/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "bitboard.h" #include "bitcount.h" #include "pawns.h" #include "position.h" namespace { #define V Value #define S(mg, eg) make_score(mg, eg) // Doubled pawn penalty by file const Score Doubled[FILE_NB] = { S(13, 43), S(20, 48), S(23, 48), S(23, 48), S(23, 48), S(23, 48), S(20, 48), S(13, 43) }; // Isolated pawn penalty by opposed flag and file const Score Isolated[2][FILE_NB] = { { S(37, 45), S(54, 52), S(60, 52), S(60, 52), S(60, 52), S(60, 52), S(54, 52), S(37, 45) }, { S(25, 30), S(36, 35), S(40, 35), S(40, 35), S(40, 35), S(40, 35), S(36, 35), S(25, 30) } }; // Backward pawn penalty by opposed flag and file const Score Backward[2][FILE_NB] = { { S(30, 42), S(43, 46), S(49, 46), S(49, 46), S(49, 46), S(49, 46), S(43, 46), S(30, 42) }, { S(20, 28), S(29, 31), S(33, 31), S(33, 31), S(33, 31), S(33, 31), S(29, 31), S(20, 28) } }; // Connected pawn bonus by file and rank (initialized by formula) Score Connected[FILE_NB][RANK_NB]; // Candidate passed pawn bonus by rank const Score CandidatePassed[RANK_NB] = { S( 0, 0), S( 6, 13), S(6,13), S(14,29), S(34,68), S(83,166), S(0, 0), S( 0, 0) }; // Bonus for file distance of the two outermost pawns const Score PawnsFileSpan = S(0, 15); // Unsupported pawn penalty const Score UnsupportedPawnPenalty = S(20, 10); // Weakness of our pawn shelter in front of the king indexed by [rank] const Value ShelterWeakness[RANK_NB] = { V(100), V(0), V(27), V(73), V(92), V(101), V(101) }; // Danger of enemy pawns moving toward our king indexed by // [no friendly pawn | pawn unblocked | pawn blocked][rank of enemy pawn] const Value StormDanger[3][RANK_NB] = { { V( 0), V(64), V(128), V(51), V(26) }, { V(26), V(32), V( 96), V(38), V(20) }, { V( 0), V( 0), V(160), V(25), V(13) } }; // Max bonus for king safety. Corresponds to start position with all the pawns // in front of the king and no enemy pawn on the horizon. const Value MaxSafetyBonus = V(263); #undef S #undef V template Score evaluate(const Position& pos, Pawns::Entry* e) { const Color Them = (Us == WHITE ? BLACK : WHITE); const Square Up = (Us == WHITE ? DELTA_N : DELTA_S); const Square Right = (Us == WHITE ? DELTA_NE : DELTA_SW); const Square Left = (Us == WHITE ? DELTA_NW : DELTA_SE); Bitboard b, p, doubled; Square s; File f; bool passed, isolated, opposed, connected, backward, candidate, unsupported; Score value = SCORE_ZERO; const Square* pl = pos.list(Us); Bitboard ourPawns = pos.pieces(Us, PAWN); Bitboard theirPawns = pos.pieces(Them, PAWN); e->passedPawns[Us] = e->candidatePawns[Us] = 0; e->kingSquares[Us] = SQ_NONE; e->semiopenFiles[Us] = 0xFF; e->pawnAttacks[Us] = shift_bb(ourPawns) | shift_bb(ourPawns); e->pawnsOnSquares[Us][BLACK] = popcount(ourPawns & DarkSquares); e->pawnsOnSquares[Us][WHITE] = pos.count(Us) - e->pawnsOnSquares[Us][BLACK]; // Loop through all pawns of the current color and score each pawn while ((s = *pl++) != SQ_NONE) { assert(pos.piece_on(s) == make_piece(Us, PAWN)); f = file_of(s); // This file cannot be semi-open e->semiopenFiles[Us] &= ~(1 << f); // Previous rank p = rank_bb(s - pawn_push(Us)); // Our rank plus previous one b = rank_bb(s) | p; // Flag the pawn as passed, isolated, doubled, // unsupported or connected (but not the backward one). connected = ourPawns & adjacent_files_bb(f) & b; unsupported = !(ourPawns & adjacent_files_bb(f) & p); isolated = !(ourPawns & adjacent_files_bb(f)); doubled = ourPawns & forward_bb(Us, s); opposed = theirPawns & forward_bb(Us, s); passed = !(theirPawns & passed_pawn_mask(Us, s)); // Test for backward pawn. // If the pawn is passed, isolated, or connected it cannot be // backward. If there are friendly pawns behind on adjacent files // or if it can capture an enemy pawn it cannot be backward either. if ( (passed | isolated | connected) || (ourPawns & pawn_attack_span(Them, s)) || (pos.attacks_from(s, Us) & theirPawns)) backward = false; else { // We now know that there are no friendly pawns beside or behind this // pawn on adjacent files. We now check whether the pawn is // backward by looking in the forward direction on the adjacent // files, and picking the closest pawn there. b = pawn_attack_span(Us, s) & (ourPawns | theirPawns); b = pawn_attack_span(Us, s) & rank_bb(backmost_sq(Us, b)); // If we have an enemy pawn in the same or next rank, the pawn is // backward because it cannot advance without being captured. backward = (b | shift_bb(b)) & theirPawns; } assert(opposed | passed | (pawn_attack_span(Us, s) & theirPawns)); // A not-passed pawn is a candidate to become passed, if it is free to // advance and if the number of friendly pawns beside or behind this // pawn on adjacent files is higher than or equal to the number of // enemy pawns in the forward direction on the adjacent files. candidate = !(opposed | passed | backward | isolated) && (b = pawn_attack_span(Them, s + pawn_push(Us)) & ourPawns) != 0 && popcount(b) >= popcount(pawn_attack_span(Us, s) & theirPawns); // Passed pawns will be properly scored in evaluation because we need // full attack info to evaluate passed pawns. Only the frontmost passed // pawn on each file is considered a true passed pawn. if (passed && !doubled) e->passedPawns[Us] |= s; // Score this pawn if (isolated) value -= Isolated[opposed][f]; if (unsupported && !isolated) value -= UnsupportedPawnPenalty; if (doubled) value -= Doubled[f] / rank_distance(s, lsb(doubled)); if (backward) value -= Backward[opposed][f]; if (connected) value += Connected[f][relative_rank(Us, s)]; if (candidate) { value += CandidatePassed[relative_rank(Us, s)]; if (!doubled) e->candidatePawns[Us] |= s; } } // In endgame it's better to have pawns on both wings. So give a bonus according // to file distance between left and right outermost pawns. if (pos.count(Us) > 1) { b = e->semiopenFiles[Us] ^ 0xFF; value += PawnsFileSpan * int(msb(b) - lsb(b)); } return value; } } // namespace namespace Pawns { /// init() initializes some tables by formula instead of hard-coding their values void init() { const int bonusesByFile[8] = { 1, 3, 3, 4, 4, 3, 3, 1 }; int bonus; for (Rank r = RANK_1; r < RANK_8; ++r) for (File f = FILE_A; f <= FILE_H; ++f) { bonus = r * (r-1) * (r-2) + bonusesByFile[f] * (r/2 + 1); Connected[f][r] = make_score(bonus, bonus); } } /// probe() takes a position object as input, computes a Entry object, and returns /// a pointer to it. The result is also stored in a hash table, so we don't have /// to recompute everything when the same pawn structure occurs again. Entry* probe(const Position& pos, Table& entries) { Key key = pos.pawn_key(); Entry* e = entries[key]; if (e->key == key) return e; e->key = key; e->value = evaluate(pos, e) - evaluate(pos, e); return e; } /// Entry::shelter_storm() calculates shelter and storm penalties for the file /// the king is on, as well as the two adjacent files. template Value Entry::shelter_storm(const Position& pos, Square ksq) { const Color Them = (Us == WHITE ? BLACK : WHITE); static const Bitboard MiddleEdges = (FileABB | FileHBB) & (Rank2BB | Rank3BB); Value safety = MaxSafetyBonus; Bitboard b = pos.pieces(PAWN) & (in_front_bb(Us, rank_of(ksq)) | rank_bb(ksq)); Bitboard ourPawns = b & pos.pieces(Us); Bitboard theirPawns = b & pos.pieces(Them); Rank rkUs, rkThem; File kf = std::max(FILE_B, std::min(FILE_G, file_of(ksq))); for (File f = kf - File(1); f <= kf + File(1); ++f) { b = ourPawns & file_bb(f); rkUs = b ? relative_rank(Us, backmost_sq(Us, b)) : RANK_1; b = theirPawns & file_bb(f); rkThem = b ? relative_rank(Us, frontmost_sq(Them, b)) : RANK_1; if ( (MiddleEdges & make_square(f, rkThem)) && file_of(ksq) == f && relative_rank(Us, ksq) == rkThem - 1) safety += 200; else safety -= ShelterWeakness[rkUs] + StormDanger[rkUs == RANK_1 ? 0 : rkThem == rkUs + 1 ? 2 : 1][rkThem]; } return safety; } /// Entry::do_king_safety() calculates a bonus for king safety. It is called only /// when king square changes, which is about 20% of total king_safety() calls. template Score Entry::do_king_safety(const Position& pos, Square ksq) { kingSquares[Us] = ksq; castlingRights[Us] = pos.can_castle(Us); minKPdistance[Us] = 0; Bitboard pawns = pos.pieces(Us, PAWN); if (pawns) while (!(DistanceRingsBB[ksq][minKPdistance[Us]++] & pawns)) {} if (relative_rank(Us, ksq) > RANK_4) return make_score(0, -16 * minKPdistance[Us]); Value bonus = shelter_storm(pos, ksq); // If we can castle use the bonus after the castling if it is bigger if (pos.can_castle(MakeCastling::right)) bonus = std::max(bonus, shelter_storm(pos, relative_square(Us, SQ_G1))); if (pos.can_castle(MakeCastling::right)) bonus = std::max(bonus, shelter_storm(pos, relative_square(Us, SQ_C1))); return make_score(bonus, -16 * minKPdistance[Us]); } // Explicit template instantiation template Score Entry::do_king_safety(const Position& pos, Square ksq); template Score Entry::do_king_safety(const Position& pos, Square ksq); } // namespace Pawns