/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "search.h" #include "timeman.h" #include "ucioption.h" namespace { /// Constants const int MoveHorizon = 50; // Plan time management at most this many moves ahead const float MaxRatio = 3.0f; // When in trouble, we can step over reserved time with this ratio const float StealRatio = 0.33f; // However we must not steal time from remaining moves over this ratio // MoveImportance[] is based on naive statistical analysis of "how many games are still undecided // after n half-moves". Game is considered "undecided" as long as neither side has >275cp advantage. // Data was extracted from CCRL game database with some simple filtering criteria. const int MoveImportance[512] = { 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7780, 7778, 7778, 7776, 7776, 7776, 7773, 7770, 7768, 7766, 7763, 7757, 7751, 7743, 7735, 7724, 7713, 7696, 7689, 7670, 7656, 7627, 7605, 7571, 7549, 7522, 7493, 7462, 7425, 7385, 7350, 7308, 7272, 7230, 7180, 7139, 7094, 7055, 7010, 6959, 6902, 6841, 6778, 6705, 6651, 6569, 6508, 6435, 6378, 6323, 6253, 6152, 6085, 5995, 5931, 5859, 5794, 5717, 5646, 5544, 5462, 5364, 5282, 5172, 5078, 4988, 4901, 4831, 4764, 4688, 4609, 4536, 4443, 4365, 4293, 4225, 4155, 4085, 4005, 3927, 3844, 3765, 3693, 3634, 3560, 3479, 3404, 3331, 3268, 3207, 3146, 3077, 3011, 2947, 2894, 2828, 2776, 2727, 2676, 2626, 2589, 2538, 2490, 2442, 2394, 2345, 2302, 2243, 2192, 2156, 2115, 2078, 2043, 2004, 1967, 1922, 1893, 1845, 1809, 1772, 1736, 1702, 1674, 1640, 1605, 1566, 1536, 1509, 1479, 1452, 1423, 1388, 1362, 1332, 1304, 1289, 1266, 1250, 1228, 1206, 1180, 1160, 1134, 1118, 1100, 1080, 1068, 1051, 1034, 1012, 1001, 980, 960, 945, 934, 916, 900, 888, 878, 865, 852, 828, 807, 787, 770, 753, 744, 731, 722, 706, 700, 683, 676, 671, 664, 652, 641, 634, 627, 613, 604, 591, 582, 568, 560, 552, 540, 534, 529, 519, 509, 495, 484, 474, 467, 460, 450, 438, 427, 419, 410, 406, 399, 394, 387, 382, 377, 372, 366, 359, 353, 348, 343, 337, 333, 328, 321, 315, 309, 303, 298, 293, 287, 284, 281, 277, 273, 265, 261, 255, 251, 247, 241, 240, 235, 229, 218, 217, 213, 212, 208, 206, 197, 193, 191, 189, 185, 184, 180, 177, 172, 170, 170, 170, 166, 163, 159, 158, 156, 155, 151, 146, 141, 138, 136, 132, 130, 128, 125, 123, 122, 118, 118, 118, 117, 115, 114, 108, 107, 105, 105, 105, 102, 97, 97, 95, 94, 93, 91, 88, 86, 83, 80, 80, 79, 79, 79, 78, 76, 75, 72, 72, 71, 70, 68, 65, 63, 61, 61, 59, 59, 59, 58, 56, 55, 54, 54, 52, 49, 48, 48, 48, 48, 45, 45, 45, 44, 43, 41, 41, 41, 41, 40, 40, 38, 37, 36, 34, 34, 34, 33, 31, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 24, 24, 23, 23, 22, 21, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 15, 15, 14, 14, 14, 12, 12, 11, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 }; int move_importance(int ply) { return MoveImportance[std::min(ply, 511)]; } /// Function Prototypes enum TimeType { OptimumTime, MaxTime }; template int remaining(int myTime, int movesToGo, int fullMoveNumber, int slowMover); } void TimeManager::pv_instability(int curChanges, int prevChanges) { unstablePVExtraTime = curChanges * (optimumSearchTime / 2) + prevChanges * (optimumSearchTime / 3); } void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us) { /* We support four different kind of time controls: increment == 0 && movesToGo == 0 means: x basetime [sudden death!] increment == 0 && movesToGo != 0 means: x moves in y minutes increment > 0 && movesToGo == 0 means: x basetime + z increment increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment Time management is adjusted by following UCI parameters: emergencyMoveHorizon: Be prepared to always play at least this many moves emergencyBaseTime : Always attempt to keep at least this much time (in ms) at clock emergencyMoveTime : Plus attempt to keep at least this much time for each remaining emergency move minThinkingTime : No matter what, use at least this much thinking before doing the move */ int hypMTG, hypMyTime, t1, t2; // Read uci parameters int emergencyMoveHorizon = Options["Emergency Move Horizon"]; int emergencyBaseTime = Options["Emergency Base Time"]; int emergencyMoveTime = Options["Emergency Move Time"]; int minThinkingTime = Options["Minimum Thinking Time"]; int slowMover = Options["Slow Mover"]; // Initialize to maximum values but unstablePVExtraTime that is reset unstablePVExtraTime = 0; optimumSearchTime = maximumSearchTime = limits.time[us]; // We calculate optimum time usage for different hypothetic "moves to go"-values and choose the // minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values. for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); hypMTG++) { // Calculate thinking time for hypothetic "moves to go"-value hypMyTime = limits.time[us] + limits.inc[us] * (hypMTG - 1) - emergencyBaseTime - emergencyMoveTime * std::min(hypMTG, emergencyMoveHorizon); hypMyTime = std::max(hypMyTime, 0); t1 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); t2 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); optimumSearchTime = std::min(optimumSearchTime, t1); maximumSearchTime = std::min(maximumSearchTime, t2); } if (Options["Ponder"]) optimumSearchTime += optimumSearchTime / 4; // Make sure that maxSearchTime is not over absoluteMaxSearchTime optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); } namespace { template int remaining(int myTime, int movesToGo, int currentPly, int slowMover) { const float TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); const float TStealRatio = (T == OptimumTime ? 0 : StealRatio); int thisMoveImportance = move_importance(currentPly) * slowMover / 100; int otherMovesImportance = 0; for (int i = 1; i < movesToGo; i++) otherMovesImportance += move_importance(currentPly + 2 * i); float ratio1 = (TMaxRatio * thisMoveImportance) / float(TMaxRatio * thisMoveImportance + otherMovesImportance); float ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / float(thisMoveImportance + otherMovesImportance); return int(floor(myTime * std::min(ratio1, ratio2))); } }