/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "movepick.h" #include "thread.h" namespace { enum Stages { MAIN_SEARCH, CAPTURES_S1, KILLERS_S1, QUIETS_1_S1, QUIETS_2_S1, BAD_CAPTURES_S1, EVASION, EVASIONS_S2, QSEARCH_0, CAPTURES_S3, QUIET_CHECKS_S3, QSEARCH_1, CAPTURES_S4, PROBCUT, CAPTURES_S5, RECAPTURE, CAPTURES_S6, STOP }; // Our insertion sort, which is guaranteed (and also needed) to be stable void insertion_sort(ExtMove* begin, ExtMove* end) { ExtMove tmp, *p, *q; for (p = begin + 1; p < end; ++p) { tmp = *p; for (q = p; q != begin && *(q-1) < tmp; --q) *q = *(q-1); *q = tmp; } } // Unary predicate used by std::partition to split positive values from remaining // ones so as to sort the two sets separately, with the second sort delayed. inline bool has_positive_value(const ExtMove& ms) { return ms.value > 0; } // Picks the best move in the range (begin, end) and moves it to the front. // It's faster than sorting all the moves in advance when there are few // moves e.g. possible captures. inline ExtMove* pick_best(ExtMove* begin, ExtMove* end) { std::swap(*begin, *std::max_element(begin, end)); return begin; } } /// Constructors of the MovePicker class. As arguments we pass information /// to help it to return the (presumably) good moves first, to decide which /// moves to return (in the quiescence search, for instance, we only want to /// search captures, promotions and some checks) and how important good move /// ordering is at the current node. MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const HistoryStats& h, Move* cm, Move* fm, Search::Stack* s) : pos(p), history(h), depth(d) { assert(d > DEPTH_ZERO); cur = end = moves; endBadCaptures = moves + MAX_MOVES - 1; countermoves = cm; followupmoves = fm; ss = s; if (pos.checkers()) stage = EVASION; else stage = MAIN_SEARCH; ttMove = (ttm && pos.pseudo_legal(ttm) ? ttm : MOVE_NONE); end += (ttMove != MOVE_NONE); } MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const HistoryStats& h, Square s) : pos(p), history(h), cur(moves), end(moves) { assert(d <= DEPTH_ZERO); if (pos.checkers()) stage = EVASION; else if (d > DEPTH_QS_NO_CHECKS) stage = QSEARCH_0; else if (d > DEPTH_QS_RECAPTURES) { stage = QSEARCH_1; // Skip TT move if is not a capture or a promotion. This avoids qsearch // tree explosion due to a possible perpetual check or similar rare cases // when TT table is full. if (ttm && !pos.capture_or_promotion(ttm)) ttm = MOVE_NONE; } else { stage = RECAPTURE; recaptureSquare = s; ttm = MOVE_NONE; } ttMove = (ttm && pos.pseudo_legal(ttm) ? ttm : MOVE_NONE); end += (ttMove != MOVE_NONE); } MovePicker::MovePicker(const Position& p, Move ttm, const HistoryStats& h, PieceType pt) : pos(p), history(h), cur(moves), end(moves) { assert(!pos.checkers()); stage = PROBCUT; // In ProbCut we generate only captures that are better than the parent's // captured piece. captureThreshold = PieceValue[MG][pt]; ttMove = (ttm && pos.pseudo_legal(ttm) ? ttm : MOVE_NONE); if (ttMove && (!pos.capture(ttMove) || pos.see(ttMove) <= captureThreshold)) ttMove = MOVE_NONE; end += (ttMove != MOVE_NONE); } /// score() assign a numerical value to each move in a move list. The moves with /// highest values will be picked first. template<> void MovePicker::score() { // Winning and equal captures in the main search are ordered by MVV/LVA. // Suprisingly, this appears to perform slightly better than SEE based // move ordering. The reason is probably that in a position with a winning // capture, capturing a more valuable (but sufficiently defended) piece // first usually doesn't hurt. The opponent will have to recapture, and // the hanging piece will still be hanging (except in the unusual cases // where it is possible to recapture with the hanging piece). Exchanging // big pieces before capturing a hanging piece probably helps to reduce // the subtree size. // In main search we want to push captures with negative SEE values to the // badCaptures[] array, but instead of doing it now we delay until the move // has been picked up in pick_move_from_list(). This way we save some SEE // calls in case we get a cutoff. Move m; for (ExtMove* it = moves; it != end; ++it) { m = it->move; it->value = PieceValue[MG][pos.piece_on(to_sq(m))] - Value(type_of(pos.moved_piece(m))); if (type_of(m) == ENPASSANT) it->value += PieceValue[MG][PAWN]; else if (type_of(m) == PROMOTION) it->value += PieceValue[MG][promotion_type(m)] - PieceValue[MG][PAWN]; } } template<> void MovePicker::score() { Move m; for (ExtMove* it = moves; it != end; ++it) { m = it->move; it->value = history[pos.moved_piece(m)][to_sq(m)]; } } template<> void MovePicker::score() { // Try good captures ordered by MVV/LVA, then non-captures if destination square // is not under attack, ordered by history value, then bad-captures and quiet // moves with a negative SEE. This last group is ordered by the SEE value. Move m; Value see; for (ExtMove* it = moves; it != end; ++it) { m = it->move; if ((see = pos.see_sign(m)) < VALUE_ZERO) it->value = see - HistoryStats::Max; // At the bottom else if (pos.capture(m)) it->value = PieceValue[MG][pos.piece_on(to_sq(m))] - Value(type_of(pos.moved_piece(m))) + HistoryStats::Max; else it->value = history[pos.moved_piece(m)][to_sq(m)]; } } /// generate_next_stage() generates, scores and sorts the next bunch of moves, /// when there are no more moves to try for the current stage. void MovePicker::generate_next_stage() { cur = moves; switch (++stage) { case CAPTURES_S1: case CAPTURES_S3: case CAPTURES_S4: case CAPTURES_S5: case CAPTURES_S6: end = generate(pos, moves); score(); return; case KILLERS_S1: cur = killers; end = cur + 2; killers[0].move = ss->killers[0]; killers[1].move = ss->killers[1]; killers[2].move = killers[3].move = MOVE_NONE; killers[4].move = killers[5].move = MOVE_NONE; // Please note that following code is racy and could yield to rare (less // than 1 out of a million) duplicated entries in SMP case. This is harmless. // Be sure countermoves are different from killers for (int i = 0; i < 2; ++i) if ( countermoves[i] != (cur+0)->move && countermoves[i] != (cur+1)->move) (end++)->move = countermoves[i]; // Be sure followupmoves are different from killers and countermoves for (int i = 0; i < 2; ++i) if ( followupmoves[i] != (cur+0)->move && followupmoves[i] != (cur+1)->move && followupmoves[i] != (cur+2)->move && followupmoves[i] != (cur+3)->move) (end++)->move = followupmoves[i]; return; case QUIETS_1_S1: endQuiets = end = generate(pos, moves); score(); end = std::partition(cur, end, has_positive_value); insertion_sort(cur, end); return; case QUIETS_2_S1: cur = end; end = endQuiets; if (depth >= 3 * ONE_PLY) insertion_sort(cur, end); return; case BAD_CAPTURES_S1: // Just pick them in reverse order to get MVV/LVA ordering cur = moves + MAX_MOVES - 1; end = endBadCaptures; return; case EVASIONS_S2: end = generate(pos, moves); if (end > moves + 1) score(); return; case QUIET_CHECKS_S3: end = generate(pos, moves); return; case EVASION: case QSEARCH_0: case QSEARCH_1: case PROBCUT: case RECAPTURE: stage = STOP; /* Fall through */ case STOP: end = cur + 1; // Avoid another next_phase() call return; default: assert(false); } } /// next_move() is the most important method of the MovePicker class. It returns /// a new pseudo legal move every time it is called, until there are no more moves /// left. It picks the move with the biggest value from a list of generated moves /// taking care not to return the ttMove if it has already been searched. template<> Move MovePicker::next_move() { Move move; while (true) { while (cur == end) generate_next_stage(); switch (stage) { case MAIN_SEARCH: case EVASION: case QSEARCH_0: case QSEARCH_1: case PROBCUT: ++cur; return ttMove; case CAPTURES_S1: move = pick_best(cur++, end)->move; if (move != ttMove) { if (pos.see_sign(move) >= VALUE_ZERO) return move; // Losing capture, move it to the tail of the array (endBadCaptures--)->move = move; } break; case KILLERS_S1: move = (cur++)->move; if ( move != MOVE_NONE && move != ttMove && pos.pseudo_legal(move) && !pos.capture(move)) return move; break; case QUIETS_1_S1: case QUIETS_2_S1: move = (cur++)->move; if ( move != ttMove && move != killers[0].move && move != killers[1].move && move != killers[2].move && move != killers[3].move && move != killers[4].move && move != killers[5].move) return move; break; case BAD_CAPTURES_S1: return (cur--)->move; case EVASIONS_S2: case CAPTURES_S3: case CAPTURES_S4: move = pick_best(cur++, end)->move; if (move != ttMove) return move; break; case CAPTURES_S5: move = pick_best(cur++, end)->move; if (move != ttMove && pos.see(move) > captureThreshold) return move; break; case CAPTURES_S6: move = pick_best(cur++, end)->move; if (to_sq(move) == recaptureSquare) return move; break; case QUIET_CHECKS_S3: move = (cur++)->move; if (move != ttMove) return move; break; case STOP: return MOVE_NONE; default: assert(false); } } } /// Version of next_move() to use at split point nodes where the move is grabbed /// from the split point's shared MovePicker object. This function is not thread /// safe so must be lock protected by the caller. template<> Move MovePicker::next_move() { return ss->splitPoint->movePicker->next_move(); }