE_NONE)
|
|
eval = ss->staticEval = evaluate(pos, ss->evalMargin);
|
|
|
|
// Can ttValue be used as a better position evaluation?
|
|
if (ttValue != VALUE_NONE)
|
|
if ( ((tte->type() & BOUND_LOWER) && ttValue > eval)
|
|
|| ((tte->type() & BOUND_UPPER) && ttValue < eval))
|
|
eval = ttValue;
|
|
}
|
|
else
|
|
{
|
|
eval = ss->staticEval = evaluate(pos, ss->evalMargin);
|
|
TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
|
|
ss->staticEval, ss->evalMargin);
|
|
}
|
|
|
|
// Update gain for the parent non-capture move given the static position
|
|
// evaluation before and after the move.
|
|
if ( (move = (ss-1)->currentMove) != MOVE_NULL
|
|
&& (ss-1)->staticEval != VALUE_NONE
|
|
&& ss->staticEval != VALUE_NONE
|
|
&& !pos.captured_piece_type()
|
|
&& type_of(move) == NORMAL)
|
|
{
|
|
Square to = to_sq(move);
|
|
Gain.update(pos.piece_on(to), to, -(ss-1)->staticEval - ss->staticEval);
|
|
}
|
|
|
|
// Step 6. Razoring (is omitted in PV nodes)
|
|
if ( !PvNode
|
|
&& depth < 4 * ONE_PLY
|
|
&& !inCheck
|
|
&& eval + razor_margin(depth) < beta
|
|
&& ttMove == MOVE_NONE
|
|
&& abs(beta) < VALUE_MATE_IN_MAX_PLY
|
|
&& !pos.pawn_on_7th(pos.side_to_move()))
|
|
{
|
|
Value rbeta = beta - razor_margin(depth);
|
|
Value v = qsearch<NonPV, false>(pos, ss, rbeta-1, rbeta, DEPTH_ZERO);
|
|
if (v < rbeta)
|
|
// Logically we should return (v + razor_margin(depth)), but
|
|
// surprisingly this did slightly weaker in tests.
|
|
return v;
|
|
}
|
|
|
|
// Step 7. Static null move pruning (is omitted in PV nodes)
|
|
// We're betting that the opponent doesn't have a move that will reduce
|
|
// the score by more than futility_margin(depth) if we do a null move.
|
|
if ( !PvNode
|
|
&& !ss->skipNullMove
|
|
&& depth < 4 * ONE_PLY
|
|
&& !inCheck
|
|
&& eval - futility_margin(depth, (ss-1)->futilityMoveCount) >= beta
|
|
&& abs(beta) < VALUE_MATE_IN_MAX_PLY
|
|
&& abs(eval) < VALUE_KNOWN_WIN
|
|
&& pos.non_pawn_material(pos.side_to_move()))
|
|
return eval - futility_margin(depth, (ss-1)->futilityMoveCount);
|
|
|
|
// Step 8. Null move search with verification search (is omitted in PV nodes)
|
|
if ( !PvNode
|
|
&& !ss->skipNullMove
|
|
&& depth > ONE_PLY
|
|
&& !inCheck
|
|
&& eval >= beta
|
|
&& abs(beta) < VALUE_MATE_IN_MAX_PLY
|
|
&& pos.non_pawn_material(pos.side_to_move()))
|
|
{
|
|
ss->currentMove = MOVE_NULL;
|
|
|
|
// Null move dynamic reduction based on depth
|
|
Depth R = 3 * ONE_PLY + depth / 4;
|
|
|
|
// Null move dynamic reduction based on value
|
|
if (eval - PawnValueMg > beta)
|
|
R += ONE_PLY;
|
|
|
|
pos.do_null_move(st);
|
|
(ss+1)->skipNullMove = true;
|
|
nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
|
|
: - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R);
|
|
(ss+1)->skipNullMove = false;
|
|
pos.undo_null_move();
|
|
|
|
if (nullValue >= beta)
|
|
{
|
|
// Do not return unproven mate scores
|
|
if (nullValue >= VALUE_MATE_IN_MAX_PLY)
|
|
nullValue = beta;
|
|
|
|
if (depth < 12 * ONE_PLY)
|
|
return nullValue;
|
|
|
|
// Do verification search at high depths
|
|
ss->skipNullMove = true;
|
|
Value v = search<NonPV>(pos, ss, alpha, beta, depth-R);
|
|
ss->skipNullMove = false;
|
|
|
|
if (v >= beta)
|
|
return nullValue;
|
|
}
|
|
else
|
|
{
|
|
// The null move failed low, which means that we may be faced with
|
|
// some kind of threat. If the previous move was reduced, check if
|
|
// the move that refuted the null move was somehow connected to the
|
|
// move which was reduced. If a connection is found, return a fail
|
|
// low score (which will cause the reduced move to fail high in the
|
|
// parent node, which will trigger a re-search with full depth).
|
|
threatMove = (ss+1)->currentMove;
|
|
|
|
if ( depth < 5 * ONE_PLY
|
|
&& (ss-1)->reduction
|
|
&& threatMove != MOVE_NONE
|
|
&& allows(pos, (ss-1)->currentMove, threatMove))
|
|
return beta - 1;
|
|
}
|
|
}
|
|
|
|
// Step 9. ProbCut (is omitted in PV nodes)
|
|
// If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
|
|
// and a reduced search returns a value much above beta, we can (almost) safely
|
|
// prune the previous move.
|
|
if ( !PvNode
|
|
&& depth >= 5 * ONE_PLY
|
|
&& !inCheck
|
|
&& !ss->skipNullMove
|
|
&& excludedMove == MOVE_NONE
|
|
&& abs(beta) < VALUE_MATE_IN_MAX_PLY)
|
|
{
|
|
Value rbeta = beta + 200;
|
|
Depth rdepth = depth - ONE_PLY - 3 * ONE_PLY;
|
|
|
|
assert(rdepth >= ONE_PLY);
|
|
assert((ss-1)->currentMove != MOVE_NONE);
|
|
assert((ss-1)->currentMove != MOVE_NULL);
|
|
|
|
MovePicker mp(pos, ttMove, Hist, pos.captured_piece_type());
|
|
CheckInfo ci(pos);
|
|
|
|
while ((move = mp.next_move<false>()) != MOVE_NONE)
|
|
if (pos.pl_move_is_legal(move, ci.pinned))
|
|
{
|
|
ss->currentMove = move;
|
|
pos.do_move(move, st, ci, pos.move_gives_check(move, ci));
|
|
value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth);
|
|
pos.undo_move(move);
|
|
if (value >= rbeta)
|
|
return value;
|
|
}
|
|
}
|
|
|
|
// Step 10. Internal iterative deepening
|
|
if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
|
|
&& ttMove == MOVE_NONE
|
|
&& (PvNode || (!inCheck && ss->staticEval + Value(256) >= beta)))
|
|
{
|
|
Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4);
|
|
|
|
ss->skipNullMove = true;
|
|
search<PvNode ? PV : NonPV>(pos, ss, alpha, beta, d);
|
|
ss->skipNullMove = false;
|
|
|
|
tte = TT.probe(posKey);
|
|
ttMove = tte ? tte->move() : MOVE_NONE;
|
|
}
|
|
|
|
split_point_start: // At split points actual search starts from here
|
|
|
|
MovePicker mp(pos, ttMove, depth, Hist, ss, PvNode ? -VALUE_INFINITE : beta);
|
|
CheckInfo ci(pos);
|
|
value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
|
|
singularExtensionNode = !RootNode
|
|
&& !SpNode
|
|
&& depth >= (PvNode ? 6 * ONE_PLY : 8 * ONE_PLY)
|
|
&& ttMove != MOVE_NONE
|
|
&& !excludedMove // Recursive singular search is not allowed
|
|
&& (tte->type() & BOUND_LOWER)
|
|
&& tte->depth() >= depth - 3 * ONE_PLY;
|
|
|
|
// Step 11. Loop through moves
|
|
// Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
|
|
while ((move = mp.next_move<SpNode>()) != MOVE_NONE)
|
|
{
|
|
assert(is_ok(move));
|
|
|
|
if (move == excludedMove)
|
|
continue;
|
|
|
|
// At root obey the "searchmoves" option and skip moves not listed in Root
|
|
// Move List, as a consequence any illegal move is also skipped. In MultiPV
|
|
// mode we also skip PV moves which have been already searched.
|
|
if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move))
|
|
continue;
|
|
|
|
if (SpNode)
|
|
{
|
|
// Shared counter cannot be decremented later if move turns out to be illegal
|
|
if (!pos.pl_move_is_legal(move, ci.pinned))
|
|
continue;
|
|
|
|
moveCount = ++splitPoint->moveCount;
|
|
splitPoint->mutex.unlock();
|
|
}
|
|
else
|
|
moveCount++;
|
|
|
|
if (RootNode)
|
|
{
|
|
Signals.firstRootMove = (moveCount == 1);
|
|
|
|
if (thisThread == Threads.main_thread() && Time::now() - SearchTime > 3000)
|
|
sync_cout << "info depth " << depth / ONE_PLY
|
|
<< " currmove " << move_to_uci(move, pos.is_chess960())
|
|
<< " currmovenumber " << moveCount + PVIdx << sync_endl;
|
|
}
|
|
|
|
ext = DEPTH_ZERO;
|
|
captureOrPromotion = pos.is_capture_or_promotion(move);
|
|
givesCheck = pos.move_gives_check(move, ci);
|
|
dangerous = givesCheck
|
|
|| pos.is_passed_pawn_push(move)
|
|
|| type_of(move) == CASTLE
|
|
|| ( captureOrPromotion // Entering a pawn endgame?
|
|
&& type_of(pos.piece_on(to_sq(move))) != PAWN
|
|
&& type_of(move) == NORMAL
|
|
&& ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
|
|
- PieceValue[MG][pos.piece_on(to_sq(move))] == VALUE_ZERO));
|
|
|
|
// Step 12. Extend checks and, in PV nodes, also dangerous moves
|
|
if (PvNode && dangerous)
|
|
ext = ONE_PLY;
|
|
|
|
else if (givesCheck && pos.see_sign(move) >= 0)
|
|
ext = ONE_PLY / 2;
|
|
|
|
// Singular extension search. If all moves but one fail low on a search of
|
|
// (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
|
|
// is singular and should be extended. To verify this we do a reduced search
|
|
// on all the other moves but the ttMove, if result is lower than ttValue minus
|
|
// a margin then we extend ttMove.
|
|
if ( singularExtensionNode
|
|
&& move == ttMove
|
|
&& !ext
|
|
&& pos.pl_move_is_legal(move, ci.pinned)
|
|
&& abs(ttValue) < VALUE_KNOWN_WIN)
|
|
{
|
|
assert(ttValue != VALUE_NONE);
|
|
|
|
Value rBeta = ttValue - int(depth);
|
|
ss->excludedMove = move;
|
|
ss->skipNullMove = true;
|
|
value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2);
|
|
ss->skipNullMove = false;
|
|
ss->excludedMove = MOVE_NONE;
|
|
|
|
if (value < rBeta)
|
|
ext = ONE_PLY;
|
|
}
|
|
|
|
// Update current move (this must be done after singular extension search)
|
|
newDepth = depth - ONE_PLY + ext;
|
|
|
|
// Step 13. Futility pruning (is omitted in PV nodes)
|
|
if ( !PvNode
|
|
&& !captureOrPromotion
|
|
&& !inCheck
|
|
&& !dangerous
|
|
/* && move != ttMove Already implicit in the next condition */
|
|
&& bestValue > VALUE_MATED_IN_MAX_PLY)
|
|
{
|
|
// Move count based pruning
|
|
if ( depth < 16 * ONE_PLY
|
|
&& moveCount >= FutilityMoveCounts[depth]
|
|
&& (!threatMove || !refutes(pos, move, threatMove)))
|
|
{
|
|
if (SpNode)
|
|
splitPoint->mutex.lock();
|
|
|
|
continue;
|
|
}
|
|
|
|
// Value based pruning
|
|
// We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
|
|
// but fixing this made program slightly weaker.
|
|
Depth predictedDepth = newDepth - reduction<PvNode>(depth, moveCount);
|
|
futilityValue = ss->staticEval + ss->evalMargin + futility_margin(predictedDepth, moveCount)
|
|
+ Gain[pos.piece_moved(move)][to_sq(move)];
|
|
|
|
if (futilityValue < beta)
|
|
{
|
|
bestValue = std::max(bestValue, futilityValue);
|
|
|
|
if (SpNode)
|
|
{
|
|
splitPoint->mutex.lock();
|
|
if (bestValue > splitPoint->bestValue)
|
|
splitPoint->bestValue = bestValue;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Prune moves with negative SEE at low depths
|
|
if ( predictedDepth < 4 * ONE_PLY
|
|
&& pos.see_sign(move) < 0)
|
|
{
|
|
if (SpNode)
|
|
splitPoint->mutex.lock();
|
|
|
|
continue;
|
|
}
|
|
|
|
// We have not pruned the move that will be searched, but remember how
|
|
// far in the move list we are to be more aggressive in the child node.
|
|
ss->futilityMoveCount = moveCount;
|
|
}
|
|
else
|
|
ss->futilityMoveCount = 0;
|
|
|
|
// Check for legality only before to do the move
|
|
if (!RootNode && !SpNode && !pos.pl_move_is_legal(move, ci.pinned))
|
|
{
|
|
moveCount--;
|
|
continue;
|
|
}
|
|
|
|
pvMove = PvNode && moveCount == 1;
|
|
ss->currentMove = move;
|
|
if (!SpNode && !captureOrPromotion && playedMoveCount < 64)
|
|
movesSearched[playedMoveCount++] = move;
|
|
|
|
// Step 14. Make the move
|
|
pos.do_move(move, st, ci, givesCheck);
|
|
|
|
// Step 15. Reduced depth search (LMR). If the move fails high will be
|
|
// re-searched at full depth.
|
|
if ( depth > 3 * ONE_PLY
|
|
&& !pvMove
|
|
&& !captureOrPromotion
|
|
&& !dangerous
|
|
&& move != ttMove
|
|
&& move != ss->killers[0]
|
|
&& move != ss->killers[1])
|
|
{
|
|
ss->reduction = reduction<PvNode>(depth, moveCount);
|
|
Depth d = std::max(newDepth - ss->reduction, ONE_PLY);
|
|
if (SpNode)
|
|
alpha = splitPoint->alpha;
|
|
|
|
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d);
|
|
|
|
doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO);
|
|
ss->reduction = DEPTH_ZERO;
|
|
}
|
|
else
|
|
doFullDepthSearch = !pvMove;
|
|
|
|
// Step 16. Full depth search, when LMR is skipped or fails high
|
|
if (doFullDepthSearch)
|
|
{
|
|
if (SpNode)
|
|
alpha = splitPoint->alpha;
|
|
|
|
value = newDepth < ONE_PLY ?
|
|
givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
|
|
: -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
|
|
: - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth);
|
|
}
|
|
|
|
// Only for PV nodes do a full PV search on the first move or after a fail
|
|
// high, in the latter case search only if value < beta, otherwise let the
|
|
// parent node to fail low with value <= alpha and to try another move.
|
|
if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta))))
|
|
value = newDepth < ONE_PLY ?
|
|
givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
|
|
: -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
|
|
: - search<PV>(pos, ss+1, -beta, -alpha, newDepth);
|
|
// Step 17. Undo move
|
|
pos.undo_move(move);
|
|
|
|
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
|
|
|
// Step 18. Check for new best move
|
|
if (SpNode)
|
|
{
|
|
splitPoint->mutex.lock();
|
|
bestValue = splitPoint->bestValue;
|
|
alpha = splitPoint->alpha;
|
|
}
|
|
|
|
// Finished searching the move. If Signals.stop is true, the search
|
|
// was aborted because the user interrupted the search or because we
|
|
// ran out of time. In this case, the return value of the search cannot
|
|
// be trusted, and we don't update the best move and/or PV.
|
|
if (Signals.stop || thisThread->cutoff_occurred())
|
|
return value; // To avoid returning VALUE_INFINITE
|
|
|
|
if (RootNode)
|
|
{
|
|
RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move);
|
|
|
|
// PV move or new best move ?
|
|
if (pvMove || value > alpha)
|
|
{
|
|
rm.score = value;
|
|
rm.extract_pv_from_tt(pos);
|
|
|
|
// We record how often the best move has been changed in each
|
|
// iteration. This information is used for time management: When
|
|
// the best move changes frequently, we allocate some more time.
|
|
if (!pvMove)
|
|
BestMoveChanges++;
|
|
}
|
|
else
|
|
// All other moves but the PV are set to the lowest value, this
|
|
// is not a problem when sorting becuase sort is stable and move
|
|
// position in the list is preserved, just the PV is pushed up.
|
|
rm.score = -VALUE_INFINITE;
|
|
}
|
|
|
|
if (value > bestValue)
|
|
{
|
|
bestValue = SpNode ? splitPoint->bestValue = value : value;
|
|
|
|
if (value > alpha)
|
|
{
|
|
bestMove = SpNode ? splitPoint->bestMove = move : move;
|
|
|
|
if (PvNode && value < beta) // Update alpha! Always alpha < beta
|
|
alpha = SpNode ? splitPoint->alpha = value : value;
|
|
else
|
|
{
|
|
assert(value >= beta); // Fail high
|
|
|
|
if (SpNode)
|
|
splitPoint->cutoff = true;
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step 19. Check for splitting the search
|
|
if ( !SpNode
|
|
&& depth >= Threads.minimumSplitDepth
|
|
&& Threads.available_slave(thisThread)
|
|
&& thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD)
|
|
{
|
|
assert(bestValue < beta);
|
|
|
|
thisThread->split<FakeSplit>(pos, ss, alpha, beta, &bestValue, &bestMove,
|
|
depth, threatMove, moveCount, &mp, NT);
|
|
if (bestValue >= beta)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (SpNode)
|
|
return bestValue;
|
|
|
|
// Step 20. Check for mate and stalemate
|
|
// All legal moves have been searched and if there are no legal moves, it
|
|
// must be mate or stalemate. Note that we can have a false positive in
|
|
// case of Signals.stop or thread.cutoff_occurred() are set, but this is
|
|
// harmless because return value is discarded anyhow in the parent nodes.
|
|
// If we are in a singular extension search then return a fail low score.
|
|
// A split node has at least one move, the one tried before to be splitted.
|
|
if (!moveCount)
|
|
return excludedMove ? alpha
|
|
: inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
|
|
|
|
// If we have pruned all the moves without searching return a fail-low score
|
|
if (bestValue == -VALUE_INFINITE)
|
|
{
|
|
assert(!playedMoveCount);
|
|
|
|
bestValue = alpha;
|
|
}
|
|
|
|
if (bestValue >= beta) // Failed high
|
|
{
|
|
TT.store(posKey, value_to_tt(bestValue, ss->ply), BOUND_LOWER, depth,
|
|
bestMove, ss->staticEval, ss->evalMargin);
|
|
|
|
if (!pos.is_capture_or_promotion(bestMove) && !inCheck)
|
|
{
|
|
if (bestMove != ss->killers[0])
|
|
{
|
|
ss->killers[1] = ss->killers[0];
|
|
ss->killers[0] = bestMove;
|
|
}
|
|
|
|
// Increase history value of the cut-off move
|
|
Value bonus = Value(int(depth) * int(depth));
|
|
Hist.update(pos.piece_moved(bestMove), to_sq(bestMove), bonus);
|
|
|
|
// Decrease history of all the other played non-capture moves
|
|
for (int i = 0; i < playedMoveCount - 1; i++)
|
|
{
|
|
Move m = movesSearched[i];
|
|
Hist.update(pos.piece_moved(m), to_sq(m), -bonus);
|
|
}
|
|
}
|
|
}
|
|
else // Failed low or PV search
|
|
TT.store(posKey, value_to_tt(bestValue, ss->ply),
|
|
PvNode && bestMove != MOVE_NONE ? BOUND_EXACT : BOUND_UPPER,
|
|
depth, bestMove, ss->staticEval, ss->evalMargin);
|
|
|
|
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
|
|
// qsearch() is the quiescence search function, which is called by the main
|
|
// search function when the remaining depth is zero (or, to be more precise,
|
|
// less than ONE_PLY).
|
|
|
|
template <NodeType NT, bool InCheck>
|
|
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
|
|
|
|
const bool PvNode = (NT == PV);
|
|
|
|
assert(NT == PV || NT == NonPV);
|
|
assert(InCheck == !!pos.checkers());
|
|
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
|
|
assert(PvNode || (alpha == beta - 1));
|
|
assert(depth <= DEPTH_ZERO);
|
|
|
|
StateInfo st;
|
|
const TTEntry* tte;
|
|
Key posKey;
|
|
Move ttMove, move, bestMove;
|
|
Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
|
|
bool givesCheck, enoughMaterial, evasionPrunable;
|
|
Depth ttDepth;
|
|
|
|
// To flag BOUND_EXACT a node with eval above alpha and no available moves
|
|
if (PvNode)
|
|
oldAlpha = alpha;
|
|
|
|
ss->currentMove = bestMove = MOVE_NONE;
|
|
ss->ply = (ss-1)->ply + 1;
|
|
|
|
// Check for an instant draw or maximum ply reached
|
|
if (pos.is_draw() || ss->ply > MAX_PLY)
|
|
return DrawValue[pos.side_to_move()];
|
|
|
|
// Decide whether or not to include checks, this fixes also the type of
|
|
// TT entry depth that we are going to use. Note that in qsearch we use
|
|
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
|
|
ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
|
|
: DEPTH_QS_NO_CHECKS;
|
|
|
|
// Transposition table lookup. At PV nodes, we don't use the TT for
|
|
// pruning, but only for move ordering.
|
|
posKey = pos.key();
|
|
tte = TT.probe(posKey);
|
|
ttMove = tte ? tte->move() : MOVE_NONE;
|
|
ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_NONE;
|
|
|
|
if ( tte
|
|
&& tte->depth() >= ttDepth
|
|
&& ttValue != VALUE_NONE // Only in case of TT access race
|
|
&& ( PvNode ? tte->type() == BOUND_EXACT
|
|
: ttValue >= beta ? (tte->type() & BOUND_LOWER)
|
|
: (tte->type() & BOUND_UPPER)))
|
|
{
|
|
ss->currentMove = ttMove; // Can be MOVE_NONE
|
|
return ttValue;
|
|
}
|
|
|
|
// Evaluate the position statically
|
|
if (InCheck)
|
|
{
|
|
ss->staticEval = ss->evalMargin = VALUE_NONE;
|
|
bestValue = futilityBase = -VALUE_INFINITE;
|
|
enoughMaterial = false;
|
|
}
|
|
else
|
|
{
|
|
if (tte)
|
|
{
|
|
// Never assume anything on values stored in TT
|
|
if ( (ss->staticEval = bestValue = tte->eval_value()) == VALUE_NONE
|
|
||(ss->evalMargin = tte->eval_margin()) == VALUE_NONE)
|
|
ss->staticEval = bestValue = evaluate(pos, ss->evalMargin);
|
|
}
|
|
else
|
|
ss->staticEval = bestValue = evaluate(pos, ss->evalMargin);
|
|
|
|
// Stand pat. Return immediately if static value is at least beta
|
|
if (bestValue >= beta)
|
|
{
|
|
if (!tte)
|
|
TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
|
|
DEPTH_NONE, MOVE_NONE, ss->staticEval, ss->evalMargin);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
if (PvNode && bestValue > alpha)
|
|
alpha = bestValue;
|
|
|
|
futilityBase = ss->staticEval + ss->evalMargin + Value(128);
|
|
enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMg;
|
|
}
|
|
|
|
// Initialize a MovePicker object for the current position, and prepare
|
|
// to search the moves. Because the depth is <= 0 here, only captures,
|
|
// queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
|
|
// be generated.
|
|
MovePicker mp(pos, ttMove, depth, Hist, to_sq((ss-1)->currentMove));
|
|
CheckInfo ci(pos);
|
|
|
|
// Loop through the moves until no moves remain or a beta cutoff occurs
|
|
while ((move = mp.next_move<false>()) != MOVE_NONE)
|
|
{
|
|
assert(is_ok(move));
|
|
|
|
givesCheck = pos.move_gives_check(move, ci);
|
|
|
|
// Futility pruning
|
|
if ( !PvNode
|
|
&& !InCheck
|
|
&& !givesCheck
|
|
&& move != ttMove
|
|
&& enoughMaterial
|
|
&& type_of(move) != PROMOTION
|
|
&& !pos.is_passed_pawn_push(move))
|
|
{
|
|
futilityValue = futilityBase
|
|
+ PieceValue[EG][pos.piece_on(to_sq(move))]
|
|
+ (type_of(move) == ENPASSANT ? PawnValueEg : VALUE_ZERO);
|
|
|
|
if (futilityValue < beta)
|
|
{
|
|
bestValue = std::max(bestValue, futilityValue);
|
|
continue;
|
|
}
|
|
|
|
// Prune moves with negative or equal SEE and also moves with positive
|
|
// SEE where capturing piece loses a tempo and SEE < beta - futilityBase.
|
|
if ( futilityBase < beta
|
|
&& depth < DEPTH_ZERO
|
|
&& pos.see(move, beta - futilityBase) <= 0)
|
|
{
|
|
bestValue = std::max(bestValue, futilityBase);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Detect non-capture evasions that are candidate to be pruned
|
|
evasionPrunable = !PvNode
|
|
&& InCheck
|
|
&& bestValue > VALUE_MATED_IN_MAX_PLY
|
|
&& !pos.is_capture(move)
|
|
&& !pos.can_castle(pos.side_to_move());
|
|
|
|
// Don't search moves with negative SEE values
|
|
if ( !PvNode
|
|
&& (!InCheck || evasionPrunable)
|
|
&& move != ttMove
|
|
&& type_of(move) != PROMOTION
|
|
&& pos.see_sign(move) < 0)
|
|
continue;
|
|
|
|
// Don't search useless checks
|
|
if ( !PvNode
|
|
&& !InCheck
|
|
&& givesCheck
|
|
&& move != ttMove
|
|
&& !pos.is_capture_or_promotion(move)
|
|
&& ss->staticEval + PawnValueMg / 4 < beta
|
|
&& !check_is_dangerous(pos, move, futilityBase, beta))
|
|
continue;
|
|
|
|
// Check for legality only before to do the move
|
|
if (!pos.pl_move_is_legal(move, ci.pinned))
|
|
continue;
|
|
|
|
ss->currentMove = move;
|
|
|
|
// Make and search the move
|
|
pos.do_move(move, st, ci, givesCheck);
|
|
value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
|
|
: -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
|
|
pos.undo_move(move);
|
|
|
|
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
|
|
|
// Check for new best move
|
|
if (value > bestValue)
|
|
{
|
|
bestValue = value;
|
|
|
|
if (value > alpha)
|
|
{
|
|
if (PvNode && value < beta) // Update alpha here! Always alpha < beta
|
|
{
|
|
alpha = value;
|
|
bestMove = move;
|
|
}
|
|
else // Fail high
|
|
{
|
|
TT.store(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
|
|
ttDepth, move, ss->staticEval, ss->evalMargin);
|
|
|
|
return value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// All legal moves have been searched. A special case: If we're in check
|
|
// and no legal moves were found, it is checkmate.
|
|
if (InCheck && bestValue == -VALUE_INFINITE)
|
|
return mated_in(ss->ply); // Plies to mate from the root
|
|
|
|
TT.store(posKey, value_to_tt(bestValue, ss->ply),
|
|
PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
|
|
ttDepth, bestMove, ss->staticEval, ss->evalMargin);
|
|
|
|
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
|
|
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
|
|
// "plies to mate from the current position". Non-mate scores are unchanged.
|
|
// The function is called before storing a value to the transposition table.
|
|
|
|
Value value_to_tt(Value v, int ply) {
|
|
|
|
assert(v != VALUE_NONE);
|
|
|
|
return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
|
|
: v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
|
|
}
|
|
|
|
|
|
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
|
|
// from the transposition table (where refers to the plies to mate/be mated
|
|
// from current position) to "plies to mate/be mated from the root".
|
|
|
|
Value value_from_tt(Value v, int ply) {
|
|
|
|
return v == VALUE_NONE ? VALUE_NONE
|
|
: v >= VALUE_MATE_IN_MAX_PLY ? v - ply
|
|
: v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
|
|
}
|
|
|
|
|
|
// check_is_dangerous() tests if a checking move can be pruned in qsearch()
|
|
|
|
bool check_is_dangerous(const Position& pos, Move move, Value futilityBase, Value beta)
|
|
{
|
|
Piece pc = pos.piece_moved(move);
|
|
Square from = from_sq(move);
|
|
Square to = to_sq(move);
|
|
Color them = ~pos.side_to_move();
|
|
Square ksq = pos.king_square(them);
|
|
Bitboard enemies = pos.pieces(them);
|
|
Bitboard kingAtt = pos.attacks_from<KING>(ksq);
|
|
Bitboard occ = pos.pieces() ^ from ^ ksq;
|
|
Bitboard oldAtt = pos.attacks_from(pc, from, occ);
|
|
Bitboard newAtt = pos.attacks_from(pc, to, occ);
|
|
|
|
// Checks which give opponent's king at most one escape square are dangerous
|
|
if (!more_than_one(kingAtt & ~(enemies | newAtt | to)))
|
|
return true;
|
|
|
|
// Queen contact check is very dangerous
|
|
if (type_of(pc) == QUEEN && (kingAtt & to))
|
|
return true;
|
|
|
|
// Creating new double threats with checks is dangerous
|
|
Bitboard b = (enemies ^ ksq) & newAtt & ~oldAtt;
|
|
while (b)
|
|
{
|
|
// Note that here we generate illegal "double move"!
|
|
if (futilityBase + PieceValue[EG][pos.piece_on(pop_lsb(&b))] >= beta)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// allows() tests whether the 'first' move at previous ply somehow makes the
|
|
// 'second' move possible, for instance if the moving piece is the same in
|
|
// both moves. Normally the second move is the threat (the best move returned
|
|
// from a null search that fails low).
|
|
|
|
bool allows(const Position& pos, Move first, Move second) {
|
|
|
|
assert(is_ok(first));
|
|
assert(is_ok(second));
|
|
assert(color_of(pos.piece_on(from_sq(second))) == ~pos.side_to_move());
|
|
assert(color_of(pos.piece_on(to_sq(first))) == ~pos.side_to_move());
|
|
|
|
Square m1from = from_sq(first);
|
|
Square m2from = from_sq(second);
|
|
Square m1to = to_sq(first);
|
|
Square m2to = to_sq(second);
|
|
|
|
// The piece is the same or second's destination was vacated by the first move
|
|
if (m1to == m2from || m2to == m1from)
|
|
return true;
|
|
|
|
// Second one moves through the square vacated by first one
|
|
if (between_bb(m2from, m2to) & m1from)
|
|
return true;
|
|
|
|
// Second's destination is defended by the first move's piece
|
|
Bitboard m1att = pos.attacks_from(pos.piece_on(m1to), m1to, pos.pieces() ^ m2from);
|
|
if (m1att & m2to)
|
|
return true;
|
|
|
|
// Second move gives a discovered check through the first's checking piece
|
|
if (m1att & pos.king_square(pos.side_to_move()))
|
|
{
|
|
assert(between_bb(m1to, pos.king_square(pos.side_to_move())) & m2from);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// refutes() tests whether a 'first' move is able to defend against a 'second'
|
|
// opponent's move. In this case will not be pruned. Normally the second move
|
|
// is the threat (the best move returned from a null search that fails low).
|
|
|
|
bool refutes(const Position& pos, Move first, Move second) {
|
|
|
|
assert(is_ok(first));
|
|
assert(is_ok(second));
|
|
|
|
Square m1from = from_sq(first);
|
|
Square m2from = from_sq(second);
|
|
Square m1to = to_sq(first);
|
|
Square m2to = to_sq(second);
|
|
|
|
// Don't prune moves of the threatened piece
|
|
if (m1from == m2to)
|
|
return true;
|
|
|
|
// If the threatened piece has value less than or equal to the value of the
|
|
// threat piece, don't prune moves which defend it.
|
|
if ( pos.is_capture(second)
|
|
&& ( PieceValue[MG][pos.piece_on(m2from)] >= PieceValue[MG][pos.piece_on(m2to)]
|
|
|| type_of(pos.piece_on(m2from)) == KING))
|
|
{
|
|
// Update occupancy as if the piece and the threat are moving
|
|
Bitboard occ = pos.pieces() ^ m1from ^ m1to ^ m2from;
|
|
Piece piece = pos.piece_on(m1from);
|
|
|
|
// The moved piece attacks the square 'tto' ?
|
|
if (pos.attacks_from(piece, m1to, occ) & m2to)
|
|
return true;
|
|
|
|
// Scan for possible X-ray attackers behind the moved piece
|
|
Bitboard xray = (attacks_bb< ROOK>(m2to, occ) & pos.pieces(color_of(piece), QUEEN, ROOK))
|
|
| (attacks_bb<BISHOP>(m2to, occ) & pos.pieces(color_of(piece), QUEEN, BISHOP));
|
|
|
|
// Verify attackers are triggered by our move and not already existing
|
|
if (xray && (xray ^ (xray & pos.attacks_from<QUEEN>(m2to))))
|
|
return true;
|
|
}
|
|
|
|
// Don't prune safe moves which block the threat path
|
|
if ((between_bb(m2from, m2to) & m1to) && pos.see_sign(first) >= 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// When playing with strength handicap choose best move among the MultiPV set
|
|
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
|
|
|
|
Move Skill::pick_move() {
|
|
|
|
static RKISS rk;
|
|
|
|
// PRNG sequence should be not deterministic
|
|
for (int i = Time::now() % 50; i > 0; i--)
|
|
rk.rand<unsigned>();
|
|
|
|
// RootMoves are already sorted by score in descending order
|
|
int variance = std::min(RootMoves[0].score - RootMoves[PVSize - 1].score, PawnValueMg);
|
|
int weakness = 120 - 2 * level;
|
|
int max_s = -VALUE_INFINITE;
|
|
best = MOVE_NONE;
|
|
|
|
// Choose best move. For each move score we add two terms both dependent on
|
|
// weakness, one deterministic and bigger for weaker moves, and one random,
|
|
// then we choose the move with the resulting highest score.
|
|
for (size_t i = 0; i < PVSize; i++)
|
|
{
|
|
int s = RootMoves[i].score;
|
|
|
|
// Don't allow crazy blunders even at very low skills
|
|
if (i > 0 && RootMoves[i-1].score > s + 2 * PawnValueMg)
|
|
break;
|
|
|
|
// This is our magic formula
|
|
s += ( weakness * int(RootMoves[0].score - s)
|
|
+ variance * (rk.rand<unsigned>() % weakness)) / 128;
|
|
|
|
if (s > max_s)
|
|
{
|
|
max_s = s;
|
|
best = RootMoves[i].pv[0];
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
|
|
|
|
// uci_pv() formats PV information according to UCI protocol. UCI requires
|
|
// to send all the PV lines also if are still to be searched and so refer to
|
|
// the previous search score.
|
|
|
|
string uci_pv(const Position& pos, int depth, Value alpha, Value beta) {
|
|
|
|
std::stringstream s;
|
|
Time::point elaspsed = Time::now() - SearchTime + 1;
|
|
size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size());
|
|
int selDepth = 0;
|
|
|
|
for (size_t i = 0; i < Threads.size(); i++)
|
|
if (Threads[i]->maxPly > selDepth)
|
|
selDepth = Threads[i]->maxPly;
|
|
|
|
for (size_t i = 0; i < uciPVSize; i++)
|
|
{
|
|
bool updated = (i <= PVIdx);
|
|
|
|
if (depth == 1 && !updated)
|
|
continue;
|
|
|
|
int d = updated ? depth : depth - 1;
|
|
Value v = updated ? RootMoves[i].score : RootMoves[i].prevScore;
|
|
|
|
if (s.rdbuf()->in_avail()) // Not at first line
|
|
s << "\n";
|
|
|
|
s << "info depth " << d
|
|
<< " seldepth " << selDepth
|
|
<< " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v))
|
|
<< " nodes " << pos.nodes_searched()
|
|
<< " nps " << pos.nodes_searched() * 1000 / elaspsed
|
|
<< " time " << elaspsed
|
|
<< " multipv " << i + 1
|
|
<< " pv";
|
|
|
|
for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; j++)
|
|
s << " " << move_to_uci(RootMoves[i].pv[j], pos.is_chess960());
|
|
}
|
|
|
|
return s.str();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table.
|
|
/// We consider also failing high nodes and not only BOUND_EXACT nodes so to
|
|
/// allow to always have a ponder move even when we fail high at root, and a
|
|
/// long PV to print that is important for position analysis.
|
|
|
|
void RootMove::extract_pv_from_tt(Position& pos) {
|
|
|
|
StateInfo state[MAX_PLY_PLUS_2], *st = state;
|
|
TTEntry* tte;
|
|
int ply = 0;
|
|
Move m = pv[0];
|
|
|
|
pv.clear();
|
|
|
|
do {
|
|
pv.push_back(m);
|
|
|
|
assert(MoveList<LEGAL>(pos).contains(pv[ply]));
|
|
|
|
pos.do_move(pv[ply++], *st++);
|
|
tte = TT.probe(pos.key());
|
|
|
|
} while ( tte
|
|
&& pos.is_pseudo_legal(m = tte->move()) // Local copy, TT could change
|
|
&& pos.pl_move_is_legal(m, pos.pinned_pieces())
|
|
&& ply < MAX_PLY
|
|
&& (!pos.is_draw() || ply < 2));
|
|
|
|
pv.push_back(MOVE_NONE); // Must be zero-terminating
|
|
|
|
while (ply) pos.undo_move(pv[--ply]);
|
|
}
|
|
|
|
|
|
/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
|
|
/// inserts the PV back into the TT. This makes sure the old PV moves are searched
|
|
/// first, even if the old TT entries have been overwritten.
|
|
|
|
void RootMove::insert_pv_in_tt(Position& pos) {
|
|
|
|
StateInfo state[MAX_PLY_PLUS_2], *st = state;
|
|
TTEntry* tte;
|
|
int ply = 0;
|
|
|
|
do {
|
|
tte = TT.probe(pos.key());
|
|
|
|
if (!tte || tte->move() != pv[ply]) // Don't overwrite correct entries
|
|
TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[ply], VALUE_NONE, VALUE_NONE);
|
|
|
|
assert(MoveList<LEGAL>(pos).contains(pv[ply]));
|
|
|
|
pos.do_move(pv[ply++], *st++);
|
|
|
|
} while (pv[ply] != MOVE_NONE);
|
|
|
|
while (ply) pos.undo_move(pv[--ply]);
|
|
}
|
|
|
|
|
|
/// Thread::idle_loop() is where the thread is parked when it has no work to do
|
|
|
|
void Thread::idle_loop() {
|
|
|
|
// Pointer 'this_sp' is not null only if we are called from split(), and not
|
|
// at the thread creation. So it means we are the split point's master.
|
|
SplitPoint* this_sp = splitPointsSize ? activeSplitPoint : NULL;
|
|
|
|
assert(!this_sp || (this_sp->masterThread == this && searching));
|
|
|
|
while (true)
|
|
{
|
|
// If we are not searching, wait for a condition to be signaled instead of
|
|
// wasting CPU time polling for work.
|
|
while ((!searching && Threads.sleepWhileIdle) || exit)
|
|
{
|
|
if (exit)
|
|
{
|
|
assert(!this_sp);
|
|
return;
|
|
}
|
|
|
|
// Grab the lock to avoid races with Thread::notify_one()
|
|
mutex.lock();
|
|
|
|
// If we are master and all slaves have finished then exit idle_loop
|
|
if (this_sp && !this_sp->slavesMask)
|
|
{
|
|
mutex.unlock();
|
|
break;
|
|
}
|
|
|
|
// Do sleep after retesting sleep conditions under lock protection, in
|
|
// particular we need to avoid a deadlock in case a master thread has,
|
|
// in the meanwhile, allocated us and sent the notify_one() call before
|
|
// we had the chance to grab the lock.
|
|
if (!searching && !exit)
|
|
sleepCondition.wait(mutex);
|
|
|
|
mutex.unlock();
|
|
}
|
|
|
|
// If this thread has been assigned work, launch a search
|
|
if (searching)
|
|
{
|
|
assert(!exit);
|
|
|
|
Threads.mutex.lock();
|
|
|
|
assert(searching);
|
|
SplitPoint* sp = activeSplitPoint;
|
|
|
|
Threads.mutex.unlock();
|
|
|
|
Stack ss[MAX_PLY_PLUS_2];
|
|
Position pos(*sp->pos, this);
|
|
|
|
memcpy(ss, sp->ss - 1, 4 * sizeof(Stack));
|
|
(ss+1)->splitPoint = sp;
|
|
|
|
sp->mutex.lock();
|
|
|
|
assert(activePosition == NULL);
|
|
|
|
activePosition = &pos;
|
|
|
|
switch (sp->nodeType) {
|
|
case Root:
|
|
search<SplitPointRoot>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
|
|
break;
|
|
case PV:
|
|
search<SplitPointPV>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
|
|
break;
|
|
case NonPV:
|
|
search<SplitPointNonPV>(pos, ss+1, sp->alpha, sp->beta, sp->depth);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
|
|
assert(searching);
|
|
|
|
searching = false;
|
|
activePosition = NULL;
|
|
sp->slavesMask &= ~(1ULL << idx);
|
|
sp->nodes += pos.nodes_searched();
|
|
|
|
// Wake up master thread so to allow it to return from the idle loop
|
|
// in case we are the last slave of the split point.
|
|
if ( Threads.sleepWhileIdle
|
|
&& this != sp->masterThread
|
|
&& !sp->slavesMask)
|
|
{
|
|
assert(!sp->masterThread->searching);
|
|
sp->masterThread->notify_one();
|
|
}
|
|
|
|
// After releasing the lock we cannot access anymore any SplitPoint
|
|
// related data in a safe way becuase it could have been released under
|
|
// our feet by the sp master. Also accessing other Thread objects is
|
|
// unsafe because if we are exiting there is a chance are already freed.
|
|
sp->mutex.unlock();
|
|
}
|
|
|
|
// If this thread is the master of a split point and all slaves have finished
|
|
// their work at this split point, return from the idle loop.
|
|
if (this_sp && !this_sp->slavesMask)
|
|
{
|
|
this_sp->mutex.lock();
|
|
bool finished = !this_sp->slavesMask; // Retest under lock protection
|
|
this_sp->mutex.unlock();
|
|
if (finished)
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// check_time() is called by the timer thread when the timer triggers. It is
|
|
/// used to print debug info and, more important, to detect when we are out of
|
|
/// available time and so stop the search.
|
|
|
|
void check_time() {
|
|
|
|
static Time::point lastInfoTime = Time::now();
|
|
int64_t nodes = 0; // Workaround silly 'uninitialized' gcc warning
|
|
|
|
if (Time::now() - lastInfoTime >= 1000)
|
|
{
|
|
lastInfoTime = Time::now();
|
|
dbg_print();
|
|
}
|
|
|
|
if (Limits.ponder)
|
|
return;
|
|
|
|
if (Limits.nodes)
|
|
{
|
|
Threads.mutex.lock();
|
|
|
|
nodes = RootPos.nodes_searched();
|
|
|
|
// Loop across all split points and sum accumulated SplitPoint nodes plus
|
|
// all the currently active positions nodes.
|
|
for (size_t i = 0; i < Threads.size(); i++)
|
|
for (int j = 0; j < Threads[i]->splitPointsSize; j++)
|
|
{
|
|
SplitPoint& sp = Threads[i]->splitPoints[j];
|
|
|
|
sp.mutex.lock();
|
|
|
|
nodes += sp.nodes;
|
|
Bitboard sm = sp.slavesMask;
|
|
while (sm)
|
|
{
|
|
Position* pos = Threads[pop_lsb(&sm)]->activePosition;
|
|
if (pos)
|
|
nodes += pos->nodes_searched();
|
|
}
|
|
|
|
sp.mutex.unlock();
|
|
}
|
|
|
|
Threads.mutex.unlock();
|
|
}
|
|
|
|
Time::point elapsed = Time::now() - SearchTime;
|
|
bool stillAtFirstMove = Signals.firstRootMove
|
|
&& !Signals.failedLowAtRoot
|
|
&& elapsed > TimeMgr.available_time();
|
|
|
|
bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerResolution
|
|
|| stillAtFirstMove;
|
|
|
|
if ( (Limits.use_time_management() && noMoreTime)
|
|
|| (Limits.movetime && elapsed >= Limits.movetime)
|
|
|| (Limits.nodes && nodes >= Limits.nodes))
|
|
Signals.stop = true;
|
|
}
|