/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "bitcount.h" #include "movegen.h" #include "position.h" // Simple macro to wrap a very common while loop, no facny, no flexibility, // hardcoded list name 'mlist' and from square 'from'. #define SERIALIZE_MOVES(b) while (b) (*mlist++).move = make_move(from, pop_1st_bit(&b)) // Version used for pawns, where the 'from' square is given as a delta from the 'to' square #define SERIALIZE_MOVES_D(b, d) while (b) { to = pop_1st_bit(&b); (*mlist++).move = make_move(to + (d), to); } namespace { enum CastlingSide { KING_SIDE, QUEEN_SIDE }; template MoveStack* generate_castle_moves(const Position&, MoveStack*, Color us); template MoveStack* generate_pawn_moves(const Position&, MoveStack*, Bitboard, Square); template inline MoveStack* generate_discovered_checks(const Position& pos, MoveStack* mlist, Square from) { assert(Pt != QUEEN && Pt != PAWN); Bitboard b = pos.attacks_from(from) & pos.empty_squares(); if (Pt == KING) b &= ~QueenPseudoAttacks[pos.king_square(flip(pos.side_to_move()))]; SERIALIZE_MOVES(b); return mlist; } template inline MoveStack* generate_direct_checks(const Position& pos, MoveStack* mlist, Color us, Bitboard dc, Square ksq) { assert(Pt != KING && Pt != PAWN); Bitboard checkSqs, b; Square from; const Square* pl = pos.piece_list(us, Pt); if ((from = *pl++) == SQ_NONE) return mlist; checkSqs = pos.attacks_from(ksq) & pos.empty_squares(); do { if ( (Pt == QUEEN && !(QueenPseudoAttacks[from] & checkSqs)) || (Pt == ROOK && !(RookPseudoAttacks[from] & checkSqs)) || (Pt == BISHOP && !(BishopPseudoAttacks[from] & checkSqs))) continue; if (dc && bit_is_set(dc, from)) continue; b = pos.attacks_from(from) & checkSqs; SERIALIZE_MOVES(b); } while ((from = *pl++) != SQ_NONE); return mlist; } template<> FORCE_INLINE MoveStack* generate_direct_checks(const Position& p, MoveStack* m, Color us, Bitboard dc, Square ksq) { return (us == WHITE ? generate_pawn_moves(p, m, dc, ksq) : generate_pawn_moves(p, m, dc, ksq)); } template FORCE_INLINE MoveStack* generate_piece_moves(const Position& p, MoveStack* m, Color us, Bitboard t) { assert(Pt == PAWN); assert(Type == MV_CAPTURE || Type == MV_NON_CAPTURE || Type == MV_EVASION); return (us == WHITE ? generate_pawn_moves(p, m, t, SQ_NONE) : generate_pawn_moves(p, m, t, SQ_NONE)); } template FORCE_INLINE MoveStack* generate_piece_moves(const Position& pos, MoveStack* mlist, Color us, Bitboard target) { Bitboard b; Square from; const Square* pl = pos.piece_list(us, Pt); if (*pl != SQ_NONE) { do { from = *pl; b = pos.attacks_from(from) & target; SERIALIZE_MOVES(b); } while (*++pl != SQ_NONE); } return mlist; } template<> FORCE_INLINE MoveStack* generate_piece_moves(const Position& pos, MoveStack* mlist, Color us, Bitboard target) { Bitboard b; Square from = pos.king_square(us); b = pos.attacks_from(from) & target; SERIALIZE_MOVES(b); return mlist; } } /// generate generates all pseudo-legal captures and queen /// promotions. Returns a pointer to the end of the move list. /// /// generate generates all pseudo-legal non-captures and /// underpromotions. Returns a pointer to the end of the move list. /// /// generate generates all pseudo-legal captures and /// non-captures. Returns a pointer to the end of the move list. template MoveStack* generate(const Position& pos, MoveStack* mlist) { assert(!pos.in_check()); Color us = pos.side_to_move(); Bitboard target; if (Type == MV_CAPTURE || Type == MV_NON_EVASION) target = pos.pieces(flip(us)); else if (Type == MV_NON_CAPTURE) target = pos.empty_squares(); else assert(false); if (Type == MV_NON_EVASION) { mlist = generate_piece_moves(pos, mlist, us, target); mlist = generate_piece_moves(pos, mlist, us, pos.empty_squares()); target |= pos.empty_squares(); } else mlist = generate_piece_moves(pos, mlist, us, target); mlist = generate_piece_moves(pos, mlist, us, target); mlist = generate_piece_moves(pos, mlist, us, target); mlist = generate_piece_moves(pos, mlist, us, target); mlist = generate_piece_moves(pos, mlist, us, target); mlist = generate_piece_moves(pos, mlist, us, target); if (Type != MV_CAPTURE && pos.can_castle(us)) { if (pos.can_castle(us == WHITE ? WHITE_OO : BLACK_OO)) mlist = generate_castle_moves(pos, mlist, us); if (pos.can_castle(us == WHITE ? WHITE_OOO : BLACK_OOO)) mlist = generate_castle_moves(pos, mlist, us); } return mlist; } // Explicit template instantiations template MoveStack* generate(const Position& pos, MoveStack* mlist); template MoveStack* generate(const Position& pos, MoveStack* mlist); template MoveStack* generate(const Position& pos, MoveStack* mlist); /// generate generates all pseudo-legal non-captures and knight /// underpromotions that give check. Returns a pointer to the end of the move list. template<> MoveStack* generate(const Position& pos, MoveStack* mlist) { assert(!pos.in_check()); Bitboard b, dc; Square from; Color us = pos.side_to_move(); Square ksq = pos.king_square(flip(us)); assert(pos.piece_on(ksq) == make_piece(flip(us), KING)); // Discovered non-capture checks b = dc = pos.discovered_check_candidates(); while (b) { from = pop_1st_bit(&b); switch (type_of(pos.piece_on(from))) { case PAWN: /* Will be generated togheter with pawns direct checks */ break; case KNIGHT: mlist = generate_discovered_checks(pos, mlist, from); break; case BISHOP: mlist = generate_discovered_checks(pos, mlist, from); break; case ROOK: mlist = generate_discovered_checks(pos, mlist, from); break; case KING: mlist = generate_discovered_checks(pos, mlist, from); break; default: assert(false); break; } } // Direct non-capture checks mlist = generate_direct_checks(pos, mlist, us, dc, ksq); mlist = generate_direct_checks(pos, mlist, us, dc, ksq); mlist = generate_direct_checks(pos, mlist, us, dc, ksq); mlist = generate_direct_checks(pos, mlist, us, dc, ksq); return generate_direct_checks(pos, mlist, us, dc, ksq); } /// generate generates all pseudo-legal check evasions when the side /// to move is in check. Returns a pointer to the end of the move list. template<> MoveStack* generate(const Position& pos, MoveStack* mlist) { assert(pos.in_check()); Bitboard b, target; Square from, checksq; int checkersCnt = 0; Color us = pos.side_to_move(); Square ksq = pos.king_square(us); Bitboard checkers = pos.checkers(); Bitboard sliderAttacks = 0; assert(pos.piece_on(ksq) == make_piece(us, KING)); assert(checkers); // Find squares attacked by slider checkers, we will remove // them from the king evasions set so to early skip known // illegal moves and avoid an useless legality check later. b = checkers; do { checkersCnt++; checksq = pop_1st_bit(&b); assert(color_of(pos.piece_on(checksq)) == flip(us)); switch (type_of(pos.piece_on(checksq))) { case BISHOP: sliderAttacks |= BishopPseudoAttacks[checksq]; break; case ROOK: sliderAttacks |= RookPseudoAttacks[checksq]; break; case QUEEN: // If queen and king are far we can safely remove all the squares attacked // in the other direction becuase are not reachable by the king anyway. if (squares_between(ksq, checksq) || (RookPseudoAttacks[checksq] & (1ULL << ksq))) sliderAttacks |= QueenPseudoAttacks[checksq]; // Otherwise, if king and queen are adjacent and on a diagonal line, we need to // use real rook attacks to check if king is safe to move in the other direction. // For example: king in B2, queen in A1 a knight in B1, and we can safely move to C1. else sliderAttacks |= BishopPseudoAttacks[checksq] | pos.attacks_from(checksq); default: break; } } while (b); // Generate evasions for king, capture and non capture moves b = pos.attacks_from(ksq) & ~pos.pieces(us) & ~sliderAttacks; from = ksq; SERIALIZE_MOVES(b); // Generate evasions for other pieces only if not double check if (checkersCnt > 1) return mlist; // Find squares where a blocking evasion or a capture of the // checker piece is possible. target = squares_between(checksq, ksq) | checkers; mlist = generate_piece_moves(pos, mlist, us, target); mlist = generate_piece_moves(pos, mlist, us, target); mlist = generate_piece_moves(pos, mlist, us, target); mlist = generate_piece_moves(pos, mlist, us, target); return generate_piece_moves(pos, mlist, us, target); } /// generate computes a complete list of legal moves in the current position template<> MoveStack* generate(const Position& pos, MoveStack* mlist) { MoveStack *last, *cur = mlist; Bitboard pinned = pos.pinned_pieces(); last = pos.in_check() ? generate(pos, mlist) : generate(pos, mlist); // Remove illegal moves from the list while (cur != last) if (!pos.pl_move_is_legal(cur->move, pinned)) cur->move = (--last)->move; else cur++; return last; } namespace { template inline Bitboard move_pawns(Bitboard p) { return Delta == DELTA_N ? p << 8 : Delta == DELTA_S ? p >> 8 : Delta == DELTA_NE ? p << 9 : Delta == DELTA_SE ? p >> 7 : Delta == DELTA_NW ? p << 7 : Delta == DELTA_SW ? p >> 9 : p; } template inline MoveStack* generate_pawn_captures(MoveStack* mlist, Bitboard pawns, Bitboard target) { const Bitboard TFileABB = (Delta == DELTA_NE || Delta == DELTA_SE ? FileABB : FileHBB); Bitboard b; Square to; // Captures in the a1-h8 (a8-h1 for black) diagonal or in the h1-a8 (h8-a1 for black) b = move_pawns(pawns) & target & ~TFileABB; SERIALIZE_MOVES_D(b, -Delta); return mlist; } template inline MoveStack* generate_promotions(const Position& pos, MoveStack* mlist, Bitboard pawnsOn7, Bitboard target) { const Bitboard TFileABB = (Delta == DELTA_NE || Delta == DELTA_SE ? FileABB : FileHBB); Bitboard b; Square to; // Promotions and under-promotions, both captures and non-captures b = move_pawns(pawnsOn7) & target; if (Delta != DELTA_N && Delta != DELTA_S) b &= ~TFileABB; while (b) { to = pop_1st_bit(&b); if (Type == MV_CAPTURE || Type == MV_EVASION) (*mlist++).move = make_promotion_move(to - Delta, to, QUEEN); if (Type == MV_NON_CAPTURE || Type == MV_EVASION) { (*mlist++).move = make_promotion_move(to - Delta, to, ROOK); (*mlist++).move = make_promotion_move(to - Delta, to, BISHOP); (*mlist++).move = make_promotion_move(to - Delta, to, KNIGHT); } // This is the only possible under promotion that can give a check // not already included in the queen-promotion. if ( Type == MV_CHECK && bit_is_set(pos.attacks_from(to), pos.king_square(Delta > 0 ? BLACK : WHITE))) (*mlist++).move = make_promotion_move(to - Delta, to, KNIGHT); else (void)pos; // Silence a warning under MSVC } return mlist; } template MoveStack* generate_pawn_moves(const Position& pos, MoveStack* mlist, Bitboard target, Square ksq) { // Calculate our parametrized parameters at compile time, named // according to the point of view of white side. const Color Them = (Us == WHITE ? BLACK : WHITE); const Bitboard TRank7BB = (Us == WHITE ? Rank7BB : Rank2BB); const Bitboard TRank3BB = (Us == WHITE ? Rank3BB : Rank6BB); const Square UP = (Us == WHITE ? DELTA_N : DELTA_S); const Square RIGHT_UP = (Us == WHITE ? DELTA_NE : DELTA_SW); const Square LEFT_UP = (Us == WHITE ? DELTA_NW : DELTA_SE); Square to; Bitboard b1, b2, dc1, dc2, pawnPushes, emptySquares; Bitboard pawns = pos.pieces(PAWN, Us); Bitboard pawnsOn7 = pawns & TRank7BB; Bitboard enemyPieces = (Type == MV_CAPTURE ? target : pos.pieces(Them)); // Pre-calculate pawn pushes before changing emptySquares definition if (Type != MV_CAPTURE) { emptySquares = (Type == MV_NON_CAPTURE ? target : pos.empty_squares()); pawnPushes = move_pawns(pawns & ~TRank7BB) & emptySquares; } if (Type == MV_EVASION) { emptySquares &= target; // Only blocking squares enemyPieces &= target; // Capture only the checker piece } // Promotions and underpromotions if (pawnsOn7) { if (Type == MV_CAPTURE) emptySquares = pos.empty_squares(); pawns &= ~TRank7BB; mlist = generate_promotions(pos, mlist, pawnsOn7, enemyPieces); mlist = generate_promotions(pos, mlist, pawnsOn7, enemyPieces); mlist = generate_promotions(pos, mlist, pawnsOn7, emptySquares); } // Standard captures if (Type == MV_CAPTURE || Type == MV_EVASION) { mlist = generate_pawn_captures(mlist, pawns, enemyPieces); mlist = generate_pawn_captures(mlist, pawns, enemyPieces); } // Single and double pawn pushes if (Type != MV_CAPTURE) { b1 = (Type != MV_EVASION ? pawnPushes : pawnPushes & emptySquares); b2 = move_pawns(pawnPushes & TRank3BB) & emptySquares; if (Type == MV_CHECK) { // Consider only pawn moves which give direct checks b1 &= pos.attacks_from(ksq, Them); b2 &= pos.attacks_from(ksq, Them); // Add pawn moves which gives discovered check. This is possible only // if the pawn is not on the same file as the enemy king, because we // don't generate captures. if (pawns & target) // For CHECK type target is dc bitboard { dc1 = move_pawns(pawns & target & ~file_bb(ksq)) & emptySquares; dc2 = move_pawns(dc1 & TRank3BB) & emptySquares; b1 |= dc1; b2 |= dc2; } } SERIALIZE_MOVES_D(b1, -UP); SERIALIZE_MOVES_D(b2, -UP -UP); } // En passant captures if ((Type == MV_CAPTURE || Type == MV_EVASION) && pos.ep_square() != SQ_NONE) { assert(Us != WHITE || rank_of(pos.ep_square()) == RANK_6); assert(Us != BLACK || rank_of(pos.ep_square()) == RANK_3); // An en passant capture can be an evasion only if the checking piece // is the double pushed pawn and so is in the target. Otherwise this // is a discovery check and we are forced to do otherwise. if (Type == MV_EVASION && !bit_is_set(target, pos.ep_square() - UP)) return mlist; b1 = pawns & pos.attacks_from(pos.ep_square(), Them); assert(b1); while (b1) { to = pop_1st_bit(&b1); (*mlist++).move = make_enpassant_move(to, pos.ep_square()); } } return mlist; } template MoveStack* generate_castle_moves(const Position& pos, MoveStack* mlist, Color us) { CastleRight f = CastleRight((Side == KING_SIDE ? WHITE_OO : WHITE_OOO) << us); Color them = flip(us); // After castling, the rook and king's final positions are exactly the same // in Chess960 as they would be in standard chess. Square kfrom = pos.king_square(us); Square rfrom = pos.castle_rook_square(f); Square kto = relative_square(us, Side == KING_SIDE ? SQ_G1 : SQ_C1); Square rto = relative_square(us, Side == KING_SIDE ? SQ_F1 : SQ_D1); assert(!pos.in_check()); assert(pos.piece_on(kfrom) == make_piece(us, KING)); assert(pos.piece_on(rfrom) == make_piece(us, ROOK)); // Unimpeded rule: All the squares between the king's initial and final squares // (including the final square), and all the squares between the rook's initial // and final squares (including the final square), must be vacant except for // the king and castling rook. for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); s++) if ( (s != kfrom && s != rfrom && !pos.square_is_empty(s)) ||(pos.attackers_to(s) & pos.pieces(them))) return mlist; for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); s++) if (s != kfrom && s != rfrom && !pos.square_is_empty(s)) return mlist; // Because we generate only legal castling moves we need to verify that // when moving the castling rook we do not discover some hidden checker. // For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1. if (pos.is_chess960()) { Bitboard occ = pos.occupied_squares(); clear_bit(&occ, rfrom); if (pos.attackers_to(kto, occ) & pos.pieces(them)) return mlist; } (*mlist++).move = make_castle_move(kfrom, rfrom); return mlist; } } // namespace