/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include "search.h" #include "timeman.h" #include "uci.h" TimeManagement Time; // Our global time management object namespace { enum TimeType { OptimumTime, MaxTime }; const int MoveHorizon = 50; // Plan time management at most this many moves ahead const double MaxRatio = 6.93; // When in trouble, we can step over reserved time with this ratio const double StealRatio = 0.36; // However we must not steal time from remaining moves over this ratio // move_importance() is a skew-logistic function based on naive statistical // analysis of "how many games are still undecided after n half-moves". Game // is considered "undecided" as long as neither side has >275cp advantage. // Data was extracted from CCRL game database with some simple filtering criteria. double move_importance(int ply) { const double XScale = 8.27; const double XShift = 59.; const double Skew = 0.179; return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero } template int remaining(int myTime, int movesToGo, int ply, int slowMover) { const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); double moveImportance = (move_importance(ply) * slowMover) / 100; double otherMovesImportance = 0; for (int i = 1; i < movesToGo; ++i) otherMovesImportance += move_importance(ply + 2 * i); double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks an explicit cast } } // namespace /// init() is called at the beginning of the search and calculates the allowed /// thinking time out of the time control and current game ply. We support four /// different kinds of time controls, passed in 'limits': /// /// inc == 0 && movestogo == 0 means: x basetime [sudden death!] /// inc == 0 && movestogo != 0 means: x moves in y minutes /// inc > 0 && movestogo == 0 means: x basetime + z increment /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { int minThinkingTime = Options["Minimum Thinking Time"]; int moveOverhead = Options["Move Overhead"]; int slowMover = Options["Slow Mover"]; int npmsec = Options["nodestime"]; // If we have to play in 'nodes as time' mode, then convert from time // to nodes, and use resulting values in time management formulas. // WARNING: Given npms (nodes per millisecond) must be much lower then // real engine speed to avoid time losses. if (npmsec) { if (!availableNodes) // Only once at game start availableNodes = npmsec * limits.time[us]; // Time is in msec // Convert from millisecs to nodes limits.time[us] = (int)availableNodes; limits.inc[us] *= npmsec; limits.npmsec = npmsec; } startTime = limits.startTime; unstablePvFactor = 1; optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; // We calculate optimum time usage for different hypothetical "moves to go"-values // and choose the minimum of calculated search time values. Usually the greatest // hypMTG gives the minimum values. for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) { // Calculate thinking time for hypothetical "moves to go"-value int hypMyTime = limits.time[us] + limits.inc[us] * (hypMTG - 1) - moveOverhead * (2 + std::min(hypMTG, 40)); hypMyTime = std::max(hypMyTime, 0); int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); optimumTime = std::min(t1, optimumTime); maximumTime = std::min(t2, maximumTime); } if (Options["Ponder"]) optimumTime += optimumTime / 4; }