/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "bitcount.h" #include "endgame.h" #include "pawns.h" using std::string; extern uint32_t probe_kpk_bitbase(Square wksq, Square wpsq, Square bksq, Color stm); namespace { // Table used to drive the defending king towards the edge of the board // in KX vs K and KQ vs KR endgames. const int MateTable[64] = { 100, 90, 80, 70, 70, 80, 90, 100, 90, 70, 60, 50, 50, 60, 70, 90, 80, 60, 40, 30, 30, 40, 60, 80, 70, 50, 30, 20, 20, 30, 50, 70, 70, 50, 30, 20, 20, 30, 50, 70, 80, 60, 40, 30, 30, 40, 60, 80, 90, 70, 60, 50, 50, 60, 70, 90, 100, 90, 80, 70, 70, 80, 90, 100, }; // Table used to drive the defending king towards a corner square of the // right color in KBN vs K endgames. const int KBNKMateTable[64] = { 200, 190, 180, 170, 160, 150, 140, 130, 190, 180, 170, 160, 150, 140, 130, 140, 180, 170, 155, 140, 140, 125, 140, 150, 170, 160, 140, 120, 110, 140, 150, 160, 160, 150, 140, 110, 120, 140, 160, 170, 150, 140, 125, 140, 140, 155, 170, 180, 140, 130, 140, 150, 160, 170, 180, 190, 130, 140, 150, 160, 170, 180, 190, 200 }; // The attacking side is given a descending bonus based on distance between // the two kings in basic endgames. const int DistanceBonus[8] = { 0, 0, 100, 80, 60, 40, 20, 10 }; // Get the material key of a Position out of the given endgame key code // like "KBPKN". The trick here is to first forge an ad-hoc fen string // and then let a Position object to do the work for us. Note that the // fen string could correspond to an illegal position. Key key(const string& code, Color c) { assert(code.length() > 0 && code.length() < 8); assert(code[0] == 'K'); string sides[] = { code.substr(code.find('K', 1)), // Weaker code.substr(0, code.find('K', 1)) }; // Stronger std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower); string fen = sides[0] + char('0' + int(8 - code.length())) + sides[1] + "/8/8/8/8/8/8/8 w - - 0 10"; return Position(fen, false, 0).material_key(); } template void delete_endgame(const typename M::value_type& p) { delete p.second; } } // namespace /// Endgames members definitions Endgames::Endgames() { add("KPK"); add("KNNK"); add("KBNK"); add("KRKP"); add("KRKB"); add("KRKN"); add("KQKR"); add("KBBKN"); add("KNPK"); add("KRPKR"); add("KBPKB"); add("KBPKN"); add("KBPPKB"); add("KRPPKRP"); } Endgames::~Endgames() { for_each(m1.begin(), m1.end(), delete_endgame); for_each(m2.begin(), m2.end(), delete_endgame); } template void Endgames::add(const string& code) { typedef typename eg_family::type T; map((T*)0)[key(code, WHITE)] = new Endgame(WHITE); map((T*)0)[key(code, BLACK)] = new Endgame(BLACK); } /// Mate with KX vs K. This function is used to evaluate positions with /// King and plenty of material vs a lone king. It simply gives the /// attacking side a bonus for driving the defending king towards the edge /// of the board, and for keeping the distance between the two kings small. template<> Value Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO); assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO); Square winnerKSq = pos.king_square(strongerSide); Square loserKSq = pos.king_square(weakerSide); Value result = pos.non_pawn_material(strongerSide) + pos.piece_count(strongerSide, PAWN) * PawnValueEndgame + MateTable[loserKSq] + DistanceBonus[square_distance(winnerKSq, loserKSq)]; if ( pos.piece_count(strongerSide, QUEEN) || pos.piece_count(strongerSide, ROOK) || pos.piece_count(strongerSide, BISHOP) > 1) // TODO: check for two equal-colored bishops! result += VALUE_KNOWN_WIN; return strongerSide == pos.side_to_move() ? result : -result; } /// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the /// defending king towards a corner square of the right color. template<> Value Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO); assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO); assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame + BishopValueMidgame); assert(pos.piece_count(strongerSide, BISHOP) == 1); assert(pos.piece_count(strongerSide, KNIGHT) == 1); assert(pos.piece_count(strongerSide, PAWN) == 0); Square winnerKSq = pos.king_square(strongerSide); Square loserKSq = pos.king_square(weakerSide); Square bishopSquare = pos.piece_list(strongerSide, BISHOP)[0]; // kbnk_mate_table() tries to drive toward corners A1 or H8, // if we have a bishop that cannot reach the above squares we // mirror the kings so to drive enemy toward corners A8 or H1. if (opposite_colors(bishopSquare, SQ_A1)) { winnerKSq = mirror(winnerKSq); loserKSq = mirror(loserKSq); } Value result = VALUE_KNOWN_WIN + DistanceBonus[square_distance(winnerKSq, loserKSq)] + KBNKMateTable[loserKSq]; return strongerSide == pos.side_to_move() ? result : -result; } /// KP vs K. This endgame is evaluated with the help of a bitbase. template<> Value Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO); assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO); assert(pos.piece_count(strongerSide, PAWN) == 1); assert(pos.piece_count(weakerSide, PAWN) == 0); Square wksq, bksq, wpsq; Color stm; if (strongerSide == WHITE) { wksq = pos.king_square(WHITE); bksq = pos.king_square(BLACK); wpsq = pos.piece_list(WHITE, PAWN)[0]; stm = pos.side_to_move(); } else { wksq = flip(pos.king_square(BLACK)); bksq = flip(pos.king_square(WHITE)); wpsq = flip(pos.piece_list(BLACK, PAWN)[0]); stm = flip(pos.side_to_move()); } if (file_of(wpsq) >= FILE_E) { wksq = mirror(wksq); bksq = mirror(bksq); wpsq = mirror(wpsq); } if (!probe_kpk_bitbase(wksq, wpsq, bksq, stm)) return VALUE_DRAW; Value result = VALUE_KNOWN_WIN + PawnValueEndgame + Value(rank_of(wpsq)); return strongerSide == pos.side_to_move() ? result : -result; } /// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without /// a bitbase. The function below returns drawish scores when the pawn is /// far advanced with support of the king, while the attacking king is far /// away. template<> Value Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.piece_count(strongerSide, PAWN) == 0); assert(pos.non_pawn_material(weakerSide) == 0); assert(pos.piece_count(weakerSide, PAWN) == 1); Square wksq, wrsq, bksq, bpsq; int tempo = (pos.side_to_move() == strongerSide); wksq = pos.king_square(strongerSide); wrsq = pos.piece_list(strongerSide, ROOK)[0]; bksq = pos.king_square(weakerSide); bpsq = pos.piece_list(weakerSide, PAWN)[0]; if (strongerSide == BLACK) { wksq = flip(wksq); wrsq = flip(wrsq); bksq = flip(bksq); bpsq = flip(bpsq); } Square queeningSq = make_square(file_of(bpsq), RANK_1); Value result; // If the stronger side's king is in front of the pawn, it's a win if (wksq < bpsq && file_of(wksq) == file_of(bpsq)) result = RookValueEndgame - Value(square_distance(wksq, bpsq)); // If the weaker side's king is too far from the pawn and the rook, // it's a win else if ( square_distance(bksq, bpsq) - (tempo ^ 1) >= 3 && square_distance(bksq, wrsq) >= 3) result = RookValueEndgame - Value(square_distance(wksq, bpsq)); // If the pawn is far advanced and supported by the defending king, // the position is drawish else if ( rank_of(bksq) <= RANK_3 && square_distance(bksq, bpsq) == 1 && rank_of(wksq) >= RANK_4 && square_distance(wksq, bpsq) - tempo > 2) result = Value(80 - square_distance(wksq, bpsq) * 8); else result = Value(200) - Value(square_distance(wksq, bpsq + DELTA_S) * 8) + Value(square_distance(bksq, bpsq + DELTA_S) * 8) + Value(square_distance(bpsq, queeningSq) * 8); return strongerSide == pos.side_to_move() ? result : -result; } /// KR vs KB. This is very simple, and always returns drawish scores. The /// score is slightly bigger when the defending king is close to the edge. template<> Value Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.piece_count(strongerSide, PAWN) == 0); assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame); assert(pos.piece_count(weakerSide, PAWN) == 0); assert(pos.piece_count(weakerSide, BISHOP) == 1); Value result = Value(MateTable[pos.king_square(weakerSide)]); return strongerSide == pos.side_to_move() ? result : -result; } /// KR vs KN. The attacking side has slightly better winning chances than /// in KR vs KB, particularly if the king and the knight are far apart. template<> Value Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.piece_count(strongerSide, PAWN) == 0); assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame); assert(pos.piece_count(weakerSide, PAWN) == 0); assert(pos.piece_count(weakerSide, KNIGHT) == 1); const int penalty[8] = { 0, 10, 14, 20, 30, 42, 58, 80 }; Square bksq = pos.king_square(weakerSide); Square bnsq = pos.piece_list(weakerSide, KNIGHT)[0]; Value result = Value(MateTable[bksq] + penalty[square_distance(bksq, bnsq)]); return strongerSide == pos.side_to_move() ? result : -result; } /// KQ vs KR. This is almost identical to KX vs K: We give the attacking /// king a bonus for having the kings close together, and for forcing the /// defending king towards the edge. If we also take care to avoid null move /// for the defending side in the search, this is usually sufficient to be /// able to win KQ vs KR. template<> Value Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame); assert(pos.piece_count(strongerSide, PAWN) == 0); assert(pos.non_pawn_material(weakerSide) == RookValueMidgame); assert(pos.piece_count(weakerSide, PAWN) == 0); Square winnerKSq = pos.king_square(strongerSide); Square loserKSq = pos.king_square(weakerSide); Value result = QueenValueEndgame - RookValueEndgame + MateTable[loserKSq] + DistanceBonus[square_distance(winnerKSq, loserKSq)]; return strongerSide == pos.side_to_move() ? result : -result; } template<> Value Endgame::operator()(const Position& pos) const { assert(pos.piece_count(strongerSide, BISHOP) == 2); assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame); assert(pos.piece_count(weakerSide, KNIGHT) == 1); assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame); assert(!pos.pieces(PAWN)); Value result = BishopValueEndgame; Square wksq = pos.king_square(strongerSide); Square bksq = pos.king_square(weakerSide); Square nsq = pos.piece_list(weakerSide, KNIGHT)[0]; // Bonus for attacking king close to defending king result += Value(DistanceBonus[square_distance(wksq, bksq)]); // Bonus for driving the defending king and knight apart result += Value(square_distance(bksq, nsq) * 32); // Bonus for restricting the knight's mobility result += Value((8 - popcount(pos.attacks_from(nsq))) * 8); return strongerSide == pos.side_to_move() ? result : -result; } /// K and two minors vs K and one or two minors or K and two knights against /// king alone are always draw. template<> Value Endgame::operator()(const Position&) const { return VALUE_DRAW; } template<> Value Endgame::operator()(const Position&) const { return VALUE_DRAW; } /// K, bishop and one or more pawns vs K. It checks for draws with rook pawns and /// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW /// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling /// will be used. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame); assert(pos.piece_count(strongerSide, BISHOP) == 1); assert(pos.piece_count(strongerSide, PAWN) >= 1); // No assertions about the material of weakerSide, because we want draws to // be detected even when the weaker side has some pawns. Bitboard pawns = pos.pieces(PAWN, strongerSide); File pawnFile = file_of(pos.piece_list(strongerSide, PAWN)[0]); // All pawns are on a single rook file ? if ( (pawnFile == FILE_A || pawnFile == FILE_H) && !(pawns & ~file_bb(pawnFile))) { Square bishopSq = pos.piece_list(strongerSide, BISHOP)[0]; Square queeningSq = relative_square(strongerSide, make_square(pawnFile, RANK_8)); Square kingSq = pos.king_square(weakerSide); if ( opposite_colors(queeningSq, bishopSq) && abs(file_of(kingSq) - pawnFile) <= 1) { // The bishop has the wrong color, and the defending king is on the // file of the pawn(s) or the neighboring file. Find the rank of the // frontmost pawn. Rank rank; if (strongerSide == WHITE) { for (rank = RANK_7; !(rank_bb(rank) & pawns); rank--) {} assert(rank >= RANK_2 && rank <= RANK_7); } else { for (rank = RANK_2; !(rank_bb(rank) & pawns); rank++) {} rank = Rank(rank ^ 7); // HACK to get the relative rank assert(rank >= RANK_2 && rank <= RANK_7); } // If the defending king has distance 1 to the promotion square or // is placed somewhere in front of the pawn, it's a draw. if ( square_distance(kingSq, queeningSq) <= 1 || relative_rank(strongerSide, kingSq) >= rank) return SCALE_FACTOR_DRAW; } } return SCALE_FACTOR_NONE; } /// K and queen vs K, rook and one or more pawns. It tests for fortress draws with /// a rook on the third rank defended by a pawn. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame); assert(pos.piece_count(strongerSide, QUEEN) == 1); assert(pos.piece_count(strongerSide, PAWN) == 0); assert(pos.piece_count(weakerSide, ROOK) == 1); assert(pos.piece_count(weakerSide, PAWN) >= 1); Square kingSq = pos.king_square(weakerSide); if ( relative_rank(weakerSide, kingSq) <= RANK_2 && relative_rank(weakerSide, pos.king_square(strongerSide)) >= RANK_4 && (pos.pieces(ROOK, weakerSide) & rank_bb(relative_rank(weakerSide, RANK_3))) && (pos.pieces(PAWN, weakerSide) & rank_bb(relative_rank(weakerSide, RANK_2))) && (pos.attacks_from(kingSq) & pos.pieces(PAWN, weakerSide))) { Square rsq = pos.piece_list(weakerSide, ROOK)[0]; if (pos.attacks_from(rsq, strongerSide) & pos.pieces(PAWN, weakerSide)) return SCALE_FACTOR_DRAW; } return SCALE_FACTOR_NONE; } /// K, rook and one pawn vs K and a rook. This function knows a handful of the /// most important classes of drawn positions, but is far from perfect. It would /// probably be a good idea to add more knowledge in the future. /// /// It would also be nice to rewrite the actual code for this function, /// which is mostly copied from Glaurung 1.x, and not very pretty. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.piece_count(strongerSide, PAWN) == 1); assert(pos.non_pawn_material(weakerSide) == RookValueMidgame); assert(pos.piece_count(weakerSide, PAWN) == 0); Square wksq = pos.king_square(strongerSide); Square wrsq = pos.piece_list(strongerSide, ROOK)[0]; Square wpsq = pos.piece_list(strongerSide, PAWN)[0]; Square bksq = pos.king_square(weakerSide); Square brsq = pos.piece_list(weakerSide, ROOK)[0]; // Orient the board in such a way that the stronger side is white, and the // pawn is on the left half of the board. if (strongerSide == BLACK) { wksq = flip(wksq); wrsq = flip(wrsq); wpsq = flip(wpsq); bksq = flip(bksq); brsq = flip(brsq); } if (file_of(wpsq) > FILE_D) { wksq = mirror(wksq); wrsq = mirror(wrsq); wpsq = mirror(wpsq); bksq = mirror(bksq); brsq = mirror(brsq); } File f = file_of(wpsq); Rank r = rank_of(wpsq); Square queeningSq = make_square(f, RANK_8); int tempo = (pos.side_to_move() == strongerSide); // If the pawn is not too far advanced and the defending king defends the // queening square, use the third-rank defence. if ( r <= RANK_5 && square_distance(bksq, queeningSq) <= 1 && wksq <= SQ_H5 && (rank_of(brsq) == RANK_6 || (r <= RANK_3 && rank_of(wrsq) != RANK_6))) return SCALE_FACTOR_DRAW; // The defending side saves a draw by checking from behind in case the pawn // has advanced to the 6th rank with the king behind. if ( r == RANK_6 && square_distance(bksq, queeningSq) <= 1 && rank_of(wksq) + tempo <= RANK_6 && (rank_of(brsq) == RANK_1 || (!tempo && abs(file_of(brsq) - f) >= 3))) return SCALE_FACTOR_DRAW; if ( r >= RANK_6 && bksq == queeningSq && rank_of(brsq) == RANK_1 && (!tempo || square_distance(wksq, wpsq) >= 2)) return SCALE_FACTOR_DRAW; // White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7 // and the black rook is behind the pawn. if ( wpsq == SQ_A7 && wrsq == SQ_A8 && (bksq == SQ_H7 || bksq == SQ_G7) && file_of(brsq) == FILE_A && (rank_of(brsq) <= RANK_3 || file_of(wksq) >= FILE_D || rank_of(wksq) <= RANK_5)) return SCALE_FACTOR_DRAW; // If the defending king blocks the pawn and the attacking king is too far // away, it's a draw. if ( r <= RANK_5 && bksq == wpsq + DELTA_N && square_distance(wksq, wpsq) - tempo >= 2 && square_distance(wksq, brsq) - tempo >= 2) return SCALE_FACTOR_DRAW; // Pawn on the 7th rank supported by the rook from behind usually wins if the // attacking king is closer to the queening square than the defending king, // and the defending king cannot gain tempi by threatening the attacking rook. if ( r == RANK_7 && f != FILE_A && file_of(wrsq) == f && wrsq != queeningSq && (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo) && (square_distance(wksq, queeningSq) < square_distance(bksq, wrsq) + tempo)) return ScaleFactor(SCALE_FACTOR_MAX - 2 * square_distance(wksq, queeningSq)); // Similar to the above, but with the pawn further back if ( f != FILE_A && file_of(wrsq) == f && wrsq < wpsq && (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo) && (square_distance(wksq, wpsq + DELTA_N) < square_distance(bksq, wpsq + DELTA_N) - 2 + tempo) && ( square_distance(bksq, wrsq) + tempo >= 3 || ( square_distance(wksq, queeningSq) < square_distance(bksq, wrsq) + tempo && (square_distance(wksq, wpsq + DELTA_N) < square_distance(bksq, wrsq) + tempo)))) return ScaleFactor( SCALE_FACTOR_MAX - 8 * square_distance(wpsq, queeningSq) - 2 * square_distance(wksq, queeningSq)); // If the pawn is not far advanced, and the defending king is somewhere in // the pawn's path, it's probably a draw. if (r <= RANK_4 && bksq > wpsq) { if (file_of(bksq) == file_of(wpsq)) return ScaleFactor(10); if ( abs(file_of(bksq) - file_of(wpsq)) == 1 && square_distance(wksq, bksq) > 2) return ScaleFactor(24 - 2 * square_distance(wksq, bksq)); } return SCALE_FACTOR_NONE; } /// K, rook and two pawns vs K, rook and one pawn. There is only a single /// pattern: If the stronger side has no passed pawns and the defending king /// is actively placed, the position is drawish. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == RookValueMidgame); assert(pos.piece_count(strongerSide, PAWN) == 2); assert(pos.non_pawn_material(weakerSide) == RookValueMidgame); assert(pos.piece_count(weakerSide, PAWN) == 1); Square wpsq1 = pos.piece_list(strongerSide, PAWN)[0]; Square wpsq2 = pos.piece_list(strongerSide, PAWN)[1]; Square bksq = pos.king_square(weakerSide); // Does the stronger side have a passed pawn? if ( pos.pawn_is_passed(strongerSide, wpsq1) || pos.pawn_is_passed(strongerSide, wpsq2)) return SCALE_FACTOR_NONE; Rank r = std::max(relative_rank(strongerSide, wpsq1), relative_rank(strongerSide, wpsq2)); if ( file_distance(bksq, wpsq1) <= 1 && file_distance(bksq, wpsq2) <= 1 && relative_rank(strongerSide, bksq) > r) { switch (r) { case RANK_2: return ScaleFactor(10); case RANK_3: return ScaleFactor(10); case RANK_4: return ScaleFactor(15); case RANK_5: return ScaleFactor(20); case RANK_6: return ScaleFactor(40); default: assert(false); } } return SCALE_FACTOR_NONE; } /// K and two or more pawns vs K. There is just a single rule here: If all pawns /// are on the same rook file and are blocked by the defending king, it's a draw. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO); assert(pos.piece_count(strongerSide, PAWN) >= 2); assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO); assert(pos.piece_count(weakerSide, PAWN) == 0); Square ksq = pos.king_square(weakerSide); Bitboard pawns = pos.pieces(PAWN, strongerSide); // Are all pawns on the 'a' file? if (!(pawns & ~FileABB)) { // Does the defending king block the pawns? if ( square_distance(ksq, relative_square(strongerSide, SQ_A8)) <= 1 || ( file_of(ksq) == FILE_A && !in_front_bb(strongerSide, ksq) & pawns)) return SCALE_FACTOR_DRAW; } // Are all pawns on the 'h' file? else if (!(pawns & ~FileHBB)) { // Does the defending king block the pawns? if ( square_distance(ksq, relative_square(strongerSide, SQ_H8)) <= 1 || ( file_of(ksq) == FILE_H && !in_front_bb(strongerSide, ksq) & pawns)) return SCALE_FACTOR_DRAW; } return SCALE_FACTOR_NONE; } /// K, bishop and a pawn vs K and a bishop. There are two rules: If the defending /// king is somewhere along the path of the pawn, and the square of the king is /// not of the same color as the stronger side's bishop, it's a draw. If the two /// bishops have opposite color, it's almost always a draw. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame); assert(pos.piece_count(strongerSide, BISHOP) == 1); assert(pos.piece_count(strongerSide, PAWN) == 1); assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame); assert(pos.piece_count(weakerSide, BISHOP) == 1); assert(pos.piece_count(weakerSide, PAWN) == 0); Square pawnSq = pos.piece_list(strongerSide, PAWN)[0]; Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP)[0]; Square weakerBishopSq = pos.piece_list(weakerSide, BISHOP)[0]; Square weakerKingSq = pos.king_square(weakerSide); // Case 1: Defending king blocks the pawn, and cannot be driven away if ( file_of(weakerKingSq) == file_of(pawnSq) && relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq) && ( opposite_colors(weakerKingSq, strongerBishopSq) || relative_rank(strongerSide, weakerKingSq) <= RANK_6)) return SCALE_FACTOR_DRAW; // Case 2: Opposite colored bishops if (opposite_colors(strongerBishopSq, weakerBishopSq)) { // We assume that the position is drawn in the following three situations: // // a. The pawn is on rank 5 or further back. // b. The defending king is somewhere in the pawn's path. // c. The defending bishop attacks some square along the pawn's path, // and is at least three squares away from the pawn. // // These rules are probably not perfect, but in practice they work // reasonably well. if (relative_rank(strongerSide, pawnSq) <= RANK_5) return SCALE_FACTOR_DRAW; else { Bitboard path = squares_in_front_of(strongerSide, pawnSq); if (path & pos.pieces(KING, weakerSide)) return SCALE_FACTOR_DRAW; if ( (pos.attacks_from(weakerBishopSq) & path) && square_distance(weakerBishopSq, pawnSq) >= 3) return SCALE_FACTOR_DRAW; } } return SCALE_FACTOR_NONE; } /// K, bishop and two pawns vs K and bishop. It detects a few basic draws with /// opposite-colored bishops. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame); assert(pos.piece_count(strongerSide, BISHOP) == 1); assert(pos.piece_count(strongerSide, PAWN) == 2); assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame); assert(pos.piece_count(weakerSide, BISHOP) == 1); assert(pos.piece_count(weakerSide, PAWN) == 0); Square wbsq = pos.piece_list(strongerSide, BISHOP)[0]; Square bbsq = pos.piece_list(weakerSide, BISHOP)[0]; if (!opposite_colors(wbsq, bbsq)) return SCALE_FACTOR_NONE; Square ksq = pos.king_square(weakerSide); Square psq1 = pos.piece_list(strongerSide, PAWN)[0]; Square psq2 = pos.piece_list(strongerSide, PAWN)[1]; Rank r1 = rank_of(psq1); Rank r2 = rank_of(psq2); Square blockSq1, blockSq2; if (relative_rank(strongerSide, psq1) > relative_rank(strongerSide, psq2)) { blockSq1 = psq1 + pawn_push(strongerSide); blockSq2 = make_square(file_of(psq2), rank_of(psq1)); } else { blockSq1 = psq2 + pawn_push(strongerSide); blockSq2 = make_square(file_of(psq1), rank_of(psq2)); } switch (file_distance(psq1, psq2)) { case 0: // Both pawns are on the same file. Easy draw if defender firmly controls // some square in the frontmost pawn's path. if ( file_of(ksq) == file_of(blockSq1) && relative_rank(strongerSide, ksq) >= relative_rank(strongerSide, blockSq1) && opposite_colors(ksq, wbsq)) return SCALE_FACTOR_DRAW; else return SCALE_FACTOR_NONE; case 1: // Pawns on neighboring files. Draw if defender firmly controls the square // in front of the frontmost pawn's path, and the square diagonally behind // this square on the file of the other pawn. if ( ksq == blockSq1 && opposite_colors(ksq, wbsq) && ( bbsq == blockSq2 || (pos.attacks_from(blockSq2) & pos.pieces(BISHOP, weakerSide)) || abs(r1 - r2) >= 2)) return SCALE_FACTOR_DRAW; else if ( ksq == blockSq2 && opposite_colors(ksq, wbsq) && ( bbsq == blockSq1 || (pos.attacks_from(blockSq1) & pos.pieces(BISHOP, weakerSide)))) return SCALE_FACTOR_DRAW; else return SCALE_FACTOR_NONE; default: // The pawns are not on the same file or adjacent files. No scaling. return SCALE_FACTOR_NONE; } } /// K, bisop and a pawn vs K and knight. There is a single rule: If the defending /// king is somewhere along the path of the pawn, and the square of the king is /// not of the same color as the stronger side's bishop, it's a draw. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame); assert(pos.piece_count(strongerSide, BISHOP) == 1); assert(pos.piece_count(strongerSide, PAWN) == 1); assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame); assert(pos.piece_count(weakerSide, KNIGHT) == 1); assert(pos.piece_count(weakerSide, PAWN) == 0); Square pawnSq = pos.piece_list(strongerSide, PAWN)[0]; Square strongerBishopSq = pos.piece_list(strongerSide, BISHOP)[0]; Square weakerKingSq = pos.king_square(weakerSide); if ( file_of(weakerKingSq) == file_of(pawnSq) && relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq) && ( opposite_colors(weakerKingSq, strongerBishopSq) || relative_rank(strongerSide, weakerKingSq) <= RANK_6)) return SCALE_FACTOR_DRAW; return SCALE_FACTOR_NONE; } /// K, knight and a pawn vs K. There is a single rule: If the pawn is a rook pawn /// on the 7th rank and the defending king prevents the pawn from advancing, the /// position is drawn. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame); assert(pos.piece_count(strongerSide, KNIGHT) == 1); assert(pos.piece_count(strongerSide, PAWN) == 1); assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO); assert(pos.piece_count(weakerSide, PAWN) == 0); Square pawnSq = pos.piece_list(strongerSide, PAWN)[0]; Square weakerKingSq = pos.king_square(weakerSide); if ( pawnSq == relative_square(strongerSide, SQ_A7) && square_distance(weakerKingSq, relative_square(strongerSide, SQ_A8)) <= 1) return SCALE_FACTOR_DRAW; if ( pawnSq == relative_square(strongerSide, SQ_H7) && square_distance(weakerKingSq, relative_square(strongerSide, SQ_H8)) <= 1) return SCALE_FACTOR_DRAW; return SCALE_FACTOR_NONE; } /// K and a pawn vs K and a pawn. This is done by removing the weakest side's /// pawn and probing the KP vs K bitbase: If the weakest side has a draw without /// the pawn, she probably has at least a draw with the pawn as well. The exception /// is when the stronger side's pawn is far advanced and not on a rook file; in /// this case it is often possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1). template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO); assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO); assert(pos.piece_count(WHITE, PAWN) == 1); assert(pos.piece_count(BLACK, PAWN) == 1); Square wksq = pos.king_square(strongerSide); Square bksq = pos.king_square(weakerSide); Square wpsq = pos.piece_list(strongerSide, PAWN)[0]; Color stm = pos.side_to_move(); if (strongerSide == BLACK) { wksq = flip(wksq); bksq = flip(bksq); wpsq = flip(wpsq); stm = flip(stm); } if (file_of(wpsq) >= FILE_E) { wksq = mirror(wksq); bksq = mirror(bksq); wpsq = mirror(wpsq); } // If the pawn has advanced to the fifth rank or further, and is not a // rook pawn, it's too dangerous to assume that it's at least a draw. if ( rank_of(wpsq) >= RANK_5 && file_of(wpsq) != FILE_A) return SCALE_FACTOR_NONE; // Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw, // it's probably at least a draw even with the pawn. return probe_kpk_bitbase(wksq, wpsq, bksq, stm) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW; }