/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include // For memset #include "bitboard.h" #include "bitcount.h" #include "rkiss.h" CACHE_LINE_ALIGNMENT Bitboard RMasks[SQUARE_NB]; Bitboard RMagics[SQUARE_NB]; Bitboard* RAttacks[SQUARE_NB]; unsigned RShifts[SQUARE_NB]; Bitboard BMasks[SQUARE_NB]; Bitboard BMagics[SQUARE_NB]; Bitboard* BAttacks[SQUARE_NB]; unsigned BShifts[SQUARE_NB]; Bitboard SquareBB[SQUARE_NB]; Bitboard FileBB[FILE_NB]; Bitboard RankBB[RANK_NB]; Bitboard AdjacentFilesBB[FILE_NB]; Bitboard InFrontBB[COLOR_NB][RANK_NB]; Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; Bitboard LineBB[SQUARE_NB][SQUARE_NB]; Bitboard DistanceRingsBB[SQUARE_NB][8]; Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; int SquareDistance[SQUARE_NB][SQUARE_NB]; namespace { // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan const uint64_t DeBruijn_64 = 0x3F79D71B4CB0A89ULL; const uint32_t DeBruijn_32 = 0x783A9B23; CACHE_LINE_ALIGNMENT int MS1BTable[256]; Square BSFTable[SQUARE_NB]; Bitboard RTable[0x19000]; // Storage space for rook attacks Bitboard BTable[0x1480]; // Storage space for bishop attacks typedef unsigned (Fn)(Square, Bitboard); void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], Bitboard masks[], unsigned shifts[], Square deltas[], Fn index); FORCE_INLINE unsigned bsf_index(Bitboard b) { // Matt Taylor's folding for 32 bit systems, extended to 64 bits by Kim Walisch b ^= (b - 1); return Is64Bit ? (b * DeBruijn_64) >> 58 : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn_32) >> 26; } } /// lsb()/msb() finds the least/most significant bit in a non-zero bitboard. /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. #ifndef USE_BSFQ Square lsb(Bitboard b) { return BSFTable[bsf_index(b)]; } Square pop_lsb(Bitboard* b) { Bitboard bb = *b; *b = bb & (bb - 1); return BSFTable[bsf_index(bb)]; } Square msb(Bitboard b) { unsigned b32; int result = 0; if (b > 0xFFFFFFFF) { b >>= 32; result = 32; } b32 = unsigned(b); if (b32 > 0xFFFF) { b32 >>= 16; result += 16; } if (b32 > 0xFF) { b32 >>= 8; result += 8; } return Square(result + MS1BTable[b32]); } #endif // ifndef USE_BSFQ /// Bitboards::pretty() returns an ASCII representation of a bitboard to be /// printed to standard output. This is sometimes useful for debugging. const std::string Bitboards::pretty(Bitboard b) { std::string s = "+---+---+---+---+---+---+---+---+\n"; for (Rank r = RANK_8; r >= RANK_1; --r) { for (File f = FILE_A; f <= FILE_H; ++f) s.append(b & make_square(f, r) ? "| X " : "| "); s.append("|\n+---+---+---+---+---+---+---+---+\n"); } return s; } /// Bitboards::init() initializes various bitboard tables. It is called at /// startup and relies on global objects to be already zero-initialized. void Bitboards::init() { for (Square s = SQ_A1; s <= SQ_H8; ++s) BSFTable[bsf_index(SquareBB[s] = 1ULL << s)] = s; for (Bitboard b = 1; b < 256; ++b) MS1BTable[b] = more_than_one(b) ? MS1BTable[b - 1] : lsb(b); for (File f = FILE_A; f <= FILE_H; ++f) FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB; for (Rank r = RANK_1; r <= RANK_8; ++r) RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB; for (File f = FILE_A; f <= FILE_H; ++f) AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); for (Rank r = RANK_1; r < RANK_8; ++r) InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]); for (Color c = WHITE; c <= BLACK; ++c) for (Square s = SQ_A1; s <= SQ_H8; ++s) { ForwardBB[c][s] = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)]; PawnAttackSpan[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; PassedPawnMask[c][s] = ForwardBB[c][s] | PawnAttackSpan[c][s]; } for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) if (s1 != s2) { SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); DistanceRingsBB[s1][SquareDistance[s1][s2] - 1] |= s2; } int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 }, {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } }; for (Color c = WHITE; c <= BLACK; ++c) for (PieceType pt = PAWN; pt <= KING; ++pt) for (Square s = SQ_A1; s <= SQ_H8; ++s) for (int i = 0; steps[pt][i]; ++i) { Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]); if (is_ok(to) && square_distance(s, to) < 3) StepAttacksBB[make_piece(c, pt)][s] |= to; } Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index); init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index); for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) { PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb(s1, 0); PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) { Piece pc = (PseudoAttacks[BISHOP][s1] & s2) ? W_BISHOP : (PseudoAttacks[ROOK][s1] & s2) ? W_ROOK : NO_PIECE; if (pc == NO_PIECE) continue; LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2; BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]); } } } namespace { Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) { Bitboard attack = 0; for (int i = 0; i < 4; ++i) for (Square s = sq + deltas[i]; is_ok(s) && square_distance(s, s - deltas[i]) == 1; s += deltas[i]) { attack |= s; if (occupied & s) break; } return attack; } // init_magics() computes all rook and bishop attacks at startup. Magic // bitboards are used to look up attacks of sliding pieces. As a reference see // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we // use the so called "fancy" approach. void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) { int MagicBoosters[][8] = { { 969, 1976, 2850, 542, 2069, 2852, 1708, 164 }, { 3101, 552, 3555, 926, 834, 26, 2131, 1117 } }; RKISS rk; Bitboard occupancy[4096], reference[4096], edges, b; int i, size, booster; // attacks[s] is a pointer to the beginning of the attacks table for square 's' attacks[SQ_A1] = table; for (Square s = SQ_A1; s <= SQ_H8; ++s) { // Board edges are not considered in the relevant occupancies edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); // Given a square 's', the mask is the bitboard of sliding attacks from // 's' computed on an empty board. The index must be big enough to contain // all the attacks for each possible subset of the mask and so is 2 power // the number of 1s of the mask. Hence we deduce the size of the shift to // apply to the 64 or 32 bits word to get the index. masks[s] = sliding_attack(deltas, s, 0) & ~edges; shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]); // Use Carry-Rippler trick to enumerate all subsets of masks[s] and // store the corresponding sliding attack bitboard in reference[]. b = size = 0; do { occupancy[size] = b; reference[size] = sliding_attack(deltas, s, b); if (HasPext) attacks[s][_pext_u64(b, masks[s])] = reference[size]; size++; b = (b - masks[s]) & masks[s]; } while (b); // Set the offset for the table of the next square. We have individual // table sizes for each square with "Fancy Magic Bitboards". if (s < SQ_H8) attacks[s + 1] = attacks[s] + size; if (HasPext) continue; booster = MagicBoosters[Is64Bit][rank_of(s)]; // Find a magic for square 's' picking up an (almost) random number // until we find the one that passes the verification test. do { do magics[s] = rk.magic_rand(booster); while (popcount((magics[s] * masks[s]) >> 56) < 6); std::memset(attacks[s], 0, size * sizeof(Bitboard)); // A good magic must map every possible occupancy to an index that // looks up the correct sliding attack in the attacks[s] database. // Note that we build up the database for square 's' as a side // effect of verifying the magic. for (i = 0; i < size; ++i) { Bitboard& attack = attacks[s][index(s, occupancy[i])]; if (attack && attack != reference[i]) break; assert(reference[i]); attack = reference[i]; } } while (i < size); } } }