/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "bitboard.h" #include "bitcount.h" #include "pawns.h" #include "position.h" #include "thread.h" namespace { #define V Value #define S(mg, eg) make_score(mg, eg) // Doubled pawn penalty by file const Score Doubled[FILE_NB] = { S(13, 43), S(20, 48), S(23, 48), S(23, 48), S(23, 48), S(23, 48), S(20, 48), S(13, 43) }; // Isolated pawn penalty by opposed flag and file const Score Isolated[2][FILE_NB] = { { S(37, 45), S(54, 52), S(60, 52), S(60, 52), S(60, 52), S(60, 52), S(54, 52), S(37, 45) }, { S(25, 30), S(36, 35), S(40, 35), S(40, 35), S(40, 35), S(40, 35), S(36, 35), S(25, 30) } }; // Backward pawn penalty by opposed flag and file const Score Backward[2][FILE_NB] = { { S(30, 42), S(43, 46), S(49, 46), S(49, 46), S(49, 46), S(49, 46), S(43, 46), S(30, 42) }, { S(20, 28), S(29, 31), S(33, 31), S(33, 31), S(33, 31), S(33, 31), S(29, 31), S(20, 28) } }; // Connected pawn bonus by opposed, phalanx flags and rank Score Connected[2][2][RANK_NB]; // Levers bonus by rank const Score Lever[RANK_NB] = { S( 0, 0), S( 0, 0), S(0, 0), S(0, 0), S(20,20), S(40,40), S(0, 0), S(0, 0) }; // Unsupported pawn penalty const Score UnsupportedPawnPenalty = S(20, 10); // Weakness of our pawn shelter in front of the king by [distance from edge][rank] const Value ShelterWeakness[][RANK_NB] = { { V(100), V(13), V(24), V(64), V(89), V( 93), V(104) }, { V(110), V( 1), V(29), V(75), V(96), V(102), V(107) }, { V(102), V( 0), V(39), V(74), V(88), V(101), V( 98) }, { V( 88), V( 4), V(33), V(67), V(92), V( 94), V(107) } }; // Danger of enemy pawns moving toward our king by [type][distance from edge][rank] const Value StormDanger[][4][RANK_NB] = { { { V( 0), V( 63), V( 128), V(43), V(27) }, { V( 0), V( 62), V( 131), V(44), V(26) }, { V( 0), V( 59), V( 121), V(50), V(28) }, { V( 0), V( 62), V( 127), V(54), V(28) } }, { { V(24), V( 40), V( 93), V(42), V(22) }, { V(24), V( 28), V( 101), V(38), V(20) }, { V(24), V( 32), V( 95), V(36), V(23) }, { V(27), V( 24), V( 99), V(36), V(24) } }, { { V( 0), V( 0), V( 81), V(16), V( 6) }, { V( 0), V( 0), V( 165), V(29), V( 9) }, { V( 0), V( 0), V( 163), V(23), V(12) }, { V( 0), V( 0), V( 161), V(28), V(13) } }, { { V( 0), V(-296), V(-299), V(55), V(25) }, { V( 0), V( 67), V( 131), V(46), V(21) }, { V( 0), V( 65), V( 135), V(50), V(31) }, { V( 0), V( 62), V( 128), V(51), V(24) } } }; // Max bonus for king safety. Corresponds to start position with all the pawns // in front of the king and no enemy pawn on the horizon. const Value MaxSafetyBonus = V(257); #undef S #undef V template Score evaluate(const Position& pos, Pawns::Entry* e) { const Color Them = (Us == WHITE ? BLACK : WHITE); const Square Up = (Us == WHITE ? DELTA_N : DELTA_S); const Square Right = (Us == WHITE ? DELTA_NE : DELTA_SW); const Square Left = (Us == WHITE ? DELTA_NW : DELTA_SE); Bitboard b, p, doubled, connected; Square s; bool passed, isolated, opposed, phalanx, backward, unsupported, lever; Score score = SCORE_ZERO; const Square* pl = pos.list(Us); const Bitboard* pawnAttacksBB = StepAttacksBB[make_piece(Us, PAWN)]; Bitboard ourPawns = pos.pieces(Us , PAWN); Bitboard theirPawns = pos.pieces(Them, PAWN); e->passedPawns[Us] = 0; e->kingSquares[Us] = SQ_NONE; e->semiopenFiles[Us] = 0xFF; e->pawnAttacks[Us] = shift_bb(ourPawns) | shift_bb(ourPawns); e->pawnsOnSquares[Us][BLACK] = popcount(ourPawns & DarkSquares); e->pawnsOnSquares[Us][WHITE] = pos.count(Us) - e->pawnsOnSquares[Us][BLACK]; // Loop through all pawns of the current color and score each pawn while ((s = *pl++) != SQ_NONE) { assert(pos.piece_on(s) == make_piece(Us, PAWN)); File f = file_of(s); // This file cannot be semi-open e->semiopenFiles[Us] &= ~(1 << f); // Previous rank p = rank_bb(s - pawn_push(Us)); // Flag the pawn as passed, isolated, doubled, // unsupported or connected (but not the backward one). connected = ourPawns & adjacent_files_bb(f) & (rank_bb(s) | p); phalanx = connected & rank_bb(s); unsupported = !(ourPawns & adjacent_files_bb(f) & p); isolated = !(ourPawns & adjacent_files_bb(f)); doubled = ourPawns & forward_bb(Us, s); opposed = theirPawns & forward_bb(Us, s); passed = !(theirPawns & passed_pawn_mask(Us, s)); lever = theirPawns & pawnAttacksBB[s]; // Test for backward pawn. // If the pawn is passed, isolated, or connected it cannot be // backward. If there are friendly pawns behind on adjacent files // or if it can capture an enemy pawn it cannot be backward either. if ( (passed | isolated | connected) || (ourPawns & pawn_attack_span(Them, s)) || (pos.attacks_from(s, Us) & theirPawns)) backward = false; else { // We now know that there are no friendly pawns beside or behind this // pawn on adjacent files. We now check whether the pawn is // backward by looking in the forward direction on the adjacent // files, and picking the closest pawn there. b = pawn_attack_span(Us, s) & (ourPawns | theirPawns); b = pawn_attack_span(Us, s) & rank_bb(backmost_sq(Us, b)); // If we have an enemy pawn in the same or next rank, the pawn is // backward because it cannot advance without being captured. backward = (b | shift_bb(b)) & theirPawns; } assert(opposed | passed | (pawn_attack_span(Us, s) & theirPawns)); // Passed pawns will be properly scored in evaluation because we need // full attack info to evaluate passed pawns. Only the frontmost passed // pawn on each file is considered a true passed pawn. if (passed && !doubled) e->passedPawns[Us] |= s; // Score this pawn if (isolated) score -= Isolated[opposed][f]; if (unsupported && !isolated) score -= UnsupportedPawnPenalty; if (doubled) score -= Doubled[f] / distance(s, frontmost_sq(Us, doubled)); if (backward) score -= Backward[opposed][f]; if (connected) score += Connected[opposed][phalanx][relative_rank(Us, s)]; if (lever) score += Lever[relative_rank(Us, s)]; } b = e->semiopenFiles[Us] ^ 0xFF; e->pawnSpan[Us] = b ? int(msb(b) - lsb(b)) : 0; return score; } } // namespace namespace Pawns { /// Pawns::init() initializes some tables needed by evaluation. Instead of using /// hard-coded tables, when makes sense, we prefer to calculate them with a formula /// to reduce independent parameters and to allow easier tuning and better insight. void init() { static const int Seed[RANK_NB] = { 0, 6, 15, 10, 57, 75, 135, 258 }; for (int opposed = 0; opposed <= 1; ++opposed) for (int phalanx = 0; phalanx <= 1; ++phalanx) for (Rank r = RANK_2; r < RANK_8; ++r) { int bonus = Seed[r] + (phalanx ? (Seed[r + 1] - Seed[r]) / 2 : 0); Connected[opposed][phalanx][r] = make_score(bonus / 2, bonus >> opposed); } } /// Pawns::probe() looks up the current position's pawns configuration in /// the pawns hash table. It returns a pointer to the Entry if the position /// is found. Otherwise a new Entry is computed and stored there, so we don't /// have to recompute all when the same pawns configuration occurs again. Entry* probe(const Position& pos) { Key key = pos.pawn_key(); Entry* e = pos.this_thread()->pawnsTable[key]; if (e->key == key) return e; e->key = key; e->score = evaluate(pos, e) - evaluate(pos, e); return e; } /// Entry::shelter_storm() calculates shelter and storm penalties for the file /// the king is on, as well as the two adjacent files. template Value Entry::shelter_storm(const Position& pos, Square ksq) { const Color Them = (Us == WHITE ? BLACK : WHITE); enum { NoFriendlyPawn, Unblocked, BlockedByPawn, BlockedByKing }; Bitboard b = pos.pieces(PAWN) & (in_front_bb(Us, rank_of(ksq)) | rank_bb(ksq)); Bitboard ourPawns = b & pos.pieces(Us); Bitboard theirPawns = b & pos.pieces(Them); Value safety = MaxSafetyBonus; File center = std::max(FILE_B, std::min(FILE_G, file_of(ksq))); for (File f = center - File(1); f <= center + File(1); ++f) { b = ourPawns & file_bb(f); Rank rkUs = b ? relative_rank(Us, backmost_sq(Us, b)) : RANK_1; b = theirPawns & file_bb(f); Rank rkThem = b ? relative_rank(Us, frontmost_sq(Them, b)) : RANK_1; safety -= ShelterWeakness[std::min(f, FILE_H - f)][rkUs] + StormDanger [f == file_of(ksq) && rkThem == relative_rank(Us, ksq) + 1 ? BlockedByKing : rkUs == RANK_1 ? NoFriendlyPawn : rkThem == rkUs + 1 ? BlockedByPawn : Unblocked] [std::min(f, FILE_H - f)][rkThem]; } return safety; } /// Entry::do_king_safety() calculates a bonus for king safety. It is called only /// when king square changes, which is about 20% of total king_safety() calls. template Score Entry::do_king_safety(const Position& pos, Square ksq) { kingSquares[Us] = ksq; castlingRights[Us] = pos.can_castle(Us); minKingPawnDistance[Us] = 0; Bitboard pawns = pos.pieces(Us, PAWN); if (pawns) while (!(DistanceRingBB[ksq][minKingPawnDistance[Us]++] & pawns)) {} if (relative_rank(Us, ksq) > RANK_4) return make_score(0, -16 * minKingPawnDistance[Us]); Value bonus = shelter_storm(pos, ksq); // If we can castle use the bonus after the castling if it is bigger if (pos.can_castle(MakeCastling::right)) bonus = std::max(bonus, shelter_storm(pos, relative_square(Us, SQ_G1))); if (pos.can_castle(MakeCastling::right)) bonus = std::max(bonus, shelter_storm(pos, relative_square(Us, SQ_C1))); return make_score(bonus, -16 * minKingPawnDistance[Us]); } // Explicit template instantiation template Score Entry::do_king_safety(const Position& pos, Square ksq); template Score Entry::do_king_safety(const Position& pos, Square ksq); } // namespace Pawns