/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if !defined(BITBOARD_H_INCLUDED) #define BITBOARD_H_INCLUDED #include "types.h" extern Bitboard FileBB[8]; extern Bitboard NeighboringFilesBB[8]; extern Bitboard ThisAndNeighboringFilesBB[8]; extern Bitboard RankBB[8]; extern Bitboard InFrontBB[2][8]; extern Bitboard SetMaskBB[65]; extern Bitboard ClearMaskBB[65]; extern Bitboard StepAttacksBB[16][64]; extern Bitboard BetweenBB[64][64]; extern Bitboard SquaresInFrontMask[2][64]; extern Bitboard PassedPawnMask[2][64]; extern Bitboard AttackSpanMask[2][64]; extern uint64_t RMagics[64]; extern int RShifts[64]; extern Bitboard RMasks[64]; extern Bitboard* RAttacks[64]; extern uint64_t BMagics[64]; extern int BShifts[64]; extern Bitboard BMasks[64]; extern Bitboard* BAttacks[64]; extern Bitboard BishopPseudoAttacks[64]; extern Bitboard RookPseudoAttacks[64]; extern Bitboard QueenPseudoAttacks[64]; extern uint8_t BitCount8Bit[256]; /// Functions for testing whether a given bit is set in a bitboard, and for /// setting and clearing bits. inline Bitboard bit_is_set(Bitboard b, Square s) { return b & SetMaskBB[s]; } inline void set_bit(Bitboard* b, Square s) { *b |= SetMaskBB[s]; } inline void clear_bit(Bitboard* b, Square s) { *b &= ClearMaskBB[s]; } /// Functions used to update a bitboard after a move. This is faster /// then calling a sequence of clear_bit() + set_bit() inline Bitboard make_move_bb(Square from, Square to) { return SetMaskBB[from] | SetMaskBB[to]; } inline void do_move_bb(Bitboard* b, Bitboard move_bb) { *b ^= move_bb; } /// rank_bb() and file_bb() take a file or a square as input and return /// a bitboard representing all squares on the given file or rank. inline Bitboard rank_bb(Rank r) { return RankBB[r]; } inline Bitboard rank_bb(Square s) { return RankBB[rank_of(s)]; } inline Bitboard file_bb(File f) { return FileBB[f]; } inline Bitboard file_bb(Square s) { return FileBB[file_of(s)]; } /// neighboring_files_bb takes a file as input and returns a bitboard representing /// all squares on the neighboring files. inline Bitboard neighboring_files_bb(File f) { return NeighboringFilesBB[f]; } /// this_and_neighboring_files_bb takes a file as input and returns a bitboard /// representing all squares on the given and neighboring files. inline Bitboard this_and_neighboring_files_bb(File f) { return ThisAndNeighboringFilesBB[f]; } /// in_front_bb() takes a color and a rank or square as input, and returns a /// bitboard representing all the squares on all ranks in front of the rank /// (or square), from the given color's point of view. For instance, /// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while /// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. inline Bitboard in_front_bb(Color c, Rank r) { return InFrontBB[c][r]; } inline Bitboard in_front_bb(Color c, Square s) { return InFrontBB[c][rank_of(s)]; } /// Functions for computing sliding attack bitboards. rook_attacks_bb(), /// bishop_attacks_bb() and queen_attacks_bb() all take a square and a /// bitboard of occupied squares as input, and return a bitboard representing /// all squares attacked by a rook, bishop or queen on the given square. #if defined(IS_64BIT) FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) { return unsigned(((occ & RMasks[s]) * RMagics[s]) >> RShifts[s]); } FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) { return unsigned(((occ & BMasks[s]) * BMagics[s]) >> BShifts[s]); } #else // if !defined(IS_64BIT) FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) { Bitboard b = occ & RMasks[s]; return unsigned(int(b) * int(RMagics[s]) ^ int(b >> 32) * int(RMagics[s] >> 32)) >> RShifts[s]; } FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) { Bitboard b = occ & BMasks[s]; return unsigned(int(b) * int(BMagics[s]) ^ int(b >> 32) * int(BMagics[s] >> 32)) >> BShifts[s]; } #endif inline Bitboard rook_attacks_bb(Square s, Bitboard occ) { return RAttacks[s][rook_index(s, occ)]; } inline Bitboard bishop_attacks_bb(Square s, Bitboard occ) { return BAttacks[s][bishop_index(s, occ)]; } inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) { return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers); } /// squares_between returns a bitboard representing all squares between /// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a /// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not /// on the same line, file or diagonal, EmptyBoardBB is returned. inline Bitboard squares_between(Square s1, Square s2) { return BetweenBB[s1][s2]; } /// squares_in_front_of takes a color and a square as input, and returns a /// bitboard representing all squares along the line in front of the square, /// from the point of view of the given color. Definition of the table is: /// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s) inline Bitboard squares_in_front_of(Color c, Square s) { return SquaresInFrontMask[c][s]; } /// passed_pawn_mask takes a color and a square as input, and returns a /// bitboard mask which can be used to test if a pawn of the given color on /// the given square is a passed pawn. Definition of the table is: /// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s) inline Bitboard passed_pawn_mask(Color c, Square s) { return PassedPawnMask[c][s]; } /// attack_span_mask takes a color and a square as input, and returns a bitboard /// representing all squares that can be attacked by a pawn of the given color /// when it moves along its file starting from the given square. Definition is: /// AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); inline Bitboard attack_span_mask(Color c, Square s) { return AttackSpanMask[c][s]; } /// squares_aligned returns true if the squares s1, s2 and s3 are aligned /// either on a straight or on a diagonal line. inline bool squares_aligned(Square s1, Square s2, Square s3) { return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3]) & ( SetMaskBB[s1] | SetMaskBB[s2] | SetMaskBB[s3]); } /// same_color_squares() returns a bitboard representing all squares with /// the same color of the given square. inline Bitboard same_color_squares(Square s) { return bit_is_set(0xAA55AA55AA55AA55ULL, s) ? 0xAA55AA55AA55AA55ULL : ~0xAA55AA55AA55AA55ULL; } /// first_1() finds the least significant nonzero bit in a nonzero bitboard. /// pop_1st_bit() finds and clears the least significant nonzero bit in a /// nonzero bitboard. #if defined(USE_BSFQ) #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) FORCE_INLINE Square first_1(Bitboard b) { unsigned long index; _BitScanForward64(&index, b); return (Square) index; } #else FORCE_INLINE Square first_1(Bitboard b) { // Assembly code by Heinz van Saanen Bitboard dummy; __asm__("bsfq %1, %0": "=r"(dummy): "rm"(b) ); return (Square) dummy; } #endif FORCE_INLINE Square pop_1st_bit(Bitboard* b) { const Square s = first_1(*b); *b &= ~(1ULL<