/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include "book.h" #include "evaluate.h" #include "movegen.h" #include "movepick.h" #include "notation.h" #include "search.h" #include "timeman.h" #include "thread.h" #include "tt.h" #include "ucioption.h" namespace Search { volatile SignalsType Signals; LimitsType Limits; std::vector RootMoves; Position RootPos; Color RootColor; Time::point SearchTime; StateStackPtr SetupStates; } using std::string; using Eval::evaluate; using namespace Search; namespace { // Set to true to force running with one thread. Used for debugging const bool FakeSplit = false; // Different node types, used as template parameter enum NodeType { Root, PV, NonPV }; // Dynamic razoring margin based on depth inline Value razor_margin(Depth d) { return Value(512 + 16 * d); } // Futility lookup tables (initialized at startup) and their access functions int FutilityMoveCounts[2][32]; // [improving][depth] inline Value futility_margin(Depth d) { return Value(100 * d); } // Reduction lookup tables (initialized at startup) and their access function int8_t Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber] template inline Depth reduction(bool i, Depth d, int mn) { return (Depth) Reductions[PvNode][i][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)]; } size_t MultiPV, PVIdx; TimeManager TimeMgr; double BestMoveChanges; Value DrawValue[COLOR_NB]; HistoryStats History; GainsStats Gains; MovesStats Countermoves, Followupmoves; template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); void id_loop(Position& pos); Value value_to_tt(Value v, int ply); Value value_from_tt(Value v, int ply); void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt); string uci_pv(const Position& pos, int depth, Value alpha, Value beta); struct Skill { Skill(int l) : level(l), best(MOVE_NONE) {} ~Skill() { if (enabled()) // Swap best PV line with the sub-optimal one std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), best ? best : pick_move())); } bool enabled() const { return level < 20; } bool time_to_pick(int depth) const { return depth == 1 + level; } Move pick_move(); int level; Move best; }; } // namespace /// Search::init() is called during startup to initialize various lookup tables void Search::init() { int d; // depth (ONE_PLY == 2) int hd; // half depth (ONE_PLY == 1) int mc; // moveCount // Init reductions array for (hd = 1; hd < 64; ++hd) for (mc = 1; mc < 64; ++mc) { double pvRed = 0.00 + log(double(hd)) * log(double(mc)) / 3.00; double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; Reductions[1][1][hd][mc] = int8_t( pvRed >= 1.0 ? pvRed * int(ONE_PLY) : 0); Reductions[0][1][hd][mc] = int8_t(nonPVRed >= 1.0 ? nonPVRed * int(ONE_PLY) : 0); Reductions[1][0][hd][mc] = Reductions[1][1][hd][mc]; Reductions[0][0][hd][mc] = Reductions[0][1][hd][mc]; if (Reductions[0][0][hd][mc] > 2 * ONE_PLY) Reductions[0][0][hd][mc] += ONE_PLY; else if (Reductions[0][0][hd][mc] > 1 * ONE_PLY) Reductions[0][0][hd][mc] += ONE_PLY / 2; } // Init futility move count array for (d = 0; d < 32; ++d) { FutilityMoveCounts[0][d] = int(2.4 + 0.222 * pow(d + 0.00, 1.8)); FutilityMoveCounts[1][d] = int(3.0 + 0.300 * pow(d + 0.98, 1.8)); } } /// Search::perft() is our utility to verify move generation. All the leaf nodes /// up to the given depth are generated and counted and the sum returned. static uint64_t perft(Position& pos, Depth depth) { StateInfo st; uint64_t cnt = 0; CheckInfo ci(pos); const bool leaf = depth == 2 * ONE_PLY; for (MoveList it(pos); *it; ++it) { pos.do_move(*it, st, ci, pos.gives_check(*it, ci)); cnt += leaf ? MoveList(pos).size() : ::perft(pos, depth - ONE_PLY); pos.undo_move(*it); } return cnt; } uint64_t Search::perft(Position& pos, Depth depth) { return depth > ONE_PLY ? ::perft(pos, depth) : MoveList(pos).size(); } /// Search::think() is the external interface to Stockfish's search, and is /// called by the main thread when the program receives the UCI 'go' command. It /// searches from RootPos and at the end prints the "bestmove" to output. void Search::think() { static PolyglotBook book; // Defined static to initialize the PRNG only once RootColor = RootPos.side_to_move(); TimeMgr.init(Limits, RootPos.game_ply(), RootColor); int cf = Options["Contempt Factor"] * PawnValueEg / 100; // From centipawns DrawValue[ RootColor] = VALUE_DRAW - Value(cf); DrawValue[~RootColor] = VALUE_DRAW + Value(cf); if (RootMoves.empty()) { RootMoves.push_back(MOVE_NONE); sync_cout << "info depth 0 score " << score_to_uci(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) << sync_endl; goto finalize; } if (Options["OwnBook"] && !Limits.infinite && !Limits.mate) { Move bookMove = book.probe(RootPos, Options["Book File"], Options["Best Book Move"]); if (bookMove && std::count(RootMoves.begin(), RootMoves.end(), bookMove)) { std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), bookMove)); goto finalize; } } if (Options["Write Search Log"]) { Log log(Options["Search Log Filename"]); log << "\nSearching: " << RootPos.fen() << "\ninfinite: " << Limits.infinite << " ponder: " << Limits.ponder << " time: " << Limits.time[RootColor] << " increment: " << Limits.inc[RootColor] << " moves to go: " << Limits.movestogo << "\n" << std::endl; } // Reset the threads, still sleeping: will wake up at split time for (size_t i = 0; i < Threads.size(); ++i) Threads[i]->maxPly = 0; Threads.timer->run = true; Threads.timer->notify_one(); // Wake up the recurring timer id_loop(RootPos); // Let's start searching ! Threads.timer->run = false; // Stop the timer if (Options["Write Search Log"]) { Time::point elapsed = Time::now() - SearchTime + 1; Log log(Options["Search Log Filename"]); log << "Nodes: " << RootPos.nodes_searched() << "\nNodes/second: " << RootPos.nodes_searched() * 1000 / elapsed << "\nBest move: " << move_to_san(RootPos, RootMoves[0].pv[0]); StateInfo st; RootPos.do_move(RootMoves[0].pv[0], st); log << "\nPonder move: " << move_to_san(RootPos, RootMoves[0].pv[1]) << std::endl; RootPos.undo_move(RootMoves[0].pv[0]); } finalize: // When search is stopped this info is not printed sync_cout << "info nodes " << RootPos.nodes_searched() << " time " << Time::now() - SearchTime + 1 << sync_endl; // When we reach the maximum depth, we can arrive here without a raise of // Signals.stop. However, if we are pondering or in an infinite search, // the UCI protocol states that we shouldn't print the best move before the // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here // until the GUI sends one of those commands (which also raises Signals.stop). if (!Signals.stop && (Limits.ponder || Limits.infinite)) { Signals.stopOnPonderhit = true; RootPos.this_thread()->wait_for(Signals.stop); } // Best move could be MOVE_NONE when searching on a stalemate position sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], RootPos.is_chess960()) << " ponder " << move_to_uci(RootMoves[0].pv[1], RootPos.is_chess960()) << sync_endl; } namespace { // id_loop() is the main iterative deepening loop. It calls search() repeatedly // with increasing depth until the allocated thinking time has been consumed, // user stops the search, or the maximum search depth is reached. void id_loop(Position& pos) { Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2) int depth; Value bestValue, alpha, beta, delta; std::memset(ss-2, 0, 5 * sizeof(Stack)); (ss-1)->currentMove = MOVE_NULL; // Hack to skip update gains depth = 0; BestMoveChanges = 0; bestValue = delta = alpha = -VALUE_INFINITE; beta = VALUE_INFINITE; TT.new_search(); History.clear(); Gains.clear(); Countermoves.clear(); Followupmoves.clear(); MultiPV = Options["MultiPV"]; Skill skill(Options["Skill Level"]); // Do we have to play with skill handicap? In this case enable MultiPV search // that we will use behind the scenes to retrieve a set of possible moves. if (skill.enabled() && MultiPV < 4) MultiPV = 4; MultiPV = std::min(MultiPV, RootMoves.size()); // Iterative deepening loop until requested to stop or target depth reached while (++depth <= MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth)) { // Age out PV variability metric BestMoveChanges *= 0.5; // Save the last iteration's scores before first PV line is searched and // all the move scores except the (new) PV are set to -VALUE_INFINITE. for (size_t i = 0; i < RootMoves.size(); ++i) RootMoves[i].prevScore = RootMoves[i].score; // MultiPV loop. We perform a full root search for each PV line for (PVIdx = 0; PVIdx < MultiPV && !Signals.stop; ++PVIdx) { // Reset aspiration window starting size if (depth >= 5) { delta = Value(16); alpha = std::max(RootMoves[PVIdx].prevScore - delta,-VALUE_INFINITE); beta = std::min(RootMoves[PVIdx].prevScore + delta, VALUE_INFINITE); } // Start with a small aspiration window and, in the case of a fail // high/low, re-search with a bigger window until we're not failing // high/low anymore. while (true) { bestValue = search(pos, ss, alpha, beta, depth * ONE_PLY, false); // Bring the best move to the front. It is critical that sorting // is done with a stable algorithm because all the values but the // first and eventually the new best one are set to -VALUE_INFINITE // and we want to keep the same order for all the moves except the // new PV that goes to the front. Note that in case of MultiPV // search the already searched PV lines are preserved. std::stable_sort(RootMoves.begin() + PVIdx, RootMoves.end()); // Write PV back to transposition table in case the relevant // entries have been overwritten during the search. for (size_t i = 0; i <= PVIdx; ++i) RootMoves[i].insert_pv_in_tt(pos); // If search has been stopped break immediately. Sorting and // writing PV back to TT is safe because RootMoves is still // valid, although it refers to previous iteration. if (Signals.stop) break; // When failing high/low give some update (without cluttering // the UI) before a re-search. if ( (bestValue <= alpha || bestValue >= beta) && Time::now() - SearchTime > 3000) sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl; // In case of failing low/high increase aspiration window and // re-search, otherwise exit the loop. if (bestValue <= alpha) { alpha = std::max(bestValue - delta, -VALUE_INFINITE); Signals.failedLowAtRoot = true; Signals.stopOnPonderhit = false; } else if (bestValue >= beta) beta = std::min(bestValue + delta, VALUE_INFINITE); else break; delta += delta / 2; assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); } // Sort the PV lines searched so far and update the GUI std::stable_sort(RootMoves.begin(), RootMoves.begin() + PVIdx + 1); if (PVIdx + 1 == MultiPV || Time::now() - SearchTime > 3000) sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl; } // If skill levels are enabled and time is up, pick a sub-optimal best move if (skill.enabled() && skill.time_to_pick(depth)) skill.pick_move(); if (Options["Write Search Log"]) { RootMove& rm = RootMoves[0]; if (skill.best != MOVE_NONE) rm = *std::find(RootMoves.begin(), RootMoves.end(), skill.best); Log log(Options["Search Log Filename"]); log << pretty_pv(pos, depth, rm.score, Time::now() - SearchTime, &rm.pv[0]) << std::endl; } // Have we found a "mate in x"? if ( Limits.mate && bestValue >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - bestValue <= 2 * Limits.mate) Signals.stop = true; // Do we have time for the next iteration? Can we stop searching now? if (Limits.use_time_management() && !Signals.stop && !Signals.stopOnPonderhit) { // Take some extra time if the best move has changed if (depth > 4 && depth < 50 && MultiPV == 1) TimeMgr.pv_instability(BestMoveChanges); // Stop the search if only one legal move is available or all // of the available time has been used. if ( RootMoves.size() == 1 || Time::now() - SearchTime > TimeMgr.available_time()) { // If we are allowed to ponder do not stop the search now but // keep pondering until the GUI sends "ponderhit" or "stop". if (Limits.ponder) Signals.stopOnPonderhit = true; else Signals.stop = true; } } } } // search<>() is the main search function for both PV and non-PV nodes and for // normal and SplitPoint nodes. When called just after a split point the search // is simpler because we have already probed the hash table, done a null move // search, and searched the first move before splitting, so we don't have to // repeat all this work again. We also don't need to store anything to the hash // table here: This is taken care of after we return from the split point. template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { const bool RootNode = NT == Root; const bool PvNode = NT == PV || NT == Root; assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(depth > DEPTH_ZERO); Move quietsSearched[64]; StateInfo st; const TTEntry *tte; SplitPoint* splitPoint; Key posKey; Move ttMove, move, excludedMove, bestMove; Depth ext, newDepth, predictedDepth; Value bestValue, value, ttValue, eval, nullValue, futilityValue; bool inCheck, givesCheck, pvMove, singularExtensionNode, improving; bool captureOrPromotion, dangerous, doFullDepthSearch; int moveCount, quietCount; // Step 1. Initialize node Thread* thisThread = pos.this_thread(); inCheck = pos.checkers(); if (SpNode) { splitPoint = ss->splitPoint; bestMove = splitPoint->bestMove; bestValue = splitPoint->bestValue; tte = NULL; ttMove = excludedMove = MOVE_NONE; ttValue = VALUE_NONE; assert(splitPoint->bestValue > -VALUE_INFINITE && splitPoint->moveCount > 0); goto moves_loop; } moveCount = quietCount = 0; bestValue = -VALUE_INFINITE; ss->currentMove = ss->ttMove = (ss+1)->excludedMove = bestMove = MOVE_NONE; ss->ply = (ss-1)->ply + 1; (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO; (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; // Used to send selDepth info to GUI if (PvNode && thisThread->maxPly < ss->ply) thisThread->maxPly = ss->ply; if (!RootNode) { // Step 2. Check for aborted search and immediate draw if (Signals.stop || pos.is_draw() || ss->ply > MAX_PLY) return ss->ply > MAX_PLY && !inCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; // Step 3. Mate distance pruning. Even if we mate at the next move our score // would be at best mate_in(ss->ply+1), but if alpha is already bigger because // a shorter mate was found upward in the tree then there is no need to search // because we will never beat the current alpha. Same logic but with reversed // signs applies also in the opposite condition of being mated instead of giving // mate. In this case return a fail-high score. alpha = std::max(mated_in(ss->ply), alpha); beta = std::min(mate_in(ss->ply+1), beta); if (alpha >= beta) return alpha; } // Step 4. Transposition table lookup // We don't want the score of a partial search to overwrite a previous full search // TT value, so we use a different position key in case of an excluded move. excludedMove = ss->excludedMove; posKey = excludedMove ? pos.exclusion_key() : pos.key(); tte = TT.probe(posKey); ss->ttMove = ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE; ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; // At PV nodes we check for exact scores, whilst at non-PV nodes we check for // a fail high/low. The biggest advantage to probing at PV nodes is to have a // smooth experience in analysis mode. We don't probe at Root nodes otherwise // we should also update RootMoveList to avoid bogus output. if ( !RootNode && tte && tte->depth() >= depth && ttValue != VALUE_NONE // Only in case of TT access race && ( PvNode ? tte->bound() == BOUND_EXACT : ttValue >= beta ? (tte->bound() & BOUND_LOWER) : (tte->bound() & BOUND_UPPER))) { ss->currentMove = ttMove; // Can be MOVE_NONE // If ttMove is quiet, update killers, history, counter move and followup move on TT hit if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove) && !inCheck) update_stats(pos, ss, ttMove, depth, NULL, 0); return ttValue; } // Step 5. Evaluate the position statically and update parent's gain statistics if (inCheck) { ss->staticEval = eval = VALUE_NONE; goto moves_loop; } else if (tte) { // Never assume anything on values stored in TT if ((ss->staticEval = eval = tte->eval_value()) == VALUE_NONE) eval = ss->staticEval = evaluate(pos); // Can ttValue be used as a better position evaluation? if (ttValue != VALUE_NONE) if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)) eval = ttValue; } else { eval = ss->staticEval = evaluate(pos); TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, ss->staticEval); } if ( !pos.captured_piece_type() && ss->staticEval != VALUE_NONE && (ss-1)->staticEval != VALUE_NONE && (move = (ss-1)->currentMove) != MOVE_NULL && type_of(move) == NORMAL) { Square to = to_sq(move); Gains.update(pos.piece_on(to), to, -(ss-1)->staticEval - ss->staticEval); } // Step 6. Razoring (skipped when in check) if ( !PvNode && depth < 4 * ONE_PLY && eval + razor_margin(depth) <= alpha && ttMove == MOVE_NONE && abs(beta) < VALUE_MATE_IN_MAX_PLY && !pos.pawn_on_7th(pos.side_to_move())) { if ( depth <= ONE_PLY && eval + razor_margin(3 * ONE_PLY) <= alpha) return qsearch(pos, ss, alpha, beta, DEPTH_ZERO); Value ralpha = alpha - razor_margin(depth); Value v = qsearch(pos, ss, ralpha, ralpha+1, DEPTH_ZERO); if (v <= ralpha) return v; } // Step 7. Futility pruning: child node (skipped when in check) if ( !PvNode && !ss->skipNullMove && depth < 7 * ONE_PLY && eval - futility_margin(depth) >= beta && abs(beta) < VALUE_MATE_IN_MAX_PLY && abs(eval) < VALUE_KNOWN_WIN && pos.non_pawn_material(pos.side_to_move())) return eval - futility_margin(depth); // Step 8. Null move search with verification search (is omitted in PV nodes) if ( !PvNode && !ss->skipNullMove && depth >= 2 * ONE_PLY && eval >= beta && abs(beta) < VALUE_MATE_IN_MAX_PLY && pos.non_pawn_material(pos.side_to_move())) { ss->currentMove = MOVE_NULL; assert(eval - beta >= 0); // Null move dynamic reduction based on depth and value Depth R = 3 * ONE_PLY + depth / 4 + int(eval - beta) / PawnValueMg * ONE_PLY; pos.do_null_move(st); (ss+1)->skipNullMove = true; nullValue = depth-R < ONE_PLY ? -qsearch(pos, ss+1, -beta, -beta+1, DEPTH_ZERO) : - search(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); (ss+1)->skipNullMove = false; pos.undo_null_move(); if (nullValue >= beta) { // Do not return unproven mate scores if (nullValue >= VALUE_MATE_IN_MAX_PLY) nullValue = beta; if (depth < 12 * ONE_PLY) return nullValue; // Do verification search at high depths ss->skipNullMove = true; Value v = depth-R < ONE_PLY ? qsearch(pos, ss, beta-1, beta, DEPTH_ZERO) : search(pos, ss, beta-1, beta, depth-R, false); ss->skipNullMove = false; if (v >= beta) return nullValue; } } // Step 9. ProbCut (skipped when in check) // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type]) // and a reduced search returns a value much above beta, we can (almost) safely // prune the previous move. if ( !PvNode && depth >= 5 * ONE_PLY && !ss->skipNullMove && abs(beta) < VALUE_MATE_IN_MAX_PLY) { Value rbeta = std::min(beta + 200, VALUE_INFINITE); Depth rdepth = depth - 4 * ONE_PLY; assert(rdepth >= ONE_PLY); assert((ss-1)->currentMove != MOVE_NONE); assert((ss-1)->currentMove != MOVE_NULL); MovePicker mp(pos, ttMove, History, pos.captured_piece_type()); CheckInfo ci(pos); while ((move = mp.next_move()) != MOVE_NONE) if (pos.legal(move, ci.pinned)) { ss->currentMove = move; pos.do_move(move, st, ci, pos.gives_check(move, ci)); value = -search(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode); pos.undo_move(move); if (value >= rbeta) return value; } } // Step 10. Internal iterative deepening (skipped when in check) if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY) && !ttMove && (PvNode || ss->staticEval + 256 >= beta)) { Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4); ss->skipNullMove = true; search(pos, ss, alpha, beta, d, true); ss->skipNullMove = false; tte = TT.probe(posKey); ttMove = tte ? tte->move() : MOVE_NONE; } moves_loop: // When in check and at SpNode search starts from here Square prevMoveSq = to_sq((ss-1)->currentMove); Move countermoves[] = { Countermoves[pos.piece_on(prevMoveSq)][prevMoveSq].first, Countermoves[pos.piece_on(prevMoveSq)][prevMoveSq].second }; Square prevOwnMoveSq = to_sq((ss-2)->currentMove); Move followupmoves[] = { Followupmoves[pos.piece_on(prevOwnMoveSq)][prevOwnMoveSq].first, Followupmoves[pos.piece_on(prevOwnMoveSq)][prevOwnMoveSq].second }; MovePicker mp(pos, ttMove, depth, History, countermoves, followupmoves, ss); CheckInfo ci(pos); value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc improving = ss->staticEval >= (ss-2)->staticEval || ss->staticEval == VALUE_NONE ||(ss-2)->staticEval == VALUE_NONE; singularExtensionNode = !RootNode && !SpNode && depth >= 8 * ONE_PLY && ttMove != MOVE_NONE && !excludedMove // Recursive singular search is not allowed && (tte->bound() & BOUND_LOWER) && tte->depth() >= depth - 3 * ONE_PLY; // Step 11. Loop through moves // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs while ((move = mp.next_move()) != MOVE_NONE) { assert(is_ok(move)); if (move == excludedMove) continue; // At root obey the "searchmoves" option and skip moves not listed in Root // Move List. As a consequence any illegal move is also skipped. In MultiPV // mode we also skip PV moves which have been already searched. if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move)) continue; if (SpNode) { // Shared counter cannot be decremented later if the move turns out to be illegal if (!pos.legal(move, ci.pinned)) continue; moveCount = ++splitPoint->moveCount; splitPoint->mutex.unlock(); } else ++moveCount; if (RootNode) { Signals.firstRootMove = (moveCount == 1); if (thisThread == Threads.main() && Time::now() - SearchTime > 3000) sync_cout << "info depth " << depth / ONE_PLY << " currmove " << move_to_uci(move, pos.is_chess960()) << " currmovenumber " << moveCount + PVIdx << sync_endl; } ext = DEPTH_ZERO; captureOrPromotion = pos.capture_or_promotion(move); givesCheck = type_of(move) == NORMAL && !ci.dcCandidates ? ci.checkSq[type_of(pos.piece_on(from_sq(move)))] & to_sq(move) : pos.gives_check(move, ci); dangerous = givesCheck || type_of(move) != NORMAL || pos.advanced_pawn_push(move); // Step 12. Extend checks if (givesCheck && pos.see_sign(move) >= VALUE_ZERO) ext = ONE_PLY; // Singular extension search. If all moves but one fail low on a search of // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move // is singular and should be extended. To verify this we do a reduced search // on all the other moves but the ttMove and if the result is lower than // ttValue minus a margin then we extend the ttMove. if ( singularExtensionNode && move == ttMove && !ext && pos.legal(move, ci.pinned) && abs(ttValue) < VALUE_KNOWN_WIN) { assert(ttValue != VALUE_NONE); Value rBeta = ttValue - int(depth); ss->excludedMove = move; ss->skipNullMove = true; value = search(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode); ss->skipNullMove = false; ss->excludedMove = MOVE_NONE; if (value < rBeta) ext = ONE_PLY; } // Update the current move (this must be done after singular extension search) newDepth = depth - ONE_PLY + ext; // Step 13. Pruning at shallow depth (exclude PV nodes) if ( !PvNode && !captureOrPromotion && !inCheck && !dangerous /* && move != ttMove Already implicit in the next condition */ && bestValue > VALUE_MATED_IN_MAX_PLY) { // Move count based pruning if ( depth < 16 * ONE_PLY && moveCount >= FutilityMoveCounts[improving][depth] ) { if (SpNode) splitPoint->mutex.lock(); continue; } predictedDepth = newDepth - reduction(improving, depth, moveCount); // Futility pruning: parent node if (predictedDepth < 7 * ONE_PLY) { futilityValue = ss->staticEval + futility_margin(predictedDepth) + 128 + Gains[pos.moved_piece(move)][to_sq(move)]; if (futilityValue <= alpha) { bestValue = std::max(bestValue, futilityValue); if (SpNode) { splitPoint->mutex.lock(); if (bestValue > splitPoint->bestValue) splitPoint->bestValue = bestValue; } continue; } } // Prune moves with negative SEE at low depths if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO) { if (SpNode) splitPoint->mutex.lock(); continue; } } // Check for legality just before making the move if (!RootNode && !SpNode && !pos.legal(move, ci.pinned)) { moveCount--; continue; } pvMove = PvNode && moveCount == 1; ss->currentMove = move; if (!SpNode && !captureOrPromotion && quietCount < 64) quietsSearched[quietCount++] = move; // Step 14. Make the move pos.do_move(move, st, ci, givesCheck); // Step 15. Reduced depth search (LMR). If the move fails high it will be // re-searched at full depth. if ( depth >= 3 * ONE_PLY && !pvMove && !captureOrPromotion && move != ttMove && move != ss->killers[0] && move != ss->killers[1]) { ss->reduction = reduction(improving, depth, moveCount); if (!PvNode && cutNode) ss->reduction += ONE_PLY; else if (History[pos.piece_on(to_sq(move))][to_sq(move)] < 0) ss->reduction += ONE_PLY / 2; if (move == countermoves[0] || move == countermoves[1]) ss->reduction = std::max(DEPTH_ZERO, ss->reduction - ONE_PLY); Depth d = std::max(newDepth - ss->reduction, ONE_PLY); if (SpNode) alpha = splitPoint->alpha; value = -search(pos, ss+1, -(alpha+1), -alpha, d, true); // Re-search at intermediate depth if reduction is very high if (value > alpha && ss->reduction >= 4 * ONE_PLY) { Depth d2 = std::max(newDepth - 2 * ONE_PLY, ONE_PLY); value = -search(pos, ss+1, -(alpha+1), -alpha, d2, true); } doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO); ss->reduction = DEPTH_ZERO; } else doFullDepthSearch = !pvMove; // Step 16. Full depth search, when LMR is skipped or fails high if (doFullDepthSearch) { if (SpNode) alpha = splitPoint->alpha; value = newDepth < ONE_PLY ? givesCheck ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) : -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) : - search(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); } // For PV nodes only, do a full PV search on the first move or after a fail // high (in the latter case search only if value < beta), otherwise let the // parent node fail low with value <= alpha and to try another move. if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta)))) value = newDepth < ONE_PLY ? givesCheck ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) : -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) : - search(pos, ss+1, -beta, -alpha, newDepth, false); // Step 17. Undo move pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Step 18. Check for new best move if (SpNode) { splitPoint->mutex.lock(); bestValue = splitPoint->bestValue; alpha = splitPoint->alpha; } // Finished searching the move. If a stop or a cutoff occurred, the return // value of the search cannot be trusted, and we return immediately without // updating best move, PV and TT. if (Signals.stop || thisThread->cutoff_occurred()) return VALUE_ZERO; if (RootNode) { RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move); // PV move or new best move ? if (pvMove || value > alpha) { rm.score = value; rm.extract_pv_from_tt(pos); // We record how often the best move has been changed in each // iteration. This information is used for time management: When // the best move changes frequently, we allocate some more time. if (!pvMove) ++BestMoveChanges; } else // All other moves but the PV are set to the lowest value: this is // not a problem when sorting because the sort is stable and the // move position in the list is preserved - just the PV is pushed up. rm.score = -VALUE_INFINITE; } if (value > bestValue) { bestValue = SpNode ? splitPoint->bestValue = value : value; if (value > alpha) { bestMove = SpNode ? splitPoint->bestMove = move : move; if (PvNode && value < beta) // Update alpha! Always alpha < beta alpha = SpNode ? splitPoint->alpha = value : value; else { assert(value >= beta); // Fail high if (SpNode) splitPoint->cutoff = true; break; } } } // Step 19. Check for splitting the search if ( !SpNode && Threads.size() >= 2 && depth >= Threads.minimumSplitDepth && ( !thisThread->activeSplitPoint || !thisThread->activeSplitPoint->allSlavesSearching) && thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD) { assert(bestValue > -VALUE_INFINITE && bestValue < beta); thisThread->split(pos, ss, alpha, beta, &bestValue, &bestMove, depth, moveCount, &mp, NT, cutNode); if (Signals.stop || thisThread->cutoff_occurred()) return VALUE_ZERO; if (bestValue >= beta) break; } } if (SpNode) return bestValue; // Following condition would detect a stop or a cutoff set only after move // loop has been completed. But in this case bestValue is valid because we // have fully searched our subtree, and we can anyhow save the result in TT. /* if (Signals.stop || thisThread->cutoff_occurred()) return VALUE_DRAW; */ // Step 20. Check for mate and stalemate // All legal moves have been searched and if there are no legal moves, it // must be mate or stalemate. If we are in a singular extension search then // return a fail low score. if (!moveCount) bestValue = excludedMove ? alpha : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()]; // Quiet best move: update killers, history, countermoves and followupmoves else if (bestValue >= beta && !pos.capture_or_promotion(bestMove) && !inCheck) update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount - 1); TT.store(posKey, value_to_tt(bestValue, ss->ply), bestValue >= beta ? BOUND_LOWER : PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, depth, bestMove, ss->staticEval); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // qsearch() is the quiescence search function, which is called by the main // search function when the remaining depth is zero (or, to be more precise, // less than ONE_PLY). template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { const bool PvNode = NT == PV; assert(NT == PV || NT == NonPV); assert(InCheck == !!pos.checkers()); assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(depth <= DEPTH_ZERO); StateInfo st; const TTEntry* tte; Key posKey; Move ttMove, move, bestMove; Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha; bool givesCheck, evasionPrunable; Depth ttDepth; // To flag BOUND_EXACT a node with eval above alpha and no available moves if (PvNode) oldAlpha = alpha; ss->currentMove = bestMove = MOVE_NONE; ss->ply = (ss-1)->ply + 1; // Check for an instant draw or if the maximum ply has been reached if (pos.is_draw() || ss->ply > MAX_PLY) return ss->ply > MAX_PLY && !InCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; // Decide whether or not to include checks: this fixes also the type of // TT entry depth that we are going to use. Note that in qsearch we use // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS; // Transposition table lookup posKey = pos.key(); tte = TT.probe(posKey); ttMove = tte ? tte->move() : MOVE_NONE; ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_NONE; if ( tte && tte->depth() >= ttDepth && ttValue != VALUE_NONE // Only in case of TT access race && ( PvNode ? tte->bound() == BOUND_EXACT : ttValue >= beta ? (tte->bound() & BOUND_LOWER) : (tte->bound() & BOUND_UPPER))) { ss->currentMove = ttMove; // Can be MOVE_NONE return ttValue; } // Evaluate the position statically if (InCheck) { ss->staticEval = VALUE_NONE; bestValue = futilityBase = -VALUE_INFINITE; } else { if (tte) { // Never assume anything on values stored in TT if ((ss->staticEval = bestValue = tte->eval_value()) == VALUE_NONE) ss->staticEval = bestValue = evaluate(pos); // Can ttValue be used as a better position evaluation? if (ttValue != VALUE_NONE) if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)) bestValue = ttValue; } else ss->staticEval = bestValue = evaluate(pos); // Stand pat. Return immediately if static value is at least beta if (bestValue >= beta) { if (!tte) TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER, DEPTH_NONE, MOVE_NONE, ss->staticEval); return bestValue; } if (PvNode && bestValue > alpha) alpha = bestValue; futilityBase = bestValue + 128; } // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will // be generated. MovePicker mp(pos, ttMove, depth, History, to_sq((ss-1)->currentMove)); CheckInfo ci(pos); // Loop through the moves until no moves remain or a beta cutoff occurs while ((move = mp.next_move()) != MOVE_NONE) { assert(is_ok(move)); givesCheck = type_of(move) == NORMAL && !ci.dcCandidates ? ci.checkSq[type_of(pos.piece_on(from_sq(move)))] & to_sq(move) : pos.gives_check(move, ci); // Futility pruning if ( !PvNode && !InCheck && !givesCheck && move != ttMove && futilityBase > -VALUE_KNOWN_WIN && !pos.advanced_pawn_push(move)) { assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))]; if (futilityValue < beta) { bestValue = std::max(bestValue, futilityValue); continue; } if (futilityBase < beta && pos.see(move) <= VALUE_ZERO) { bestValue = std::max(bestValue, futilityBase); continue; } } // Detect non-capture evasions that are candidates to be pruned evasionPrunable = InCheck && bestValue > VALUE_MATED_IN_MAX_PLY && !pos.capture(move) && !pos.can_castle(pos.side_to_move()); // Don't search moves with negative SEE values if ( !PvNode && (!InCheck || evasionPrunable) && move != ttMove && type_of(move) != PROMOTION && pos.see_sign(move) < VALUE_ZERO) continue; // Check for legality just before making the move if (!pos.legal(move, ci.pinned)) continue; ss->currentMove = move; // Make and search the move pos.do_move(move, st, ci, givesCheck); value = givesCheck ? -qsearch(pos, ss+1, -beta, -alpha, depth - ONE_PLY) : -qsearch(pos, ss+1, -beta, -alpha, depth - ONE_PLY); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Check for new best move if (value > bestValue) { bestValue = value; if (value > alpha) { if (PvNode && value < beta) // Update alpha here! Always alpha < beta { alpha = value; bestMove = move; } else // Fail high { TT.store(posKey, value_to_tt(value, ss->ply), BOUND_LOWER, ttDepth, move, ss->staticEval); return value; } } } } // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. if (InCheck && bestValue == -VALUE_INFINITE) return mated_in(ss->ply); // Plies to mate from the root TT.store(posKey, value_to_tt(bestValue, ss->ply), PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER, ttDepth, bestMove, ss->staticEval); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // value_to_tt() adjusts a mate score from "plies to mate from the root" to // "plies to mate from the current position". Non-mate scores are unchanged. // The function is called before storing a value in the transposition table. Value value_to_tt(Value v, int ply) { assert(v != VALUE_NONE); return v >= VALUE_MATE_IN_MAX_PLY ? v + ply : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v; } // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score // from the transposition table (which refers to the plies to mate/be mated // from current position) to "plies to mate/be mated from the root". Value value_from_tt(Value v, int ply) { return v == VALUE_NONE ? VALUE_NONE : v >= VALUE_MATE_IN_MAX_PLY ? v - ply : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v; } // update_stats() updates killers, history, countermoves and followupmoves stats after a fail-high // of a quiet move. void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt) { if (ss->killers[0] != move) { ss->killers[1] = ss->killers[0]; ss->killers[0] = move; } // Increase history value of the cut-off move and decrease all the other // played quiet moves. Value bonus = Value(int(depth) * int(depth)); History.update(pos.moved_piece(move), to_sq(move), bonus); for (int i = 0; i < quietsCnt; ++i) { Move m = quiets[i]; History.update(pos.moved_piece(m), to_sq(m), -bonus); } if (is_ok((ss-1)->currentMove)) { Square prevMoveSq = to_sq((ss-1)->currentMove); Countermoves.update(pos.piece_on(prevMoveSq), prevMoveSq, move); } if (is_ok((ss-2)->currentMove) && (ss-1)->currentMove == (ss-1)->ttMove) { Square prevOwnMoveSq = to_sq((ss-2)->currentMove); Followupmoves.update(pos.piece_on(prevOwnMoveSq), prevOwnMoveSq, move); } } // When playing with a strength handicap, choose best move among the MultiPV // set using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. Move Skill::pick_move() { static RKISS rk; // PRNG sequence should be not deterministic for (int i = Time::now() % 50; i > 0; --i) rk.rand(); // RootMoves are already sorted by score in descending order int variance = std::min(RootMoves[0].score - RootMoves[MultiPV - 1].score, PawnValueMg); int weakness = 120 - 2 * level; int max_s = -VALUE_INFINITE; best = MOVE_NONE; // Choose best move. For each move score we add two terms both dependent on // weakness. One deterministic and bigger for weaker moves, and one random, // then we choose the move with the resulting highest score. for (size_t i = 0; i < MultiPV; ++i) { int s = RootMoves[i].score; // Don't allow crazy blunders even at very low skills if (i > 0 && RootMoves[i-1].score > s + 2 * PawnValueMg) break; // This is our magic formula s += ( weakness * int(RootMoves[0].score - s) + variance * (rk.rand() % weakness)) / 128; if (s > max_s) { max_s = s; best = RootMoves[i].pv[0]; } } return best; } // uci_pv() formats PV information according to the UCI protocol. UCI // requires that all (if any) unsearched PV lines are sent using a previous // search score. string uci_pv(const Position& pos, int depth, Value alpha, Value beta) { std::stringstream ss; Time::point elapsed = Time::now() - SearchTime + 1; size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size()); int selDepth = 0; for (size_t i = 0; i < Threads.size(); ++i) if (Threads[i]->maxPly > selDepth) selDepth = Threads[i]->maxPly; for (size_t i = 0; i < uciPVSize; ++i) { bool updated = (i <= PVIdx); if (depth == 1 && !updated) continue; int d = updated ? depth : depth - 1; Value v = updated ? RootMoves[i].score : RootMoves[i].prevScore; if (ss.rdbuf()->in_avail()) // Not at first line ss << "\n"; ss << "info depth " << d << " seldepth " << selDepth << " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v)) << " nodes " << pos.nodes_searched() << " nps " << pos.nodes_searched() * 1000 / elapsed << " time " << elapsed << " multipv " << i + 1 << " pv"; for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; ++j) ss << " " << move_to_uci(RootMoves[i].pv[j], pos.is_chess960()); } return ss.str(); } } // namespace /// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table. /// We also consider both failing high nodes and BOUND_EXACT nodes here to /// ensure that we have a ponder move even when we fail high at root. This /// results in a long PV to print that is important for position analysis. void RootMove::extract_pv_from_tt(Position& pos) { StateInfo state[MAX_PLY_PLUS_6], *st = state; const TTEntry* tte; int ply = 1; // At root ply is 1... Move m = pv[0]; // ...instead pv[] array starts from 0 Value expectedScore = score; pv.clear(); do { pv.push_back(m); assert(MoveList(pos).contains(pv[ply - 1])); pos.do_move(pv[ply++ - 1], *st++); tte = TT.probe(pos.key()); expectedScore = -expectedScore; } while ( tte && expectedScore == value_from_tt(tte->value(), ply) && pos.pseudo_legal(m = tte->move()) // Local copy, TT could change && pos.legal(m, pos.pinned_pieces(pos.side_to_move())) && ply < MAX_PLY && (!pos.is_draw() || ply <= 2)); pv.push_back(MOVE_NONE); // Must be zero-terminating while (--ply) pos.undo_move(pv[ply - 1]); } /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and /// inserts the PV back into the TT. This makes sure the old PV moves are searched /// first, even if the old TT entries have been overwritten. void RootMove::insert_pv_in_tt(Position& pos) { StateInfo state[MAX_PLY_PLUS_6], *st = state; const TTEntry* tte; int idx = 0; // Ply starts from 1, we need to start from 0 do { tte = TT.probe(pos.key()); if (!tte || tte->move() != pv[idx]) // Don't overwrite correct entries TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[idx], VALUE_NONE); assert(MoveList(pos).contains(pv[idx])); pos.do_move(pv[idx++], *st++); } while (pv[idx] != MOVE_NONE); while (idx) pos.undo_move(pv[--idx]); } /// Thread::idle_loop() is where the thread is parked when it has no work to do void Thread::idle_loop() { // Pointer 'this_sp' is not null only if we are called from split(), and not // at the thread creation. This means we are the split point's master. SplitPoint* this_sp = splitPointsSize ? activeSplitPoint : NULL; assert(!this_sp || (this_sp->masterThread == this && searching)); while (true) { // If we are not searching, wait for a condition to be signaled instead of // wasting CPU time polling for work. while (!searching || exit) { if (exit) { assert(!this_sp); return; } // Grab the lock to avoid races with Thread::notify_one() mutex.lock(); // If we are master and all slaves have finished then exit idle_loop if (this_sp && this_sp->slavesMask.none()) { mutex.unlock(); break; } // Do sleep after retesting sleep conditions under lock protection. In // particular we need to avoid a deadlock in case a master thread has, // in the meanwhile, allocated us and sent the notify_one() call before // we had the chance to grab the lock. if (!searching && !exit) sleepCondition.wait(mutex); mutex.unlock(); } // If this thread has been assigned work, launch a search if (searching) { assert(!exit); Threads.mutex.lock(); assert(searching); assert(activeSplitPoint); SplitPoint* sp = activeSplitPoint; Threads.mutex.unlock(); Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2) Position pos(*sp->pos, this); std::memcpy(ss-2, sp->ss-2, 5 * sizeof(Stack)); ss->splitPoint = sp; sp->mutex.lock(); assert(activePosition == NULL); activePosition = &pos; if (sp->nodeType == NonPV) search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); else if (sp->nodeType == PV) search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); else if (sp->nodeType == Root) search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); else assert(false); assert(searching); searching = false; activePosition = NULL; sp->slavesMask.reset(idx); sp->allSlavesSearching = false; sp->nodes += pos.nodes_searched(); // Wake up the master thread so to allow it to return from the idle // loop in case we are the last slave of the split point. if ( this != sp->masterThread && sp->slavesMask.none()) { assert(!sp->masterThread->searching); sp->masterThread->notify_one(); } // After releasing the lock we can't access any SplitPoint related data // in a safe way because it could have been released under our feet by // the sp master. sp->mutex.unlock(); // Try to late join to another split point if none of its slaves has // already finished. if (Threads.size() > 2) for (size_t i = 0; i < Threads.size(); ++i) { int size = Threads[i]->splitPointsSize; // Local copy sp = size ? &Threads[i]->splitPoints[size - 1] : NULL; if ( sp && sp->allSlavesSearching && available_to(Threads[i])) { // Recheck the conditions under lock protection Threads.mutex.lock(); sp->mutex.lock(); if ( sp->allSlavesSearching && available_to(Threads[i])) { sp->slavesMask.set(idx); activeSplitPoint = sp; searching = true; } sp->mutex.unlock(); Threads.mutex.unlock(); break; // Just a single attempt } } } // If this thread is the master of a split point and all slaves have finished // their work at this split point, return from the idle loop. if (this_sp && this_sp->slavesMask.none()) { this_sp->mutex.lock(); bool finished = this_sp->slavesMask.none(); // Retest under lock protection this_sp->mutex.unlock(); if (finished) return; } } } /// check_time() is called by the timer thread when the timer triggers. It is /// used to print debug info and, more importantly, to detect when we are out of /// available time and thus stop the search. void check_time() { static Time::point lastInfoTime = Time::now(); int64_t nodes = 0; // Workaround silly 'uninitialized' gcc warning if (Time::now() - lastInfoTime >= 1000) { lastInfoTime = Time::now(); dbg_print(); } if (Limits.ponder) return; if (Limits.nodes) { Threads.mutex.lock(); nodes = RootPos.nodes_searched(); // Loop across all split points and sum accumulated SplitPoint nodes plus // all the currently active positions nodes. for (size_t i = 0; i < Threads.size(); ++i) for (int j = 0; j < Threads[i]->splitPointsSize; ++j) { SplitPoint& sp = Threads[i]->splitPoints[j]; sp.mutex.lock(); nodes += sp.nodes; for (size_t idx = 0; idx < Threads.size(); ++idx) if (sp.slavesMask.test(idx) && Threads[idx]->activePosition) nodes += Threads[idx]->activePosition->nodes_searched(); sp.mutex.unlock(); } Threads.mutex.unlock(); } Time::point elapsed = Time::now() - SearchTime; bool stillAtFirstMove = Signals.firstRootMove && !Signals.failedLowAtRoot && elapsed > TimeMgr.available_time() * 75 / 100; bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerThread::Resolution || stillAtFirstMove; if ( (Limits.use_time_management() && noMoreTime) || (Limits.movetime && elapsed >= Limits.movetime) || (Limits.nodes && nodes >= Limits.nodes)) Signals.stop = true; }