mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-02-08 13:19:29 +01:00
1587 lines
49 KiB
C++
1587 lines
49 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <algorithm>
|
|
|
|
#include "bitcount.h"
|
|
#include "movegen.h"
|
|
#include "notation.h"
|
|
#include "position.h"
|
|
#include "psqtab.h"
|
|
#include "rkiss.h"
|
|
#include "thread.h"
|
|
#include "tt.h"
|
|
|
|
using std::string;
|
|
using std::cout;
|
|
using std::endl;
|
|
|
|
static const string PieceToChar(" PNBRQK pnbrqk");
|
|
|
|
CACHE_LINE_ALIGNMENT
|
|
|
|
Score pieceSquareTable[PIECE_NB][SQUARE_NB];
|
|
Value PieceValue[PHASE_NB][PIECE_NB] = {
|
|
{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg },
|
|
{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } };
|
|
|
|
namespace Zobrist {
|
|
|
|
Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
|
|
Key enpassant[FILE_NB];
|
|
Key castle[CASTLE_RIGHT_NB];
|
|
Key side;
|
|
Key exclusion;
|
|
|
|
/// init() initializes at startup the various arrays used to compute hash keys
|
|
/// and the piece square tables. The latter is a two-step operation: First, the
|
|
/// white halves of the tables are copied from PSQT[] tables. Second, the black
|
|
/// halves of the tables are initialized by flipping and changing the sign of
|
|
/// the white scores.
|
|
|
|
void init() {
|
|
|
|
RKISS rk;
|
|
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (PieceType pt = PAWN; pt <= KING; pt++)
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
psq[c][pt][s] = rk.rand<Key>();
|
|
|
|
for (File f = FILE_A; f <= FILE_H; f++)
|
|
enpassant[f] = rk.rand<Key>();
|
|
|
|
for (int cr = CASTLES_NONE; cr <= ALL_CASTLES; cr++)
|
|
{
|
|
Bitboard b = cr;
|
|
while (b)
|
|
{
|
|
Key k = castle[1ULL << pop_lsb(&b)];
|
|
castle[cr] ^= k ? k : rk.rand<Key>();
|
|
}
|
|
}
|
|
|
|
side = rk.rand<Key>();
|
|
exclusion = rk.rand<Key>();
|
|
|
|
for (PieceType pt = PAWN; pt <= KING; pt++)
|
|
{
|
|
PieceValue[MG][make_piece(BLACK, pt)] = PieceValue[MG][pt];
|
|
PieceValue[EG][make_piece(BLACK, pt)] = PieceValue[EG][pt];
|
|
|
|
Score v = make_score(PieceValue[MG][pt], PieceValue[EG][pt]);
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
{
|
|
pieceSquareTable[make_piece(WHITE, pt)][ s] = (v + PSQT[pt][s]);
|
|
pieceSquareTable[make_piece(BLACK, pt)][~s] = -(v + PSQT[pt][s]);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace Zobrist
|
|
|
|
|
|
namespace {
|
|
|
|
/// next_attacker() is an helper function used by see() to locate the least
|
|
/// valuable attacker for the side to move, remove the attacker we just found
|
|
/// from the 'occupied' bitboard and scan for new X-ray attacks behind it.
|
|
|
|
template<int Pt> FORCE_INLINE
|
|
PieceType next_attacker(const Bitboard* bb, const Square& to, const Bitboard& stmAttackers,
|
|
Bitboard& occupied, Bitboard& attackers) {
|
|
|
|
if (stmAttackers & bb[Pt])
|
|
{
|
|
Bitboard b = stmAttackers & bb[Pt];
|
|
occupied ^= b & ~(b - 1);
|
|
|
|
if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN)
|
|
attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]);
|
|
|
|
if (Pt == ROOK || Pt == QUEEN)
|
|
attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]);
|
|
|
|
return (PieceType)Pt;
|
|
}
|
|
return next_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers);
|
|
}
|
|
|
|
template<> FORCE_INLINE
|
|
PieceType next_attacker<KING>(const Bitboard*, const Square&, const Bitboard&, Bitboard&, Bitboard&) {
|
|
return KING; // No need to update bitboards, it is the last cycle
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/// CheckInfo c'tor
|
|
|
|
CheckInfo::CheckInfo(const Position& pos) {
|
|
|
|
Color them = ~pos.side_to_move();
|
|
ksq = pos.king_square(them);
|
|
|
|
pinned = pos.pinned_pieces();
|
|
dcCandidates = pos.discovered_check_candidates();
|
|
|
|
checkSq[PAWN] = pos.attacks_from<PAWN>(ksq, them);
|
|
checkSq[KNIGHT] = pos.attacks_from<KNIGHT>(ksq);
|
|
checkSq[BISHOP] = pos.attacks_from<BISHOP>(ksq);
|
|
checkSq[ROOK] = pos.attacks_from<ROOK>(ksq);
|
|
checkSq[QUEEN] = checkSq[BISHOP] | checkSq[ROOK];
|
|
checkSq[KING] = 0;
|
|
}
|
|
|
|
|
|
/// Position::operator=() creates a copy of 'pos'. We want the new born Position
|
|
/// object do not depend on any external data so we detach state pointer from
|
|
/// the source one.
|
|
|
|
Position& Position::operator=(const Position& pos) {
|
|
|
|
memcpy(this, &pos, sizeof(Position));
|
|
startState = *st;
|
|
st = &startState;
|
|
nodes = 0;
|
|
|
|
assert(pos_is_ok());
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/// Position::set() initializes the position object with the given FEN string.
|
|
/// This function is not very robust - make sure that input FENs are correct,
|
|
/// this is assumed to be the responsibility of the GUI.
|
|
|
|
void Position::set(const string& fenStr, bool isChess960, Thread* th) {
|
|
/*
|
|
A FEN string defines a particular position using only the ASCII character set.
|
|
|
|
A FEN string contains six fields separated by a space. The fields are:
|
|
|
|
1) Piece placement (from white's perspective). Each rank is described, starting
|
|
with rank 8 and ending with rank 1; within each rank, the contents of each
|
|
square are described from file A through file H. Following the Standard
|
|
Algebraic Notation (SAN), each piece is identified by a single letter taken
|
|
from the standard English names. White pieces are designated using upper-case
|
|
letters ("PNBRQK") while Black take lowercase ("pnbrqk"). Blank squares are
|
|
noted using digits 1 through 8 (the number of blank squares), and "/"
|
|
separates ranks.
|
|
|
|
2) Active color. "w" means white moves next, "b" means black.
|
|
|
|
3) Castling availability. If neither side can castle, this is "-". Otherwise,
|
|
this has one or more letters: "K" (White can castle kingside), "Q" (White
|
|
can castle queenside), "k" (Black can castle kingside), and/or "q" (Black
|
|
can castle queenside).
|
|
|
|
4) En passant target square (in algebraic notation). If there's no en passant
|
|
target square, this is "-". If a pawn has just made a 2-square move, this
|
|
is the position "behind" the pawn. This is recorded regardless of whether
|
|
there is a pawn in position to make an en passant capture.
|
|
|
|
5) Halfmove clock. This is the number of halfmoves since the last pawn advance
|
|
or capture. This is used to determine if a draw can be claimed under the
|
|
fifty-move rule.
|
|
|
|
6) Fullmove number. The number of the full move. It starts at 1, and is
|
|
incremented after Black's move.
|
|
*/
|
|
|
|
char col, row, token;
|
|
size_t p;
|
|
Square sq = SQ_A8;
|
|
std::istringstream ss(fenStr);
|
|
|
|
clear();
|
|
ss >> std::noskipws;
|
|
|
|
// 1. Piece placement
|
|
while ((ss >> token) && !isspace(token))
|
|
{
|
|
if (isdigit(token))
|
|
sq += Square(token - '0'); // Advance the given number of files
|
|
|
|
else if (token == '/')
|
|
sq -= Square(16);
|
|
|
|
else if ((p = PieceToChar.find(token)) != string::npos)
|
|
{
|
|
put_piece(Piece(p), sq);
|
|
sq++;
|
|
}
|
|
}
|
|
|
|
// 2. Active color
|
|
ss >> token;
|
|
sideToMove = (token == 'w' ? WHITE : BLACK);
|
|
ss >> token;
|
|
|
|
// 3. Castling availability. Compatible with 3 standards: Normal FEN standard,
|
|
// Shredder-FEN that uses the letters of the columns on which the rooks began
|
|
// the game instead of KQkq and also X-FEN standard that, in case of Chess960,
|
|
// if an inner rook is associated with the castling right, the castling tag is
|
|
// replaced by the file letter of the involved rook, as for the Shredder-FEN.
|
|
while ((ss >> token) && !isspace(token))
|
|
{
|
|
Square rsq;
|
|
Color c = islower(token) ? BLACK : WHITE;
|
|
|
|
token = char(toupper(token));
|
|
|
|
if (token == 'K')
|
|
for (rsq = relative_square(c, SQ_H1); type_of(piece_on(rsq)) != ROOK; rsq--) {}
|
|
|
|
else if (token == 'Q')
|
|
for (rsq = relative_square(c, SQ_A1); type_of(piece_on(rsq)) != ROOK; rsq++) {}
|
|
|
|
else if (token >= 'A' && token <= 'H')
|
|
rsq = File(token - 'A') | relative_rank(c, RANK_1);
|
|
|
|
else
|
|
continue;
|
|
|
|
set_castle_right(c, rsq);
|
|
}
|
|
|
|
// 4. En passant square. Ignore if no pawn capture is possible
|
|
if ( ((ss >> col) && (col >= 'a' && col <= 'h'))
|
|
&& ((ss >> row) && (row == '3' || row == '6')))
|
|
{
|
|
st->epSquare = File(col - 'a') | Rank(row - '1');
|
|
|
|
if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)))
|
|
st->epSquare = SQ_NONE;
|
|
}
|
|
|
|
// 5-6. Halfmove clock and fullmove number
|
|
ss >> std::skipws >> st->rule50 >> gamePly;
|
|
|
|
// Convert from fullmove starting from 1 to ply starting from 0,
|
|
// handle also common incorrect FEN with fullmove = 0.
|
|
gamePly = std::max(2 * (gamePly - 1), 0) + int(sideToMove == BLACK);
|
|
|
|
st->key = compute_key();
|
|
st->pawnKey = compute_pawn_key();
|
|
st->materialKey = compute_material_key();
|
|
st->psqScore = compute_psq_score();
|
|
st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
|
|
st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
|
|
st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
|
|
chess960 = isChess960;
|
|
thisThread = th;
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
|
|
/// Position::set_castle_right() is an helper function used to set castling
|
|
/// rights given the corresponding color and the rook starting square.
|
|
|
|
void Position::set_castle_right(Color c, Square rfrom) {
|
|
|
|
Square kfrom = king_square(c);
|
|
CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE;
|
|
CastleRight cr = make_castle_right(c, cs);
|
|
|
|
st->castleRights |= cr;
|
|
castleRightsMask[kfrom] |= cr;
|
|
castleRightsMask[rfrom] |= cr;
|
|
castleRookSquare[c][cs] = rfrom;
|
|
|
|
Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1);
|
|
Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1);
|
|
|
|
for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); s++)
|
|
if (s != kfrom && s != rfrom)
|
|
castlePath[c][cs] |= s;
|
|
|
|
for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); s++)
|
|
if (s != kfrom && s != rfrom)
|
|
castlePath[c][cs] |= s;
|
|
}
|
|
|
|
|
|
/// Position::fen() returns a FEN representation of the position. In case
|
|
/// of Chess960 the Shredder-FEN notation is used. Mainly a debugging function.
|
|
|
|
const string Position::fen() const {
|
|
|
|
std::ostringstream ss;
|
|
|
|
for (Rank rank = RANK_8; rank >= RANK_1; rank--)
|
|
{
|
|
for (File file = FILE_A; file <= FILE_H; file++)
|
|
{
|
|
Square sq = file | rank;
|
|
|
|
if (is_empty(sq))
|
|
{
|
|
int emptyCnt = 1;
|
|
|
|
for ( ; file < FILE_H && is_empty(sq++); file++)
|
|
emptyCnt++;
|
|
|
|
ss << emptyCnt;
|
|
}
|
|
else
|
|
ss << PieceToChar[piece_on(sq)];
|
|
}
|
|
|
|
if (rank > RANK_1)
|
|
ss << '/';
|
|
}
|
|
|
|
ss << (sideToMove == WHITE ? " w " : " b ");
|
|
|
|
if (can_castle(WHITE_OO))
|
|
ss << (chess960 ? file_to_char(file_of(castle_rook_square(WHITE, KING_SIDE)), false) : 'K');
|
|
|
|
if (can_castle(WHITE_OOO))
|
|
ss << (chess960 ? file_to_char(file_of(castle_rook_square(WHITE, QUEEN_SIDE)), false) : 'Q');
|
|
|
|
if (can_castle(BLACK_OO))
|
|
ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, KING_SIDE)), true) : 'k');
|
|
|
|
if (can_castle(BLACK_OOO))
|
|
ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, QUEEN_SIDE)), true) : 'q');
|
|
|
|
if (st->castleRights == CASTLES_NONE)
|
|
ss << '-';
|
|
|
|
ss << (ep_square() == SQ_NONE ? " - " : " " + square_to_string(ep_square()) + " ")
|
|
<< st->rule50 << " " << 1 + (gamePly - int(sideToMove == BLACK)) / 2;
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
|
|
/// Position::pretty() returns an ASCII representation of the position to be
|
|
/// printed to the standard output together with the move's san notation.
|
|
|
|
const string Position::pretty(Move move) const {
|
|
|
|
const string dottedLine = "\n+---+---+---+---+---+---+---+---+";
|
|
const string twoRows = dottedLine + "\n| | . | | . | | . | | . |"
|
|
+ dottedLine + "\n| . | | . | | . | | . | |";
|
|
|
|
string brd = twoRows + twoRows + twoRows + twoRows + dottedLine;
|
|
|
|
std::ostringstream ss;
|
|
|
|
if (move)
|
|
ss << "\nMove: " << (sideToMove == BLACK ? ".." : "")
|
|
<< move_to_san(*const_cast<Position*>(this), move);
|
|
|
|
for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
|
|
if (piece_on(sq) != NO_PIECE)
|
|
brd[513 - 68*rank_of(sq) + 4*file_of(sq)] = PieceToChar[piece_on(sq)];
|
|
|
|
ss << brd << "\nFen: " << fen() << "\nKey: " << std::hex << std::uppercase
|
|
<< std::setfill('0') << std::setw(16) << st->key << "\nCheckers: ";
|
|
|
|
for (Bitboard b = checkers(); b; )
|
|
ss << square_to_string(pop_lsb(&b)) << " ";
|
|
|
|
ss << "\nLegal moves: ";
|
|
for (MoveList<LEGAL> ml(*this); !ml.end(); ++ml)
|
|
ss << move_to_san(*const_cast<Position*>(this), ml.move()) << " ";
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
|
|
/// Position:hidden_checkers<>() returns a bitboard of all pinned (against the
|
|
/// king) pieces for the given color. Or, when template parameter FindPinned is
|
|
/// false, the function return the pieces of the given color candidate for a
|
|
/// discovery check against the enemy king.
|
|
template<bool FindPinned>
|
|
Bitboard Position::hidden_checkers() const {
|
|
|
|
// Pinned pieces protect our king, dicovery checks attack the enemy king
|
|
Bitboard b, result = 0;
|
|
Bitboard pinners = pieces(FindPinned ? ~sideToMove : sideToMove);
|
|
Square ksq = king_square(FindPinned ? sideToMove : ~sideToMove);
|
|
|
|
// Pinners are sliders, that give check when candidate pinned is removed
|
|
pinners &= (pieces(ROOK, QUEEN) & PseudoAttacks[ROOK][ksq])
|
|
| (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq]);
|
|
|
|
while (pinners)
|
|
{
|
|
b = between_bb(ksq, pop_lsb(&pinners)) & pieces();
|
|
|
|
if (b && !more_than_one(b) && (b & pieces(sideToMove)))
|
|
result |= b;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Explicit template instantiations
|
|
template Bitboard Position::hidden_checkers<true>() const;
|
|
template Bitboard Position::hidden_checkers<false>() const;
|
|
|
|
|
|
/// Position::attackers_to() computes a bitboard of all pieces which attack a
|
|
/// given square. Slider attacks use occ bitboard as occupancy.
|
|
|
|
Bitboard Position::attackers_to(Square s, Bitboard occ) const {
|
|
|
|
return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN))
|
|
| (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN))
|
|
| (attacks_from<KNIGHT>(s) & pieces(KNIGHT))
|
|
| (attacks_bb<ROOK>(s, occ) & pieces(ROOK, QUEEN))
|
|
| (attacks_bb<BISHOP>(s, occ) & pieces(BISHOP, QUEEN))
|
|
| (attacks_from<KING>(s) & pieces(KING));
|
|
}
|
|
|
|
|
|
/// Position::attacks_from() computes a bitboard of all attacks of a given piece
|
|
/// put in a given square. Slider attacks use occ bitboard as occupancy.
|
|
|
|
Bitboard Position::attacks_from(Piece p, Square s, Bitboard occ) {
|
|
|
|
assert(is_ok(s));
|
|
|
|
switch (type_of(p))
|
|
{
|
|
case BISHOP: return attacks_bb<BISHOP>(s, occ);
|
|
case ROOK : return attacks_bb<ROOK>(s, occ);
|
|
case QUEEN : return attacks_bb<BISHOP>(s, occ) | attacks_bb<ROOK>(s, occ);
|
|
default : return StepAttacksBB[p][s];
|
|
}
|
|
}
|
|
|
|
|
|
/// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal
|
|
|
|
bool Position::pl_move_is_legal(Move m, Bitboard pinned) const {
|
|
|
|
assert(is_ok(m));
|
|
assert(pinned == pinned_pieces());
|
|
|
|
Color us = sideToMove;
|
|
Square from = from_sq(m);
|
|
|
|
assert(color_of(piece_moved(m)) == us);
|
|
assert(piece_on(king_square(us)) == make_piece(us, KING));
|
|
|
|
// En passant captures are a tricky special case. Because they are rather
|
|
// uncommon, we do it simply by testing whether the king is attacked after
|
|
// the move is made.
|
|
if (type_of(m) == ENPASSANT)
|
|
{
|
|
Color them = ~us;
|
|
Square to = to_sq(m);
|
|
Square capsq = to + pawn_push(them);
|
|
Square ksq = king_square(us);
|
|
Bitboard b = (pieces() ^ from ^ capsq) | to;
|
|
|
|
assert(to == ep_square());
|
|
assert(piece_moved(m) == make_piece(us, PAWN));
|
|
assert(piece_on(capsq) == make_piece(them, PAWN));
|
|
assert(piece_on(to) == NO_PIECE);
|
|
|
|
return !(attacks_bb< ROOK>(ksq, b) & pieces(them, QUEEN, ROOK))
|
|
&& !(attacks_bb<BISHOP>(ksq, b) & pieces(them, QUEEN, BISHOP));
|
|
}
|
|
|
|
// If the moving piece is a king, check whether the destination
|
|
// square is attacked by the opponent. Castling moves are checked
|
|
// for legality during move generation.
|
|
if (type_of(piece_on(from)) == KING)
|
|
return type_of(m) == CASTLE || !(attackers_to(to_sq(m)) & pieces(~us));
|
|
|
|
// A non-king move is legal if and only if it is not pinned or it
|
|
// is moving along the ray towards or away from the king.
|
|
return !pinned
|
|
|| !(pinned & from)
|
|
|| squares_aligned(from, to_sq(m), king_square(us));
|
|
}
|
|
|
|
|
|
/// Position::is_pseudo_legal() takes a random move and tests whether the move
|
|
/// is pseudo legal. It is used to validate moves from TT that can be corrupted
|
|
/// due to SMP concurrent access or hash position key aliasing.
|
|
|
|
bool Position::is_pseudo_legal(const Move m) const {
|
|
|
|
Color us = sideToMove;
|
|
Square from = from_sq(m);
|
|
Square to = to_sq(m);
|
|
Piece pc = piece_moved(m);
|
|
|
|
// Use a slower but simpler function for uncommon cases
|
|
if (type_of(m) != NORMAL)
|
|
return MoveList<LEGAL>(*this).contains(m);
|
|
|
|
// Is not a promotion, so promotion piece must be empty
|
|
if (promotion_type(m) - 2 != NO_PIECE_TYPE)
|
|
return false;
|
|
|
|
// If the from square is not occupied by a piece belonging to the side to
|
|
// move, the move is obviously not legal.
|
|
if (pc == NO_PIECE || color_of(pc) != us)
|
|
return false;
|
|
|
|
// The destination square cannot be occupied by a friendly piece
|
|
if (piece_on(to) != NO_PIECE && color_of(piece_on(to)) == us)
|
|
return false;
|
|
|
|
// Handle the special case of a pawn move
|
|
if (type_of(pc) == PAWN)
|
|
{
|
|
// Move direction must be compatible with pawn color
|
|
int direction = to - from;
|
|
if ((us == WHITE) != (direction > 0))
|
|
return false;
|
|
|
|
// We have already handled promotion moves, so destination
|
|
// cannot be on the 8/1th rank.
|
|
if (rank_of(to) == RANK_8 || rank_of(to) == RANK_1)
|
|
return false;
|
|
|
|
// Proceed according to the square delta between the origin and
|
|
// destination squares.
|
|
switch (direction)
|
|
{
|
|
case DELTA_NW:
|
|
case DELTA_NE:
|
|
case DELTA_SW:
|
|
case DELTA_SE:
|
|
// Capture. The destination square must be occupied by an enemy
|
|
// piece (en passant captures was handled earlier).
|
|
if (piece_on(to) == NO_PIECE || color_of(piece_on(to)) != ~us)
|
|
return false;
|
|
|
|
// From and to files must be one file apart, avoids a7h5
|
|
if (abs(file_of(from) - file_of(to)) != 1)
|
|
return false;
|
|
break;
|
|
|
|
case DELTA_N:
|
|
case DELTA_S:
|
|
// Pawn push. The destination square must be empty.
|
|
if (!is_empty(to))
|
|
return false;
|
|
break;
|
|
|
|
case DELTA_NN:
|
|
// Double white pawn push. The destination square must be on the fourth
|
|
// rank, and both the destination square and the square between the
|
|
// source and destination squares must be empty.
|
|
if ( rank_of(to) != RANK_4
|
|
|| !is_empty(to)
|
|
|| !is_empty(from + DELTA_N))
|
|
return false;
|
|
break;
|
|
|
|
case DELTA_SS:
|
|
// Double black pawn push. The destination square must be on the fifth
|
|
// rank, and both the destination square and the square between the
|
|
// source and destination squares must be empty.
|
|
if ( rank_of(to) != RANK_5
|
|
|| !is_empty(to)
|
|
|| !is_empty(from + DELTA_S))
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
else if (!(attacks_from(pc, from) & to))
|
|
return false;
|
|
|
|
// Evasions generator already takes care to avoid some kind of illegal moves
|
|
// and pl_move_is_legal() relies on this. So we have to take care that the
|
|
// same kind of moves are filtered out here.
|
|
if (checkers())
|
|
{
|
|
if (type_of(pc) != KING)
|
|
{
|
|
// Double check? In this case a king move is required
|
|
if (more_than_one(checkers()))
|
|
return false;
|
|
|
|
// Our move must be a blocking evasion or a capture of the checking piece
|
|
if (!((between_bb(lsb(checkers()), king_square(us)) | checkers()) & to))
|
|
return false;
|
|
}
|
|
// In case of king moves under check we have to remove king so to catch
|
|
// as invalid moves like b1a1 when opposite queen is on c1.
|
|
else if (attackers_to(to, pieces() ^ from) & pieces(~us))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Position::move_gives_check() tests whether a pseudo-legal move gives a check
|
|
|
|
bool Position::move_gives_check(Move m, const CheckInfo& ci) const {
|
|
|
|
assert(is_ok(m));
|
|
assert(ci.dcCandidates == discovered_check_candidates());
|
|
assert(color_of(piece_moved(m)) == sideToMove);
|
|
|
|
Square from = from_sq(m);
|
|
Square to = to_sq(m);
|
|
PieceType pt = type_of(piece_on(from));
|
|
|
|
// Direct check ?
|
|
if (ci.checkSq[pt] & to)
|
|
return true;
|
|
|
|
// Discovery check ?
|
|
if (ci.dcCandidates && (ci.dcCandidates & from))
|
|
{
|
|
// For pawn and king moves we need to verify also direction
|
|
if ( (pt != PAWN && pt != KING)
|
|
|| !squares_aligned(from, to, king_square(~sideToMove)))
|
|
return true;
|
|
}
|
|
|
|
// Can we skip the ugly special cases ?
|
|
if (type_of(m) == NORMAL)
|
|
return false;
|
|
|
|
Color us = sideToMove;
|
|
Square ksq = king_square(~us);
|
|
|
|
switch (type_of(m))
|
|
{
|
|
case PROMOTION:
|
|
return attacks_from(Piece(promotion_type(m)), to, pieces() ^ from) & ksq;
|
|
|
|
// En passant capture with check ? We have already handled the case
|
|
// of direct checks and ordinary discovered check, the only case we
|
|
// need to handle is the unusual case of a discovered check through
|
|
// the captured pawn.
|
|
case ENPASSANT:
|
|
{
|
|
Square capsq = file_of(to) | rank_of(from);
|
|
Bitboard b = (pieces() ^ from ^ capsq) | to;
|
|
|
|
return (attacks_bb< ROOK>(ksq, b) & pieces(us, QUEEN, ROOK))
|
|
| (attacks_bb<BISHOP>(ksq, b) & pieces(us, QUEEN, BISHOP));
|
|
}
|
|
case CASTLE:
|
|
{
|
|
Square kfrom = from;
|
|
Square rfrom = to; // 'King captures the rook' notation
|
|
Square kto = relative_square(us, rfrom > kfrom ? SQ_G1 : SQ_C1);
|
|
Square rto = relative_square(us, rfrom > kfrom ? SQ_F1 : SQ_D1);
|
|
Bitboard b = (pieces() ^ kfrom ^ rfrom) | rto | kto;
|
|
|
|
return attacks_bb<ROOK>(rto, b) & ksq;
|
|
}
|
|
default:
|
|
assert(false);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/// Position::do_move() makes a move, and saves all information necessary
|
|
/// to a StateInfo object. The move is assumed to be legal. Pseudo-legal
|
|
/// moves should be filtered out before this function is called.
|
|
|
|
void Position::do_move(Move m, StateInfo& newSt) {
|
|
|
|
CheckInfo ci(*this);
|
|
do_move(m, newSt, ci, move_gives_check(m, ci));
|
|
}
|
|
|
|
void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveIsCheck) {
|
|
|
|
assert(is_ok(m));
|
|
assert(&newSt != st);
|
|
|
|
nodes++;
|
|
Key k = st->key;
|
|
|
|
// Copy some fields of old state to our new StateInfo object except the ones
|
|
// which are going to be recalculated from scratch anyway, then switch our state
|
|
// pointer to point to the new, ready to be updated, state.
|
|
memcpy(&newSt, st, StateCopySize64 * sizeof(uint64_t));
|
|
|
|
newSt.previous = st;
|
|
st = &newSt;
|
|
|
|
// Update side to move
|
|
k ^= Zobrist::side;
|
|
|
|
// Increment ply counters.In particular rule50 will be later reset it to zero
|
|
// in case of a capture or a pawn move.
|
|
gamePly++;
|
|
st->rule50++;
|
|
st->pliesFromNull++;
|
|
|
|
Color us = sideToMove;
|
|
Color them = ~us;
|
|
Square from = from_sq(m);
|
|
Square to = to_sq(m);
|
|
Piece piece = piece_on(from);
|
|
PieceType pt = type_of(piece);
|
|
PieceType capture = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to));
|
|
|
|
assert(color_of(piece) == us);
|
|
assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == them || type_of(m) == CASTLE);
|
|
assert(capture != KING);
|
|
|
|
if (type_of(m) == CASTLE)
|
|
{
|
|
assert(piece == make_piece(us, KING));
|
|
|
|
bool kingSide = to > from;
|
|
Square rfrom = to; // Castle is encoded as "king captures friendly rook"
|
|
Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
|
|
to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
|
|
capture = NO_PIECE_TYPE;
|
|
|
|
do_castle(from, to, rfrom, rto);
|
|
|
|
st->psqScore += psq_delta(make_piece(us, ROOK), rfrom, rto);
|
|
k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto];
|
|
}
|
|
|
|
if (capture)
|
|
{
|
|
Square capsq = to;
|
|
|
|
// If the captured piece is a pawn, update pawn hash key, otherwise
|
|
// update non-pawn material.
|
|
if (capture == PAWN)
|
|
{
|
|
if (type_of(m) == ENPASSANT)
|
|
{
|
|
capsq += pawn_push(them);
|
|
|
|
assert(pt == PAWN);
|
|
assert(to == st->epSquare);
|
|
assert(relative_rank(us, to) == RANK_6);
|
|
assert(piece_on(to) == NO_PIECE);
|
|
assert(piece_on(capsq) == make_piece(them, PAWN));
|
|
|
|
board[capsq] = NO_PIECE;
|
|
}
|
|
|
|
st->pawnKey ^= Zobrist::psq[them][PAWN][capsq];
|
|
}
|
|
else
|
|
st->npMaterial[them] -= PieceValue[MG][capture];
|
|
|
|
// Remove the captured piece
|
|
byTypeBB[ALL_PIECES] ^= capsq;
|
|
byTypeBB[capture] ^= capsq;
|
|
byColorBB[them] ^= capsq;
|
|
|
|
// Update piece list, move the last piece at index[capsq] position and
|
|
// shrink the list.
|
|
//
|
|
// WARNING: This is a not reversible operation. When we will reinsert the
|
|
// captured piece in undo_move() we will put it at the end of the list and
|
|
// not in its original place, it means index[] and pieceList[] are not
|
|
// guaranteed to be invariant to a do_move() + undo_move() sequence.
|
|
Square lastSquare = pieceList[them][capture][--pieceCount[them][capture]];
|
|
index[lastSquare] = index[capsq];
|
|
pieceList[them][capture][index[lastSquare]] = lastSquare;
|
|
pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE;
|
|
|
|
// Update material hash key and prefetch access to materialTable
|
|
k ^= Zobrist::psq[them][capture][capsq];
|
|
st->materialKey ^= Zobrist::psq[them][capture][pieceCount[them][capture]];
|
|
prefetch((char*)thisThread->materialTable[st->materialKey]);
|
|
|
|
// Update incremental scores
|
|
st->psqScore -= pieceSquareTable[make_piece(them, capture)][capsq];
|
|
|
|
// Reset rule 50 counter
|
|
st->rule50 = 0;
|
|
}
|
|
|
|
// Update hash key
|
|
k ^= Zobrist::psq[us][pt][from] ^ Zobrist::psq[us][pt][to];
|
|
|
|
// Reset en passant square
|
|
if (st->epSquare != SQ_NONE)
|
|
{
|
|
k ^= Zobrist::enpassant[file_of(st->epSquare)];
|
|
st->epSquare = SQ_NONE;
|
|
}
|
|
|
|
// Update castle rights if needed
|
|
if (st->castleRights && (castleRightsMask[from] | castleRightsMask[to]))
|
|
{
|
|
int cr = castleRightsMask[from] | castleRightsMask[to];
|
|
k ^= Zobrist::castle[st->castleRights & cr];
|
|
st->castleRights &= ~cr;
|
|
}
|
|
|
|
// Prefetch TT access as soon as we know the new hash key
|
|
prefetch((char*)TT.first_entry(k));
|
|
|
|
// Move the piece. The tricky Chess960 castle is handled earlier
|
|
if (type_of(m) != CASTLE)
|
|
{
|
|
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
|
|
byTypeBB[ALL_PIECES] ^= from_to_bb;
|
|
byTypeBB[pt] ^= from_to_bb;
|
|
byColorBB[us] ^= from_to_bb;
|
|
|
|
board[from] = NO_PIECE;
|
|
board[to] = piece;
|
|
|
|
// Update piece lists, index[from] is not updated and becomes stale. This
|
|
// works as long as index[] is accessed just by known occupied squares.
|
|
index[to] = index[from];
|
|
pieceList[us][pt][index[to]] = to;
|
|
}
|
|
|
|
// If the moving piece is a pawn do some special extra work
|
|
if (pt == PAWN)
|
|
{
|
|
// Set en-passant square, only if moved pawn can be captured
|
|
if ( (int(to) ^ int(from)) == 16
|
|
&& (attacks_from<PAWN>(from + pawn_push(us), us) & pieces(them, PAWN)))
|
|
{
|
|
st->epSquare = Square((from + to) / 2);
|
|
k ^= Zobrist::enpassant[file_of(st->epSquare)];
|
|
}
|
|
|
|
if (type_of(m) == PROMOTION)
|
|
{
|
|
PieceType promotion = promotion_type(m);
|
|
|
|
assert(relative_rank(us, to) == RANK_8);
|
|
assert(promotion >= KNIGHT && promotion <= QUEEN);
|
|
|
|
// Replace the pawn with the promoted piece
|
|
byTypeBB[PAWN] ^= to;
|
|
byTypeBB[promotion] |= to;
|
|
board[to] = make_piece(us, promotion);
|
|
|
|
// Update piece lists, move the last pawn at index[to] position
|
|
// and shrink the list. Add a new promotion piece to the list.
|
|
Square lastSquare = pieceList[us][PAWN][--pieceCount[us][PAWN]];
|
|
index[lastSquare] = index[to];
|
|
pieceList[us][PAWN][index[lastSquare]] = lastSquare;
|
|
pieceList[us][PAWN][pieceCount[us][PAWN]] = SQ_NONE;
|
|
index[to] = pieceCount[us][promotion];
|
|
pieceList[us][promotion][index[to]] = to;
|
|
|
|
// Update hash keys
|
|
k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to];
|
|
st->pawnKey ^= Zobrist::psq[us][PAWN][to];
|
|
st->materialKey ^= Zobrist::psq[us][promotion][pieceCount[us][promotion]++]
|
|
^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]];
|
|
|
|
// Update incremental score
|
|
st->psqScore += pieceSquareTable[make_piece(us, promotion)][to]
|
|
- pieceSquareTable[make_piece(us, PAWN)][to];
|
|
|
|
// Update material
|
|
st->npMaterial[us] += PieceValue[MG][promotion];
|
|
}
|
|
|
|
// Update pawn hash key and prefetch access to pawnsTable
|
|
st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to];
|
|
prefetch((char*)thisThread->pawnsTable[st->pawnKey]);
|
|
|
|
// Reset rule 50 draw counter
|
|
st->rule50 = 0;
|
|
}
|
|
|
|
// Update incremental scores
|
|
st->psqScore += psq_delta(piece, from, to);
|
|
|
|
// Set capture piece
|
|
st->capturedType = capture;
|
|
|
|
// Update the key with the final value
|
|
st->key = k;
|
|
|
|
// Update checkers bitboard, piece must be already moved
|
|
st->checkersBB = 0;
|
|
|
|
if (moveIsCheck)
|
|
{
|
|
if (type_of(m) != NORMAL)
|
|
st->checkersBB = attackers_to(king_square(them)) & pieces(us);
|
|
else
|
|
{
|
|
// Direct checks
|
|
if (ci.checkSq[pt] & to)
|
|
st->checkersBB |= to;
|
|
|
|
// Discovery checks
|
|
if (ci.dcCandidates && (ci.dcCandidates & from))
|
|
{
|
|
if (pt != ROOK)
|
|
st->checkersBB |= attacks_from<ROOK>(king_square(them)) & pieces(us, QUEEN, ROOK);
|
|
|
|
if (pt != BISHOP)
|
|
st->checkersBB |= attacks_from<BISHOP>(king_square(them)) & pieces(us, QUEEN, BISHOP);
|
|
}
|
|
}
|
|
}
|
|
|
|
sideToMove = ~sideToMove;
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
|
|
/// Position::undo_move() unmakes a move. When it returns, the position should
|
|
/// be restored to exactly the same state as before the move was made.
|
|
|
|
void Position::undo_move(Move m) {
|
|
|
|
assert(is_ok(m));
|
|
|
|
sideToMove = ~sideToMove;
|
|
|
|
Color us = sideToMove;
|
|
Color them = ~us;
|
|
Square from = from_sq(m);
|
|
Square to = to_sq(m);
|
|
PieceType pt = type_of(piece_on(to));
|
|
PieceType capture = st->capturedType;
|
|
|
|
assert(is_empty(from) || type_of(m) == CASTLE);
|
|
assert(capture != KING);
|
|
|
|
if (type_of(m) == PROMOTION)
|
|
{
|
|
PieceType promotion = promotion_type(m);
|
|
|
|
assert(promotion == pt);
|
|
assert(relative_rank(us, to) == RANK_8);
|
|
assert(promotion >= KNIGHT && promotion <= QUEEN);
|
|
|
|
// Replace the promoted piece with the pawn
|
|
byTypeBB[promotion] ^= to;
|
|
byTypeBB[PAWN] |= to;
|
|
board[to] = make_piece(us, PAWN);
|
|
|
|
// Update piece lists, move the last promoted piece at index[to] position
|
|
// and shrink the list. Add a new pawn to the list.
|
|
Square lastSquare = pieceList[us][promotion][--pieceCount[us][promotion]];
|
|
index[lastSquare] = index[to];
|
|
pieceList[us][promotion][index[lastSquare]] = lastSquare;
|
|
pieceList[us][promotion][pieceCount[us][promotion]] = SQ_NONE;
|
|
index[to] = pieceCount[us][PAWN]++;
|
|
pieceList[us][PAWN][index[to]] = to;
|
|
|
|
pt = PAWN;
|
|
}
|
|
|
|
if (type_of(m) == CASTLE)
|
|
{
|
|
bool kingSide = to > from;
|
|
Square rfrom = to; // Castle is encoded as "king captures friendly rook"
|
|
Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
|
|
to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
|
|
capture = NO_PIECE_TYPE;
|
|
pt = KING;
|
|
do_castle(to, from, rto, rfrom);
|
|
}
|
|
else
|
|
{
|
|
// Put the piece back at the source square
|
|
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
|
|
byTypeBB[ALL_PIECES] ^= from_to_bb;
|
|
byTypeBB[pt] ^= from_to_bb;
|
|
byColorBB[us] ^= from_to_bb;
|
|
|
|
board[to] = NO_PIECE;
|
|
board[from] = make_piece(us, pt);
|
|
|
|
// Update piece lists, index[to] is not updated and becomes stale. This
|
|
// works as long as index[] is accessed just by known occupied squares.
|
|
index[from] = index[to];
|
|
pieceList[us][pt][index[from]] = from;
|
|
}
|
|
|
|
if (capture)
|
|
{
|
|
Square capsq = to;
|
|
|
|
if (type_of(m) == ENPASSANT)
|
|
{
|
|
capsq -= pawn_push(us);
|
|
|
|
assert(pt == PAWN);
|
|
assert(to == st->previous->epSquare);
|
|
assert(relative_rank(us, to) == RANK_6);
|
|
assert(piece_on(capsq) == NO_PIECE);
|
|
}
|
|
|
|
// Restore the captured piece
|
|
byTypeBB[ALL_PIECES] |= capsq;
|
|
byTypeBB[capture] |= capsq;
|
|
byColorBB[them] |= capsq;
|
|
|
|
board[capsq] = make_piece(them, capture);
|
|
|
|
// Update piece list, add a new captured piece in capsq square
|
|
index[capsq] = pieceCount[them][capture]++;
|
|
pieceList[them][capture][index[capsq]] = capsq;
|
|
}
|
|
|
|
// Finally point our state pointer back to the previous state
|
|
st = st->previous;
|
|
gamePly--;
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
|
|
/// Position::do_castle() is a helper used to do/undo a castling move. This
|
|
/// is a bit tricky, especially in Chess960.
|
|
|
|
void Position::do_castle(Square kfrom, Square kto, Square rfrom, Square rto) {
|
|
|
|
Color us = sideToMove;
|
|
Bitboard k_from_to_bb = SquareBB[kfrom] ^ SquareBB[kto];
|
|
Bitboard r_from_to_bb = SquareBB[rfrom] ^ SquareBB[rto];
|
|
byTypeBB[KING] ^= k_from_to_bb;
|
|
byTypeBB[ROOK] ^= r_from_to_bb;
|
|
byTypeBB[ALL_PIECES] ^= k_from_to_bb ^ r_from_to_bb;
|
|
byColorBB[us] ^= k_from_to_bb ^ r_from_to_bb;
|
|
|
|
// Could be from == to, so first set NO_PIECE then KING and ROOK
|
|
board[kfrom] = board[rfrom] = NO_PIECE;
|
|
board[kto] = make_piece(us, KING);
|
|
board[rto] = make_piece(us, ROOK);
|
|
|
|
// Could be kfrom == rto, so use a 'tmp' variable
|
|
int tmp = index[kfrom];
|
|
index[rto] = index[rfrom];
|
|
index[kto] = tmp;
|
|
pieceList[us][KING][index[kto]] = kto;
|
|
pieceList[us][ROOK][index[rto]] = rto;
|
|
}
|
|
|
|
|
|
/// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips
|
|
/// the side to move without executing any move on the board.
|
|
|
|
void Position::do_null_move(StateInfo& newSt) {
|
|
|
|
assert(!checkers());
|
|
|
|
memcpy(&newSt, st, sizeof(StateInfo)); // Fully copy here
|
|
|
|
newSt.previous = st;
|
|
st = &newSt;
|
|
|
|
if (st->epSquare != SQ_NONE)
|
|
{
|
|
st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
|
|
st->epSquare = SQ_NONE;
|
|
}
|
|
|
|
st->key ^= Zobrist::side;
|
|
prefetch((char*)TT.first_entry(st->key));
|
|
|
|
st->rule50++;
|
|
st->pliesFromNull = 0;
|
|
|
|
sideToMove = ~sideToMove;
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
void Position::undo_null_move() {
|
|
|
|
assert(!checkers());
|
|
|
|
st = st->previous;
|
|
sideToMove = ~sideToMove;
|
|
}
|
|
|
|
|
|
/// Position::see() is a static exchange evaluator: It tries to estimate the
|
|
/// material gain or loss resulting from a move. Parameter 'asymmThreshold' takes
|
|
/// tempi into account. If the side who initiated the capturing sequence does the
|
|
/// last capture, he loses a tempo and if the result is below 'asymmThreshold'
|
|
/// the capturing sequence is considered bad.
|
|
|
|
int Position::see_sign(Move m) const {
|
|
|
|
assert(is_ok(m));
|
|
|
|
// Early return if SEE cannot be negative because captured piece value
|
|
// is not less then capturing one. Note that king moves always return
|
|
// here because king midgame value is set to 0.
|
|
if (PieceValue[MG][piece_on(to_sq(m))] >= PieceValue[MG][piece_moved(m)])
|
|
return 1;
|
|
|
|
return see(m);
|
|
}
|
|
|
|
int Position::see(Move m, int asymmThreshold) const {
|
|
|
|
Square from, to;
|
|
Bitboard occupied, attackers, stmAttackers;
|
|
int swapList[32], slIndex = 1;
|
|
PieceType captured;
|
|
Color stm;
|
|
|
|
assert(is_ok(m));
|
|
|
|
from = from_sq(m);
|
|
to = to_sq(m);
|
|
captured = type_of(piece_on(to));
|
|
occupied = pieces() ^ from;
|
|
|
|
// Handle en passant moves
|
|
if (type_of(m) == ENPASSANT)
|
|
{
|
|
Square capQq = to - pawn_push(sideToMove);
|
|
|
|
assert(!captured);
|
|
assert(type_of(piece_on(capQq)) == PAWN);
|
|
|
|
// Remove the captured pawn
|
|
occupied ^= capQq;
|
|
captured = PAWN;
|
|
}
|
|
else if (type_of(m) == CASTLE)
|
|
// Castle moves are implemented as king capturing the rook so cannot be
|
|
// handled correctly. Simply return 0 that is always the correct value
|
|
// unless the rook is ends up under attack.
|
|
return 0;
|
|
|
|
// Find all attackers to the destination square, with the moving piece
|
|
// removed, but possibly an X-ray attacker added behind it.
|
|
attackers = attackers_to(to, occupied);
|
|
|
|
// If the opponent has no attackers we are finished
|
|
stm = ~color_of(piece_on(from));
|
|
stmAttackers = attackers & pieces(stm);
|
|
if (!stmAttackers)
|
|
return PieceValue[MG][captured];
|
|
|
|
// The destination square is defended, which makes things rather more
|
|
// difficult to compute. We proceed by building up a "swap list" containing
|
|
// the material gain or loss at each stop in a sequence of captures to the
|
|
// destination square, where the sides alternately capture, and always
|
|
// capture with the least valuable piece. After each capture, we look for
|
|
// new X-ray attacks from behind the capturing piece.
|
|
swapList[0] = PieceValue[MG][captured];
|
|
captured = type_of(piece_on(from));
|
|
|
|
do {
|
|
assert(slIndex < 32);
|
|
|
|
// Add the new entry to the swap list
|
|
swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[MG][captured];
|
|
slIndex++;
|
|
|
|
// Locate and remove from 'occupied' the next least valuable attacker
|
|
captured = next_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
|
|
|
|
attackers &= occupied; // Remove the just found attacker
|
|
stm = ~stm;
|
|
stmAttackers = attackers & pieces(stm);
|
|
|
|
if (captured == KING)
|
|
{
|
|
// Stop before processing a king capture
|
|
if (stmAttackers)
|
|
swapList[slIndex++] = QueenValueMg * 16;
|
|
|
|
break;
|
|
}
|
|
|
|
} while (stmAttackers);
|
|
|
|
// If we are doing asymmetric SEE evaluation and the same side does the first
|
|
// and the last capture, he loses a tempo and gain must be at least worth
|
|
// 'asymmThreshold', otherwise we replace the score with a very low value,
|
|
// before negamaxing.
|
|
if (asymmThreshold)
|
|
for (int i = 0; i < slIndex; i += 2)
|
|
if (swapList[i] < asymmThreshold)
|
|
swapList[i] = - QueenValueMg * 16;
|
|
|
|
// Having built the swap list, we negamax through it to find the best
|
|
// achievable score from the point of view of the side to move.
|
|
while (--slIndex)
|
|
swapList[slIndex-1] = std::min(-swapList[slIndex], swapList[slIndex-1]);
|
|
|
|
return swapList[0];
|
|
}
|
|
|
|
|
|
/// Position::clear() erases the position object to a pristine state, with an
|
|
/// empty board, white to move, and no castling rights.
|
|
|
|
void Position::clear() {
|
|
|
|
memset(this, 0, sizeof(Position));
|
|
startState.epSquare = SQ_NONE;
|
|
st = &startState;
|
|
|
|
for (int i = 0; i < 8; i++)
|
|
for (int j = 0; j < 16; j++)
|
|
pieceList[0][i][j] = pieceList[1][i][j] = SQ_NONE;
|
|
}
|
|
|
|
|
|
/// Position::put_piece() puts a piece on the given square of the board,
|
|
/// updating the board array, pieces list, bitboards, and piece counts.
|
|
|
|
void Position::put_piece(Piece p, Square s) {
|
|
|
|
Color c = color_of(p);
|
|
PieceType pt = type_of(p);
|
|
|
|
board[s] = p;
|
|
index[s] = pieceCount[c][pt]++;
|
|
pieceList[c][pt][index[s]] = s;
|
|
|
|
byTypeBB[ALL_PIECES] |= s;
|
|
byTypeBB[pt] |= s;
|
|
byColorBB[c] |= s;
|
|
}
|
|
|
|
|
|
/// Position::compute_key() computes the hash key of the position. The hash
|
|
/// key is usually updated incrementally as moves are made and unmade, the
|
|
/// compute_key() function is only used when a new position is set up, and
|
|
/// to verify the correctness of the hash key when running in debug mode.
|
|
|
|
Key Position::compute_key() const {
|
|
|
|
Key k = Zobrist::castle[st->castleRights];
|
|
|
|
for (Bitboard b = pieces(); b; )
|
|
{
|
|
Square s = pop_lsb(&b);
|
|
k ^= Zobrist::psq[color_of(piece_on(s))][type_of(piece_on(s))][s];
|
|
}
|
|
|
|
if (ep_square() != SQ_NONE)
|
|
k ^= Zobrist::enpassant[file_of(ep_square())];
|
|
|
|
if (sideToMove == BLACK)
|
|
k ^= Zobrist::side;
|
|
|
|
return k;
|
|
}
|
|
|
|
|
|
/// Position::compute_pawn_key() computes the hash key of the position. The
|
|
/// hash key is usually updated incrementally as moves are made and unmade,
|
|
/// the compute_pawn_key() function is only used when a new position is set
|
|
/// up, and to verify the correctness of the pawn hash key when running in
|
|
/// debug mode.
|
|
|
|
Key Position::compute_pawn_key() const {
|
|
|
|
Key k = 0;
|
|
|
|
for (Bitboard b = pieces(PAWN); b; )
|
|
{
|
|
Square s = pop_lsb(&b);
|
|
k ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s];
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
|
|
/// Position::compute_material_key() computes the hash key of the position.
|
|
/// The hash key is usually updated incrementally as moves are made and unmade,
|
|
/// the compute_material_key() function is only used when a new position is set
|
|
/// up, and to verify the correctness of the material hash key when running in
|
|
/// debug mode.
|
|
|
|
Key Position::compute_material_key() const {
|
|
|
|
Key k = 0;
|
|
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (PieceType pt = PAWN; pt <= QUEEN; pt++)
|
|
for (int cnt = 0; cnt < piece_count(c, pt); cnt++)
|
|
k ^= Zobrist::psq[c][pt][cnt];
|
|
|
|
return k;
|
|
}
|
|
|
|
|
|
/// Position::compute_psq_score() computes the incremental scores for the middle
|
|
/// game and the endgame. These functions are used to initialize the incremental
|
|
/// scores when a new position is set up, and to verify that the scores are correctly
|
|
/// updated by do_move and undo_move when the program is running in debug mode.
|
|
Score Position::compute_psq_score() const {
|
|
|
|
Score score = SCORE_ZERO;
|
|
|
|
for (Bitboard b = pieces(); b; )
|
|
{
|
|
Square s = pop_lsb(&b);
|
|
score += pieceSquareTable[piece_on(s)][s];
|
|
}
|
|
|
|
return score;
|
|
}
|
|
|
|
|
|
/// Position::compute_non_pawn_material() computes the total non-pawn middle
|
|
/// game material value for the given side. Material values are updated
|
|
/// incrementally during the search, this function is only used while
|
|
/// initializing a new Position object.
|
|
|
|
Value Position::compute_non_pawn_material(Color c) const {
|
|
|
|
Value value = VALUE_ZERO;
|
|
|
|
for (PieceType pt = KNIGHT; pt <= QUEEN; pt++)
|
|
value += piece_count(c, pt) * PieceValue[MG][pt];
|
|
|
|
return value;
|
|
}
|
|
|
|
|
|
/// Position::is_draw() tests whether the position is drawn by material,
|
|
/// repetition, or the 50 moves rule. It does not detect stalemates, this
|
|
/// must be done by the search.
|
|
bool Position::is_draw() const {
|
|
|
|
// Draw by material?
|
|
if ( !pieces(PAWN)
|
|
&& (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMg))
|
|
return true;
|
|
|
|
// Draw by the 50 moves rule?
|
|
if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size()))
|
|
return true;
|
|
|
|
// Draw by repetition?
|
|
int i = 4, e = std::min(st->rule50, st->pliesFromNull);
|
|
|
|
if (i <= e)
|
|
{
|
|
StateInfo* stp = st->previous->previous;
|
|
|
|
do {
|
|
stp = stp->previous->previous;
|
|
|
|
if (stp->key == st->key)
|
|
return true;
|
|
|
|
i += 2;
|
|
|
|
} while (i <= e);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Position::flip() flips position with the white and black sides reversed. This
|
|
/// is only useful for debugging especially for finding evaluation symmetry bugs.
|
|
|
|
void Position::flip() {
|
|
|
|
const Position pos(*this);
|
|
|
|
clear();
|
|
|
|
sideToMove = ~pos.side_to_move();
|
|
thisThread = pos.this_thread();
|
|
nodes = pos.nodes_searched();
|
|
chess960 = pos.is_chess960();
|
|
gamePly = pos.game_ply();
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
if (!pos.is_empty(s))
|
|
put_piece(Piece(pos.piece_on(s) ^ 8), ~s);
|
|
|
|
if (pos.can_castle(WHITE_OO))
|
|
set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, KING_SIDE));
|
|
if (pos.can_castle(WHITE_OOO))
|
|
set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, QUEEN_SIDE));
|
|
if (pos.can_castle(BLACK_OO))
|
|
set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, KING_SIDE));
|
|
if (pos.can_castle(BLACK_OOO))
|
|
set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, QUEEN_SIDE));
|
|
|
|
if (pos.st->epSquare != SQ_NONE)
|
|
st->epSquare = ~pos.st->epSquare;
|
|
|
|
st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
|
|
|
|
st->key = compute_key();
|
|
st->pawnKey = compute_pawn_key();
|
|
st->materialKey = compute_material_key();
|
|
st->psqScore = compute_psq_score();
|
|
st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
|
|
st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
|
|
|
|
assert(pos_is_ok());
|
|
}
|
|
|
|
|
|
/// Position::pos_is_ok() performs some consitency checks for the position object.
|
|
/// This is meant to be helpful when debugging.
|
|
|
|
bool Position::pos_is_ok(int* failedStep) const {
|
|
|
|
int dummy, *step = failedStep ? failedStep : &dummy;
|
|
|
|
// What features of the position should be verified?
|
|
const bool all = false;
|
|
|
|
const bool debugBitboards = all || false;
|
|
const bool debugKingCount = all || false;
|
|
const bool debugKingCapture = all || false;
|
|
const bool debugCheckerCount = all || false;
|
|
const bool debugKey = all || false;
|
|
const bool debugMaterialKey = all || false;
|
|
const bool debugPawnKey = all || false;
|
|
const bool debugIncrementalEval = all || false;
|
|
const bool debugNonPawnMaterial = all || false;
|
|
const bool debugPieceCounts = all || false;
|
|
const bool debugPieceList = all || false;
|
|
const bool debugCastleSquares = all || false;
|
|
|
|
*step = 1;
|
|
|
|
if (sideToMove != WHITE && sideToMove != BLACK)
|
|
return false;
|
|
|
|
if ((*step)++, piece_on(king_square(WHITE)) != W_KING)
|
|
return false;
|
|
|
|
if ((*step)++, piece_on(king_square(BLACK)) != B_KING)
|
|
return false;
|
|
|
|
if ((*step)++, debugKingCount)
|
|
{
|
|
int kingCount[COLOR_NB] = {};
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
if (type_of(piece_on(s)) == KING)
|
|
kingCount[color_of(piece_on(s))]++;
|
|
|
|
if (kingCount[0] != 1 || kingCount[1] != 1)
|
|
return false;
|
|
}
|
|
|
|
if ((*step)++, debugKingCapture)
|
|
if (attackers_to(king_square(~sideToMove)) & pieces(sideToMove))
|
|
return false;
|
|
|
|
if ((*step)++, debugCheckerCount && popcount<Full>(st->checkersBB) > 2)
|
|
return false;
|
|
|
|
if ((*step)++, debugBitboards)
|
|
{
|
|
// The intersection of the white and black pieces must be empty
|
|
if (pieces(WHITE) & pieces(BLACK))
|
|
return false;
|
|
|
|
// The union of the white and black pieces must be equal to all
|
|
// occupied squares
|
|
if ((pieces(WHITE) | pieces(BLACK)) != pieces())
|
|
return false;
|
|
|
|
// Separate piece type bitboards must have empty intersections
|
|
for (PieceType p1 = PAWN; p1 <= KING; p1++)
|
|
for (PieceType p2 = PAWN; p2 <= KING; p2++)
|
|
if (p1 != p2 && (pieces(p1) & pieces(p2)))
|
|
return false;
|
|
}
|
|
|
|
if ((*step)++, ep_square() != SQ_NONE && relative_rank(sideToMove, ep_square()) != RANK_6)
|
|
return false;
|
|
|
|
if ((*step)++, debugKey && st->key != compute_key())
|
|
return false;
|
|
|
|
if ((*step)++, debugPawnKey && st->pawnKey != compute_pawn_key())
|
|
return false;
|
|
|
|
if ((*step)++, debugMaterialKey && st->materialKey != compute_material_key())
|
|
return false;
|
|
|
|
if ((*step)++, debugIncrementalEval && st->psqScore != compute_psq_score())
|
|
return false;
|
|
|
|
if ((*step)++, debugNonPawnMaterial)
|
|
{
|
|
if ( st->npMaterial[WHITE] != compute_non_pawn_material(WHITE)
|
|
|| st->npMaterial[BLACK] != compute_non_pawn_material(BLACK))
|
|
return false;
|
|
}
|
|
|
|
if ((*step)++, debugPieceCounts)
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (PieceType pt = PAWN; pt <= KING; pt++)
|
|
if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt)))
|
|
return false;
|
|
|
|
if ((*step)++, debugPieceList)
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (PieceType pt = PAWN; pt <= KING; pt++)
|
|
for (int i = 0; i < pieceCount[c][pt]; i++)
|
|
{
|
|
if (piece_on(piece_list(c, pt)[i]) != make_piece(c, pt))
|
|
return false;
|
|
|
|
if (index[piece_list(c, pt)[i]] != i)
|
|
return false;
|
|
}
|
|
|
|
if ((*step)++, debugCastleSquares)
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
|
|
{
|
|
CastleRight cr = make_castle_right(c, s);
|
|
|
|
if (!can_castle(cr))
|
|
continue;
|
|
|
|
if ((castleRightsMask[king_square(c)] & cr) != cr)
|
|
return false;
|
|
|
|
if ( piece_on(castleRookSquare[c][s]) != make_piece(c, ROOK)
|
|
|| castleRightsMask[castleRookSquare[c][s]] != cr)
|
|
return false;
|
|
}
|
|
|
|
*step = 0;
|
|
return true;
|
|
}
|