/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "movegen.h" #include "movepick.h" #include "thread.h" namespace { enum Sequencer { MAIN_SEARCH, CAPTURES_S1, KILLERS_S1, QUIETS_1_S1, QUIETS_2_S1, BAD_CAPTURES_S1, EVASION, EVASIONS_S2, QSEARCH_0, CAPTURES_S3, QUIET_CHECKS_S3, QSEARCH_1, CAPTURES_S4, PROBCUT, CAPTURES_S5, RECAPTURE, CAPTURES_S6, STOP }; // Unary predicate used by std::partition to split positive scores from remaining // ones so to sort separately the two sets, and with the second sort delayed. inline bool has_positive_score(const MoveStack& ms) { return ms.score > 0; } // Picks and moves to the front the best move in the range [begin, end), // it is faster than sorting all the moves in advance when moves are few, as // normally are the possible captures. inline MoveStack* pick_best(MoveStack* begin, MoveStack* end) { std::swap(*begin, *std::max_element(begin, end)); return begin; } } /// Constructors of the MovePicker class. As arguments we pass information /// to help it to return the presumably good moves first, to decide which /// moves to return (in the quiescence search, for instance, we only want to /// search captures, promotions and some checks) and about how important good /// move ordering is at the current node. MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const History& h, Search::Stack* s, Value beta) : pos(p), H(h), depth(d) { assert(d > DEPTH_ZERO); captureThreshold = 0; cur = end = moves; endBadCaptures = moves + MAX_MOVES - 1; ss = s; if (p.in_check()) phase = EVASION; else { phase = MAIN_SEARCH; killers[0].move = ss->killers[0]; killers[1].move = ss->killers[1]; // Consider sligtly negative captures as good if at low depth and far from beta if (ss && ss->eval < beta - PawnValueMg && d < 3 * ONE_PLY) captureThreshold = -PawnValueMg; // Consider negative captures as good if still enough to reach beta else if (ss && ss->eval > beta) captureThreshold = beta - ss->eval; } ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE); end += (ttMove != MOVE_NONE); } MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const History& h, Square sq) : pos(p), H(h), cur(moves), end(moves) { assert(d <= DEPTH_ZERO); if (p.in_check()) phase = EVASION; else if (d > DEPTH_QS_NO_CHECKS) phase = QSEARCH_0; else if (d > DEPTH_QS_RECAPTURES) { phase = QSEARCH_1; // Skip TT move if is not a capture or a promotion, this avoids qsearch // tree explosion due to a possible perpetual check or similar rare cases // when TT table is full. if (ttm && !pos.is_capture_or_promotion(ttm)) ttm = MOVE_NONE; } else { phase = RECAPTURE; recaptureSquare = sq; ttm = MOVE_NONE; } ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE); end += (ttMove != MOVE_NONE); } MovePicker::MovePicker(const Position& p, Move ttm, const History& h, PieceType pt) : pos(p), H(h), cur(moves), end(moves) { assert(!pos.in_check()); phase = PROBCUT; // In ProbCut we generate only captures better than parent's captured piece captureThreshold = PieceValue[Mg][pt]; ttMove = (ttm && pos.is_pseudo_legal(ttm) ? ttm : MOVE_NONE); if (ttMove && (!pos.is_capture(ttMove) || pos.see(ttMove) <= captureThreshold)) ttMove = MOVE_NONE; end += (ttMove != MOVE_NONE); } /// MovePicker::score_captures(), MovePicker::score_noncaptures() and /// MovePicker::score_evasions() assign a numerical move ordering score /// to each move in a move list. The moves with highest scores will be /// picked first by next_move(). void MovePicker::score_captures() { // Winning and equal captures in the main search are ordered by MVV/LVA. // Suprisingly, this appears to perform slightly better than SEE based // move ordering. The reason is probably that in a position with a winning // capture, capturing a more valuable (but sufficiently defended) piece // first usually doesn't hurt. The opponent will have to recapture, and // the hanging piece will still be hanging (except in the unusual cases // where it is possible to recapture with the hanging piece). Exchanging // big pieces before capturing a hanging piece probably helps to reduce // the subtree size. // In main search we want to push captures with negative SEE values to // badCaptures[] array, but instead of doing it now we delay till when // the move has been picked up in pick_move_from_list(), this way we save // some SEE calls in case we get a cutoff (idea from Pablo Vazquez). Move m; for (MoveStack* it = moves; it != end; ++it) { m = it->move; it->score = PieceValue[Mg][pos.piece_on(to_sq(m))] - type_of(pos.piece_moved(m)); if (type_of(m) == PROMOTION) it->score += PieceValue[Mg][promotion_type(m)]; } } void MovePicker::score_noncaptures() { Move m; for (MoveStack* it = moves; it != end; ++it) { m = it->move; it->score = H.value(pos.piece_moved(m), to_sq(m)); } } void MovePicker::score_evasions() { // Try good captures ordered by MVV/LVA, then non-captures if destination square // is not under attack, ordered by history value, then bad-captures and quiet // moves with a negative SEE. This last group is ordered by the SEE score. Move m; int seeScore; if (end < moves + 2) return; for (MoveStack* it = moves; it != end; ++it) { m = it->move; if ((seeScore = pos.see_sign(m)) < 0) it->score = seeScore - History::MaxValue; // Be sure we are at the bottom else if (pos.is_capture(m)) it->score = PieceValue[Mg][pos.piece_on(to_sq(m))] - type_of(pos.piece_moved(m)) + History::MaxValue; else it->score = H.value(pos.piece_moved(m), to_sq(m)); } } /// MovePicker::generate_next() generates, scores and sorts the next bunch of moves, /// when there are no more moves to try for the current phase. void MovePicker::generate_next() { cur = moves; switch (++phase) { case CAPTURES_S1: case CAPTURES_S3: case CAPTURES_S4: case CAPTURES_S5: case CAPTURES_S6: end = generate(pos, moves); score_captures(); return; case KILLERS_S1: cur = killers; end = cur + 2; return; case QUIETS_1_S1: endQuiets = end = generate(pos, moves); score_noncaptures(); end = std::partition(cur, end, has_positive_score); sort(cur, end); return; case QUIETS_2_S1: cur = end; end = endQuiets; if (depth >= 3 * ONE_PLY) sort(cur, end); return; case BAD_CAPTURES_S1: // Just pick them in reverse order to get MVV/LVA ordering cur = moves + MAX_MOVES - 1; end = endBadCaptures; return; case EVASIONS_S2: end = generate(pos, moves); score_evasions(); return; case QUIET_CHECKS_S3: end = generate(pos, moves); return; case EVASION: case QSEARCH_0: case QSEARCH_1: case PROBCUT: case RECAPTURE: phase = STOP; case STOP: end = cur + 1; // Avoid another next_phase() call return; default: assert(false); } } /// MovePicker::next_move() is the most important method of the MovePicker class. /// It returns a new pseudo legal move every time it is called, until there /// are no more moves left. It picks the move with the biggest score from a list /// of generated moves taking care not to return the tt move if has already been /// searched previously. template<> Move MovePicker::next_move() { Move move; while (true) { while (cur == end) generate_next(); switch (phase) { case MAIN_SEARCH: case EVASION: case QSEARCH_0: case QSEARCH_1: case PROBCUT: cur++; return ttMove; case CAPTURES_S1: move = pick_best(cur++, end)->move; if (move != ttMove) { assert(captureThreshold <= 0); // Otherwise we cannot use see_sign() if (pos.see_sign(move) >= captureThreshold) return move; // Losing capture, move it to the tail of the array (endBadCaptures--)->move = move; } break; case KILLERS_S1: move = (cur++)->move; if ( move != MOVE_NONE && pos.is_pseudo_legal(move) && move != ttMove && !pos.is_capture(move)) return move; break; case QUIETS_1_S1: case QUIETS_2_S1: move = (cur++)->move; if ( move != ttMove && move != killers[0].move && move != killers[1].move) return move; break; case BAD_CAPTURES_S1: return (cur--)->move; case EVASIONS_S2: case CAPTURES_S3: case CAPTURES_S4: move = pick_best(cur++, end)->move; if (move != ttMove) return move; break; case CAPTURES_S5: move = pick_best(cur++, end)->move; if (move != ttMove && pos.see(move) > captureThreshold) return move; break; case CAPTURES_S6: move = pick_best(cur++, end)->move; if (to_sq(move) == recaptureSquare) return move; break; case QUIET_CHECKS_S3: move = (cur++)->move; if (move != ttMove) return move; break; case STOP: return MOVE_NONE; default: assert(false); } } } /// Version of next_move() to use at split point nodes where the move is grabbed /// from the split point's shared MovePicker object. This function is not thread /// safe so should be lock protected by the caller. template<> Move MovePicker::next_move() { return ss->sp->mp->next_move(); }