/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if !defined(BITBOARD_H_INCLUDED) #define BITBOARD_H_INCLUDED #include "types.h" namespace Bitboards { void init(); void print(Bitboard b); } namespace Bitbases { void init_kpk(); uint32_t probe_kpk(Square wksq, Square wpsq, Square bksq, Color stm); } CACHE_LINE_ALIGNMENT extern Bitboard RMasks[64]; extern Bitboard RMagics[64]; extern Bitboard* RAttacks[64]; extern unsigned RShifts[64]; extern Bitboard BMasks[64]; extern Bitboard BMagics[64]; extern Bitboard* BAttacks[64]; extern unsigned BShifts[64]; extern Bitboard SquareBB[64]; extern Bitboard FileBB[8]; extern Bitboard RankBB[8]; extern Bitboard AdjacentFilesBB[8]; extern Bitboard ThisAndAdjacentFilesBB[8]; extern Bitboard InFrontBB[2][8]; extern Bitboard StepAttacksBB[16][64]; extern Bitboard BetweenBB[64][64]; extern Bitboard DistanceRingsBB[64][8]; extern Bitboard ForwardBB[2][64]; extern Bitboard PassedPawnMask[2][64]; extern Bitboard AttackSpanMask[2][64]; extern Bitboard PseudoAttacks[6][64]; /// Overloads of bitwise operators between a Bitboard and a Square for testing /// whether a given bit is set in a bitboard, and for setting and clearing bits. inline Bitboard operator&(Bitboard b, Square s) { return b & SquareBB[s]; } inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= SquareBB[s]; } inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= SquareBB[s]; } inline Bitboard operator|(Bitboard b, Square s) { return b | SquareBB[s]; } inline Bitboard operator^(Bitboard b, Square s) { return b ^ SquareBB[s]; } /// more_than_one() returns true if in 'b' there is more than one bit set inline bool more_than_one(Bitboard b) { return b & (b - 1); } /// rank_bb() and file_bb() take a file or a square as input and return /// a bitboard representing all squares on the given file or rank. inline Bitboard rank_bb(Rank r) { return RankBB[r]; } inline Bitboard rank_bb(Square s) { return RankBB[rank_of(s)]; } inline Bitboard file_bb(File f) { return FileBB[f]; } inline Bitboard file_bb(Square s) { return FileBB[file_of(s)]; } /// adjacent_files_bb takes a file as input and returns a bitboard representing /// all squares on the adjacent files. inline Bitboard adjacent_files_bb(File f) { return AdjacentFilesBB[f]; } /// this_and_adjacent_files_bb takes a file as input and returns a bitboard /// representing all squares on the given and adjacent files. inline Bitboard this_and_adjacent_files_bb(File f) { return ThisAndAdjacentFilesBB[f]; } /// in_front_bb() takes a color and a rank or square as input, and returns a /// bitboard representing all the squares on all ranks in front of the rank /// (or square), from the given color's point of view. For instance, /// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while /// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. inline Bitboard in_front_bb(Color c, Rank r) { return InFrontBB[c][r]; } inline Bitboard in_front_bb(Color c, Square s) { return InFrontBB[c][rank_of(s)]; } /// between_bb returns a bitboard representing all squares between two squares. /// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for /// square d5 and e6 set. If s1 and s2 are not on the same line, file or diagonal, /// 0 is returned. inline Bitboard between_bb(Square s1, Square s2) { return BetweenBB[s1][s2]; } /// forward_bb takes a color and a square as input, and returns a bitboard /// representing all squares along the line in front of the square, from the /// point of view of the given color. Definition of the table is: /// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s) inline Bitboard forward_bb(Color c, Square s) { return ForwardBB[c][s]; } /// passed_pawn_mask takes a color and a square as input, and returns a /// bitboard mask which can be used to test if a pawn of the given color on /// the given square is a passed pawn. Definition of the table is: /// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_adjacent_files_bb(s) inline Bitboard passed_pawn_mask(Color c, Square s) { return PassedPawnMask[c][s]; } /// attack_span_mask takes a color and a square as input, and returns a bitboard /// representing all squares that can be attacked by a pawn of the given color /// when it moves along its file starting from the given square. Definition is: /// AttackSpanMask[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); inline Bitboard attack_span_mask(Color c, Square s) { return AttackSpanMask[c][s]; } /// squares_aligned returns true if the squares s1, s2 and s3 are aligned /// either on a straight or on a diagonal line. inline bool squares_aligned(Square s1, Square s2, Square s3) { return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3]) & ( SquareBB[s1] | SquareBB[s2] | SquareBB[s3]); } /// same_color_squares() returns a bitboard representing all squares with /// the same color of the given square. inline Bitboard same_color_squares(Square s) { return Bitboard(0xAA55AA55AA55AA55ULL) & s ? 0xAA55AA55AA55AA55ULL : ~0xAA55AA55AA55AA55ULL; } /// Functions for computing sliding attack bitboards. Function attacks_bb() takes /// a square and a bitboard of occupied squares as input, and returns a bitboard /// representing all squares attacked by Pt (bishop or rook) on the given square. template FORCE_INLINE unsigned magic_index(Square s, Bitboard occ) { Bitboard* const Masks = Pt == ROOK ? RMasks : BMasks; Bitboard* const Magics = Pt == ROOK ? RMagics : BMagics; unsigned* const Shifts = Pt == ROOK ? RShifts : BShifts; if (Is64Bit) return unsigned(((occ & Masks[s]) * Magics[s]) >> Shifts[s]); unsigned lo = unsigned(occ) & unsigned(Masks[s]); unsigned hi = unsigned(occ >> 32) & unsigned(Masks[s] >> 32); return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s]; } template inline Bitboard attacks_bb(Square s, Bitboard occ) { return (Pt == ROOK ? RAttacks : BAttacks)[s][magic_index(s, occ)]; } /// lsb()/msb() finds the least/most significant bit in a nonzero bitboard. /// pop_lsb() finds and clears the least significant bit in a nonzero bitboard. #if defined(USE_BSFQ) # if defined(_MSC_VER) && !defined(__INTEL_COMPILER) FORCE_INLINE Square lsb(Bitboard b) { unsigned long index; _BitScanForward64(&index, b); return (Square) index; } FORCE_INLINE Square msb(Bitboard b) { unsigned long index; _BitScanReverse64(&index, b); return (Square) index; } # else FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen Bitboard index; __asm__("bsfq %1, %0": "=r"(index): "rm"(b) ); return (Square) index; } FORCE_INLINE Square msb(Bitboard b) { Bitboard index; __asm__("bsrq %1, %0": "=r"(index): "rm"(b) ); return (Square) index; } # endif FORCE_INLINE Square pop_lsb(Bitboard* b) { const Square s = lsb(*b); *b &= ~(1ULL << s); return s; } #else // if !defined(USE_BSFQ) extern Square msb(Bitboard b); extern Square lsb(Bitboard b); extern Square pop_lsb(Bitboard* b); #endif #endif // !defined(BITBOARD_H_INCLUDED)