/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED #include "types.h" namespace Bitboards { void init(); const std::string pretty(Bitboard b); } namespace Bitbases { void init_kpk(); bool probe_kpk(Square wksq, Square wpsq, Square bksq, Color us); } const Bitboard FileABB = 0x0101010101010101ULL; const Bitboard FileBBB = FileABB << 1; const Bitboard FileCBB = FileABB << 2; const Bitboard FileDBB = FileABB << 3; const Bitboard FileEBB = FileABB << 4; const Bitboard FileFBB = FileABB << 5; const Bitboard FileGBB = FileABB << 6; const Bitboard FileHBB = FileABB << 7; const Bitboard Rank1BB = 0xFF; const Bitboard Rank2BB = Rank1BB << (8 * 1); const Bitboard Rank3BB = Rank1BB << (8 * 2); const Bitboard Rank4BB = Rank1BB << (8 * 3); const Bitboard Rank5BB = Rank1BB << (8 * 4); const Bitboard Rank6BB = Rank1BB << (8 * 5); const Bitboard Rank7BB = Rank1BB << (8 * 6); const Bitboard Rank8BB = Rank1BB << (8 * 7); CACHE_LINE_ALIGNMENT extern Bitboard RMasks[SQUARE_NB]; extern Bitboard RMagics[SQUARE_NB]; extern Bitboard* RAttacks[SQUARE_NB]; extern unsigned RShifts[SQUARE_NB]; extern Bitboard BMasks[SQUARE_NB]; extern Bitboard BMagics[SQUARE_NB]; extern Bitboard* BAttacks[SQUARE_NB]; extern unsigned BShifts[SQUARE_NB]; extern Bitboard SquareBB[SQUARE_NB]; extern Bitboard FileBB[FILE_NB]; extern Bitboard RankBB[RANK_NB]; extern Bitboard AdjacentFilesBB[FILE_NB]; extern Bitboard InFrontBB[COLOR_NB][RANK_NB]; extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; extern Bitboard DistanceRingsBB[SQUARE_NB][8]; extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; extern int SquareDistance[SQUARE_NB][SQUARE_NB]; const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; /// Overloads of bitwise operators between a Bitboard and a Square for testing /// whether a given bit is set in a bitboard, and for setting and clearing bits. inline Bitboard operator&(Bitboard b, Square s) { return b & SquareBB[s]; } inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= SquareBB[s]; } inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= SquareBB[s]; } inline Bitboard operator|(Bitboard b, Square s) { return b | SquareBB[s]; } inline Bitboard operator^(Bitboard b, Square s) { return b ^ SquareBB[s]; } inline bool more_than_one(Bitboard b) { return b & (b - 1); } inline int square_distance(Square s1, Square s2) { return SquareDistance[s1][s2]; } inline int file_distance(Square s1, Square s2) { return abs(file_of(s1) - file_of(s2)); } inline int rank_distance(Square s1, Square s2) { return abs(rank_of(s1) - rank_of(s2)); } /// shift_bb() moves bitboard one step along direction Delta. Mainly for pawns. template inline Bitboard shift_bb(Bitboard b) { return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8 : Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7 : Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9 : 0; } /// rank_bb() and file_bb() take a file or a square as input and return /// a bitboard representing all squares on the given file or rank. inline Bitboard rank_bb(Rank r) { return RankBB[r]; } inline Bitboard rank_bb(Square s) { return RankBB[rank_of(s)]; } inline Bitboard file_bb(File f) { return FileBB[f]; } inline Bitboard file_bb(Square s) { return FileBB[file_of(s)]; } /// adjacent_files_bb() takes a file as input and returns a bitboard representing /// all squares on the adjacent files. inline Bitboard adjacent_files_bb(File f) { return AdjacentFilesBB[f]; } /// in_front_bb() takes a color and a rank as input, and returns a bitboard /// representing all the squares on all ranks in front of the rank, from the /// given color's point of view. For instance, in_front_bb(BLACK, RANK_3) will /// give all squares on ranks 1 and 2. inline Bitboard in_front_bb(Color c, Rank r) { return InFrontBB[c][r]; } /// between_bb() returns a bitboard representing all squares between two squares. /// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for /// square d5 and e6 set. If s1 and s2 are not on the same rank, file or diagonal, /// 0 is returned. inline Bitboard between_bb(Square s1, Square s2) { return BetweenBB[s1][s2]; } /// forward_bb() takes a color and a square as input, and returns a bitboard /// representing all squares along the line in front of the square, from the /// point of view of the given color. Definition of the table is: /// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s) inline Bitboard forward_bb(Color c, Square s) { return ForwardBB[c][s]; } /// pawn_attack_span() takes a color and a square as input, and returns a bitboard /// representing all squares that can be attacked by a pawn of the given color /// when it moves along its file starting from the given square. Definition is: /// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); inline Bitboard pawn_attack_span(Color c, Square s) { return PawnAttackSpan[c][s]; } /// passed_pawn_mask() takes a color and a square as input, and returns a /// bitboard mask which can be used to test if a pawn of the given color on /// the given square is a passed pawn. Definition of the table is: /// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s) inline Bitboard passed_pawn_mask(Color c, Square s) { return PassedPawnMask[c][s]; } /// squares_of_color() returns a bitboard representing all squares with the same /// color of the given square. inline Bitboard squares_of_color(Square s) { return DarkSquares & s ? DarkSquares : ~DarkSquares; } /// aligned() returns true if the squares s1, s2 and s3 are aligned /// either on a straight or on a diagonal line. inline bool aligned(Square s1, Square s2, Square s3) { return LineBB[s1][s2] & s3; } /// Functions for computing sliding attack bitboards. Function attacks_bb() takes /// a square and a bitboard of occupied squares as input, and returns a bitboard /// representing all squares attacked by Pt (bishop or rook) on the given square. template FORCE_INLINE unsigned magic_index(Square s, Bitboard occ) { Bitboard* const Masks = Pt == ROOK ? RMasks : BMasks; Bitboard* const Magics = Pt == ROOK ? RMagics : BMagics; unsigned* const Shifts = Pt == ROOK ? RShifts : BShifts; if (HasPext) return unsigned(_pext_u64(occ, Masks[s])); if (Is64Bit) return unsigned(((occ & Masks[s]) * Magics[s]) >> Shifts[s]); unsigned lo = unsigned(occ) & unsigned(Masks[s]); unsigned hi = unsigned(occ >> 32) & unsigned(Masks[s] >> 32); return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s]; } template inline Bitboard attacks_bb(Square s, Bitboard occ) { return (Pt == ROOK ? RAttacks : BAttacks)[s][magic_index(s, occ)]; } inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occ) { switch (type_of(pc)) { case BISHOP: return attacks_bb(s, occ); case ROOK : return attacks_bb(s, occ); case QUEEN : return attacks_bb(s, occ) | attacks_bb(s, occ); default : return StepAttacksBB[pc][s]; } } /// lsb()/msb() finds the least/most significant bit in a non-zero bitboard. /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. #ifdef USE_BSFQ # if defined(_MSC_VER) && !defined(__INTEL_COMPILER) FORCE_INLINE Square lsb(Bitboard b) { unsigned long idx; _BitScanForward64(&idx, b); return (Square) idx; } FORCE_INLINE Square msb(Bitboard b) { unsigned long idx; _BitScanReverse64(&idx, b); return (Square) idx; } # elif defined(__arm__) FORCE_INLINE int lsb32(uint32_t v) { __asm__("rbit %0, %1" : "=r"(v) : "r"(v)); return __builtin_clz(v); } FORCE_INLINE Square msb(Bitboard b) { return (Square) (63 - __builtin_clzll(b)); } FORCE_INLINE Square lsb(Bitboard b) { return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32))); } # else FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen Bitboard idx; __asm__("bsfq %1, %0": "=r"(idx): "rm"(b) ); return (Square) idx; } FORCE_INLINE Square msb(Bitboard b) { Bitboard idx; __asm__("bsrq %1, %0": "=r"(idx): "rm"(b) ); return (Square) idx; } # endif FORCE_INLINE Square pop_lsb(Bitboard* b) { const Square s = lsb(*b); *b &= *b - 1; return s; } #else // if defined(USE_BSFQ) extern Square msb(Bitboard b); extern Square lsb(Bitboard b); extern Square pop_lsb(Bitboard* b); #endif /// frontmost_sq() and backmost_sq() find the square corresponding to the /// most/least advanced bit relative to the given color. inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); } inline Square backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); } #endif // #ifndef BITBOARD_H_INCLUDED