/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#if !defined(BITBOARD_H_INCLUDED)
#define BITBOARD_H_INCLUDED
#include "types.h"
extern Bitboard FileBB[8];
extern Bitboard NeighboringFilesBB[8];
extern Bitboard ThisAndNeighboringFilesBB[8];
extern Bitboard RankBB[8];
extern Bitboard InFrontBB[2][8];
extern Bitboard SetMaskBB[65];
extern Bitboard ClearMaskBB[65];
extern Bitboard StepAttacksBB[16][64];
extern Bitboard BetweenBB[64][64];
extern Bitboard SquaresInFrontMask[2][64];
extern Bitboard PassedPawnMask[2][64];
extern Bitboard AttackSpanMask[2][64];
extern uint64_t RMagics[64];
extern int RShifts[64];
extern Bitboard RMasks[64];
extern Bitboard* RAttacks[64];
extern uint64_t BMagics[64];
extern int BShifts[64];
extern Bitboard BMasks[64];
extern Bitboard* BAttacks[64];
extern Bitboard BishopPseudoAttacks[64];
extern Bitboard RookPseudoAttacks[64];
extern Bitboard QueenPseudoAttacks[64];
extern uint8_t BitCount8Bit[256];
/// Functions for testing whether a given bit is set in a bitboard, and for
/// setting and clearing bits.
inline Bitboard bit_is_set(Bitboard b, Square s) {
return b & SetMaskBB[s];
}
inline void set_bit(Bitboard* b, Square s) {
*b |= SetMaskBB[s];
}
inline void clear_bit(Bitboard* b, Square s) {
*b &= ClearMaskBB[s];
}
/// Functions used to update a bitboard after a move. This is faster
/// then calling a sequence of clear_bit() + set_bit()
inline Bitboard make_move_bb(Square from, Square to) {
return SetMaskBB[from] | SetMaskBB[to];
}
inline void do_move_bb(Bitboard* b, Bitboard move_bb) {
*b ^= move_bb;
}
/// rank_bb() and file_bb() take a file or a square as input and return
/// a bitboard representing all squares on the given file or rank.
inline Bitboard rank_bb(Rank r) {
return RankBB[r];
}
inline Bitboard rank_bb(Square s) {
return RankBB[rank_of(s)];
}
inline Bitboard file_bb(File f) {
return FileBB[f];
}
inline Bitboard file_bb(Square s) {
return FileBB[file_of(s)];
}
/// neighboring_files_bb takes a file as input and returns a bitboard representing
/// all squares on the neighboring files.
inline Bitboard neighboring_files_bb(File f) {
return NeighboringFilesBB[f];
}
/// this_and_neighboring_files_bb takes a file as input and returns a bitboard
/// representing all squares on the given and neighboring files.
inline Bitboard this_and_neighboring_files_bb(File f) {
return ThisAndNeighboringFilesBB[f];
}
/// in_front_bb() takes a color and a rank or square as input, and returns a
/// bitboard representing all the squares on all ranks in front of the rank
/// (or square), from the given color's point of view. For instance,
/// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while
/// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2.
inline Bitboard in_front_bb(Color c, Rank r) {
return InFrontBB[c][r];
}
inline Bitboard in_front_bb(Color c, Square s) {
return InFrontBB[c][rank_of(s)];
}
/// Functions for computing sliding attack bitboards. rook_attacks_bb(),
/// bishop_attacks_bb() and queen_attacks_bb() all take a square and a
/// bitboard of occupied squares as input, and return a bitboard representing
/// all squares attacked by a rook, bishop or queen on the given square.
#if defined(IS_64BIT)
FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) {
return unsigned(((occ & RMasks[s]) * RMagics[s]) >> RShifts[s]);
}
FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) {
return unsigned(((occ & BMasks[s]) * BMagics[s]) >> BShifts[s]);
}
#else // if !defined(IS_64BIT)
FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) {
Bitboard b = occ & RMasks[s];
return unsigned(int(b) * int(RMagics[s]) ^ int(b >> 32) * int(RMagics[s] >> 32)) >> RShifts[s];
}
FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) {
Bitboard b = occ & BMasks[s];
return unsigned(int(b) * int(BMagics[s]) ^ int(b >> 32) * int(BMagics[s] >> 32)) >> BShifts[s];
}
#endif
inline Bitboard rook_attacks_bb(Square s, Bitboard occ) {
return RAttacks[s][rook_index(s, occ)];
}
inline Bitboard bishop_attacks_bb(Square s, Bitboard occ) {
return BAttacks[s][bishop_index(s, occ)];
}
inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) {
return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers);
}
/// squares_between returns a bitboard representing all squares between
/// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a
/// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not
/// on the same line, file or diagonal, EmptyBoardBB is returned.
inline Bitboard squares_between(Square s1, Square s2) {
return BetweenBB[s1][s2];
}
/// squares_in_front_of takes a color and a square as input, and returns a
/// bitboard representing all squares along the line in front of the square,
/// from the point of view of the given color. Definition of the table is:
/// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s)
inline Bitboard squares_in_front_of(Color c, Square s) {
return SquaresInFrontMask[c][s];
}
/// passed_pawn_mask takes a color and a square as input, and returns a
/// bitboard mask which can be used to test if a pawn of the given color on
/// the given square is a passed pawn. Definition of the table is:
/// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s)
inline Bitboard passed_pawn_mask(Color c, Square s) {
return PassedPawnMask[c][s];
}
/// attack_span_mask takes a color and a square as input, and returns a bitboard
/// representing all squares that can be attacked by a pawn of the given color
/// when it moves along its file starting from the given square. Definition is:
/// AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s);
inline Bitboard attack_span_mask(Color c, Square s) {
return AttackSpanMask[c][s];
}
/// squares_aligned returns true if the squares s1, s2 and s3 are aligned
/// either on a straight or on a diagonal line.
inline bool squares_aligned(Square s1, Square s2, Square s3) {
return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3])
& ( SetMaskBB[s1] | SetMaskBB[s2] | SetMaskBB[s3]);
}
/// same_color_squares() returns a bitboard representing all squares with
/// the same color of the given square.
inline Bitboard same_color_squares(Square s) {
return bit_is_set(0xAA55AA55AA55AA55ULL, s) ? 0xAA55AA55AA55AA55ULL
: ~0xAA55AA55AA55AA55ULL;
}
/// first_1() finds the least significant nonzero bit in a nonzero bitboard.
/// pop_1st_bit() finds and clears the least significant nonzero bit in a
/// nonzero bitboard.
#if defined(USE_BSFQ)
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
FORCE_INLINE Square first_1(Bitboard b) {
unsigned long index;
_BitScanForward64(&index, b);
return (Square) index;
}
#else
FORCE_INLINE Square first_1(Bitboard b) { // Assembly code by Heinz van Saanen
Bitboard dummy;
__asm__("bsfq %1, %0": "=r"(dummy): "rm"(b) );
return (Square) dummy;
}
#endif
FORCE_INLINE Square pop_1st_bit(Bitboard* b) {
const Square s = first_1(*b);
*b &= ~(1ULL<