/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if !defined(POSITION_H_INCLUDED) #define POSITION_H_INCLUDED #include #include "bitboard.h" #include "types.h" /// The checkInfo struct is initialized at c'tor time and keeps info used /// to detect if a move gives check. class Position; class Thread; struct CheckInfo { explicit CheckInfo(const Position&); Bitboard dcCandidates; Bitboard pinned; Bitboard checkSq[8]; Square ksq; }; /// The StateInfo struct stores information we need to restore a Position /// object to its previous state when we retract a move. Whenever a move /// is made on the board (by calling Position::do_move), an StateInfo object /// must be passed as a parameter. struct StateInfo { Key pawnKey, materialKey; Value npMaterial[2]; int castleRights, rule50, pliesFromNull; Score psqScore; Square epSquare; Key key; Bitboard checkersBB; PieceType capturedType; StateInfo* previous; }; struct ReducedStateInfo { Key pawnKey, materialKey; Value npMaterial[2]; int castleRights, rule50, pliesFromNull; Score psqScore; Square epSquare; }; /// The position data structure. A position consists of the following data: /// /// * For each piece type, a bitboard representing the squares occupied /// by pieces of that type. /// * For each color, a bitboard representing the squares occupied by /// pieces of that color. /// * A bitboard of all occupied squares. /// * A bitboard of all checking pieces. /// * A 64-entry array of pieces, indexed by the squares of the board. /// * The current side to move. /// * Information about the castling rights for both sides. /// * The initial files of the kings and both pairs of rooks. This is /// used to implement the Chess960 castling rules. /// * The en passant square (which is SQ_NONE if no en passant capture is /// possible). /// * The squares of the kings for both sides. /// * Hash keys for the position itself, the current pawn structure, and /// the current material situation. /// * Hash keys for all previous positions in the game for detecting /// repetition draws. /// * A counter for detecting 50 move rule draws. class Position { public: Position() {} Position(const Position& p, Thread* t) { *this = p; thisThread = t; } Position(const std::string& f, bool c960, Thread* t) { from_fen(f, c960, t); } Position& operator=(const Position&); // Text input/output void from_fen(const std::string& fen, bool isChess960, Thread* th); const std::string to_fen() const; void print(Move m = MOVE_NONE) const; // Position representation Bitboard pieces() const; Bitboard pieces(PieceType pt) const; Bitboard pieces(PieceType pt1, PieceType pt2) const; Bitboard pieces(Color c) const; Bitboard pieces(Color c, PieceType pt) const; Bitboard pieces(Color c, PieceType pt1, PieceType pt2) const; Piece piece_on(Square s) const; Square king_square(Color c) const; Square ep_square() const; bool is_empty(Square s) const; const Square* piece_list(Color c, PieceType pt) const; int piece_count(Color c, PieceType pt) const; // Castling int can_castle(CastleRight f) const; int can_castle(Color c) const; bool castle_impeded(Color c, CastlingSide s) const; Square castle_rook_square(Color c, CastlingSide s) const; // Checking bool in_check() const; Bitboard checkers() const; Bitboard discovered_check_candidates() const; Bitboard pinned_pieces() const; // Attacks to/from a given square Bitboard attackers_to(Square s) const; Bitboard attackers_to(Square s, Bitboard occ) const; Bitboard attacks_from(Piece p, Square s) const; static Bitboard attacks_from(Piece p, Square s, Bitboard occ); template Bitboard attacks_from(Square s) const; template Bitboard attacks_from(Square s, Color c) const; // Properties of moves bool move_gives_check(Move m, const CheckInfo& ci) const; bool move_attacks_square(Move m, Square s) const; bool move_is_legal(const Move m) const; bool pl_move_is_legal(Move m, Bitboard pinned) const; bool is_pseudo_legal(const Move m) const; bool is_capture(Move m) const; bool is_capture_or_promotion(Move m) const; bool is_passed_pawn_push(Move m) const; Piece piece_moved(Move m) const; PieceType captured_piece_type() const; // Piece specific bool pawn_is_passed(Color c, Square s) const; bool pawn_on_7th(Color c) const; bool opposite_bishops() const; bool bishop_pair(Color c) const; // Doing and undoing moves void do_move(Move m, StateInfo& st); void do_move(Move m, StateInfo& st, const CheckInfo& ci, bool moveIsCheck); void undo_move(Move m); template void do_null_move(StateInfo& st); // Static exchange evaluation int see(Move m) const; int see_sign(Move m) const; // Accessing hash keys Key key() const; Key exclusion_key() const; Key pawn_key() const; Key material_key() const; // Incremental piece-square evaluation Score psq_score() const; Score psq_delta(Piece p, Square from, Square to) const; Value non_pawn_material(Color c) const; // Other properties of the position Color side_to_move() const; int startpos_ply_counter() const; bool is_chess960() const; Thread* this_thread() const; int64_t nodes_searched() const; void set_nodes_searched(int64_t n); template bool is_draw() const; // Position consistency check, for debugging bool pos_is_ok(int* failedStep = NULL) const; void flip(); private: // Initialization helpers (used while setting up a position) void clear(); void put_piece(Piece p, Square s); void set_castle_right(Color c, Square rfrom); // Helper template functions template void do_castle_move(Move m); template Bitboard hidden_checkers() const; // Computing hash keys from scratch (for initialization and debugging) Key compute_key() const; Key compute_pawn_key() const; Key compute_material_key() const; // Computing incremental evaluation scores and material counts Score compute_psq_score() const; Value compute_non_pawn_material(Color c) const; // Board and pieces Piece board[64]; // [square] Bitboard byTypeBB[8]; // [pieceType] Bitboard byColorBB[2]; // [color] int pieceCount[2][8]; // [color][pieceType] Square pieceList[2][8][16]; // [color][pieceType][index] int index[64]; // [square] // Other info int castleRightsMask[64]; // [square] Square castleRookSquare[2][2]; // [color][side] Bitboard castlePath[2][2]; // [color][side] StateInfo startState; int64_t nodes; int startPosPly; Color sideToMove; Thread* thisThread; StateInfo* st; int chess960; }; inline int64_t Position::nodes_searched() const { return nodes; } inline void Position::set_nodes_searched(int64_t n) { nodes = n; } inline Piece Position::piece_on(Square s) const { return board[s]; } inline Piece Position::piece_moved(Move m) const { return board[from_sq(m)]; } inline bool Position::is_empty(Square s) const { return board[s] == NO_PIECE; } inline Color Position::side_to_move() const { return sideToMove; } inline Bitboard Position::pieces() const { return byTypeBB[ALL_PIECES]; } inline Bitboard Position::pieces(PieceType pt) const { return byTypeBB[pt]; } inline Bitboard Position::pieces(PieceType pt1, PieceType pt2) const { return byTypeBB[pt1] | byTypeBB[pt2]; } inline Bitboard Position::pieces(Color c) const { return byColorBB[c]; } inline Bitboard Position::pieces(Color c, PieceType pt) const { return byColorBB[c] & byTypeBB[pt]; } inline Bitboard Position::pieces(Color c, PieceType pt1, PieceType pt2) const { return byColorBB[c] & (byTypeBB[pt1] | byTypeBB[pt2]); } inline int Position::piece_count(Color c, PieceType pt) const { return pieceCount[c][pt]; } inline const Square* Position::piece_list(Color c, PieceType pt) const { return pieceList[c][pt]; } inline Square Position::ep_square() const { return st->epSquare; } inline Square Position::king_square(Color c) const { return pieceList[c][KING][0]; } inline int Position::can_castle(CastleRight f) const { return st->castleRights & f; } inline int Position::can_castle(Color c) const { return st->castleRights & ((WHITE_OO | WHITE_OOO) << (2 * c)); } inline bool Position::castle_impeded(Color c, CastlingSide s) const { return byTypeBB[ALL_PIECES] & castlePath[c][s]; } inline Square Position::castle_rook_square(Color c, CastlingSide s) const { return castleRookSquare[c][s]; } template inline Bitboard Position::attacks_from(Square s) const { return Pt == BISHOP || Pt == ROOK ? attacks_bb(s, pieces()) : Pt == QUEEN ? attacks_from(s) | attacks_from(s) : StepAttacksBB[Pt][s]; } template<> inline Bitboard Position::attacks_from(Square s, Color c) const { return StepAttacksBB[make_piece(c, PAWN)][s]; } inline Bitboard Position::attacks_from(Piece p, Square s) const { return attacks_from(p, s, byTypeBB[ALL_PIECES]); } inline Bitboard Position::attackers_to(Square s) const { return attackers_to(s, byTypeBB[ALL_PIECES]); } inline Bitboard Position::checkers() const { return st->checkersBB; } inline bool Position::in_check() const { return st->checkersBB != 0; } inline Bitboard Position::discovered_check_candidates() const { return hidden_checkers(); } inline Bitboard Position::pinned_pieces() const { return hidden_checkers(); } inline bool Position::pawn_is_passed(Color c, Square s) const { return !(pieces(~c, PAWN) & passed_pawn_mask(c, s)); } inline Key Position::key() const { return st->key; } inline Key Position::exclusion_key() const { return st->key ^ Zobrist::exclusion; } inline Key Position::pawn_key() const { return st->pawnKey; } inline Key Position::material_key() const { return st->materialKey; } inline Score Position::psq_delta(Piece p, Square from, Square to) const { return pieceSquareTable[p][to] - pieceSquareTable[p][from]; } inline Score Position::psq_score() const { return st->psqScore; } inline Value Position::non_pawn_material(Color c) const { return st->npMaterial[c]; } inline bool Position::is_passed_pawn_push(Move m) const { return type_of(piece_moved(m)) == PAWN && pawn_is_passed(sideToMove, to_sq(m)); } inline int Position::startpos_ply_counter() const { return startPosPly + st->pliesFromNull; // HACK } inline bool Position::opposite_bishops() const { return pieceCount[WHITE][BISHOP] == 1 && pieceCount[BLACK][BISHOP] == 1 && opposite_colors(pieceList[WHITE][BISHOP][0], pieceList[BLACK][BISHOP][0]); } inline bool Position::bishop_pair(Color c) const { return pieceCount[c][BISHOP] >= 2 && opposite_colors(pieceList[c][BISHOP][0], pieceList[c][BISHOP][1]); } inline bool Position::pawn_on_7th(Color c) const { return pieces(c, PAWN) & rank_bb(relative_rank(c, RANK_7)); } inline bool Position::is_chess960() const { return chess960; } inline bool Position::is_capture_or_promotion(Move m) const { assert(is_ok(m)); return type_of(m) ? type_of(m) != CASTLE : !is_empty(to_sq(m)); } inline bool Position::is_capture(Move m) const { // Note that castle is coded as "king captures the rook" assert(is_ok(m)); return (!is_empty(to_sq(m)) && type_of(m) != CASTLE) || type_of(m) == ENPASSANT; } inline PieceType Position::captured_piece_type() const { return st->capturedType; } inline Thread* Position::this_thread() const { return thisThread; } #endif // !defined(POSITION_H_INCLUDED)