/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include // For offsetof() #include // For std::memset, std::memcmp #include #include #include "bitboard.h" #include "misc.h" #include "movegen.h" #include "position.h" #include "thread.h" #include "tt.h" #include "uci.h" #include "syzygy/tbprobe.h" using std::string; namespace PSQT { extern Score psq[PIECE_NB][SQUARE_NB]; } namespace Zobrist { Key psq[PIECE_NB][SQUARE_NB]; Key enpassant[FILE_NB]; Key castling[CASTLING_RIGHT_NB]; Key side, noPawns; } namespace { const string PieceToChar(" PNBRQK pnbrqk"); const Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING, B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING }; // min_attacker() is a helper function used by see_ge() to locate the least // valuable attacker for the side to move, remove the attacker we just found // from the bitboards and scan for new X-ray attacks behind it. template PieceType min_attacker(const Bitboard* bb, Square to, Bitboard stmAttackers, Bitboard& occupied, Bitboard& attackers) { Bitboard b = stmAttackers & bb[Pt]; if (!b) return min_attacker(bb, to, stmAttackers, occupied, attackers); occupied ^= b & ~(b - 1); if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) attackers |= attacks_bb(to, occupied) & (bb[BISHOP] | bb[QUEEN]); if (Pt == ROOK || Pt == QUEEN) attackers |= attacks_bb(to, occupied) & (bb[ROOK] | bb[QUEEN]); attackers &= occupied; // After X-ray that may add already processed pieces return (PieceType)Pt; } template<> PieceType min_attacker(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) { return KING; // No need to update bitboards: it is the last cycle } } // namespace /// operator<<(Position) returns an ASCII representation of the position std::ostream& operator<<(std::ostream& os, const Position& pos) { os << "\n +---+---+---+---+---+---+---+---+\n"; for (Rank r = RANK_8; r >= RANK_1; --r) { for (File f = FILE_A; f <= FILE_H; ++f) os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; os << " |\n +---+---+---+---+---+---+---+---+\n"; } os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase << std::setfill('0') << std::setw(16) << pos.key() << std::setfill(' ') << std::dec << "\nCheckers: "; for (Bitboard b = pos.checkers(); b; ) os << UCI::square(pop_lsb(&b)) << " "; if ( int(Tablebases::MaxCardinality) >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING)) { StateInfo st; Position p; p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread()); Tablebases::ProbeState s1, s2; Tablebases::WDLScore wdl = Tablebases::probe_wdl(p, &s1); int dtz = Tablebases::probe_dtz(p, &s2); os << "\nTablebases WDL: " << std::setw(4) << wdl << " (" << s1 << ")" << "\nTablebases DTZ: " << std::setw(4) << dtz << " (" << s2 << ")"; } return os; } /// Position::init() initializes at startup the various arrays used to compute /// hash keys. void Position::init() { PRNG rng(1070372); for (Piece pc : Pieces) for (Square s = SQ_A1; s <= SQ_H8; ++s) Zobrist::psq[pc][s] = rng.rand(); for (File f = FILE_A; f <= FILE_H; ++f) Zobrist::enpassant[f] = rng.rand(); for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) { Zobrist::castling[cr] = 0; Bitboard b = cr; while (b) { Key k = Zobrist::castling[1ULL << pop_lsb(&b)]; Zobrist::castling[cr] ^= k ? k : rng.rand(); } } Zobrist::side = rng.rand(); Zobrist::noPawns = rng.rand(); } /// Position::set() initializes the position object with the given FEN string. /// This function is not very robust - make sure that input FENs are correct, /// this is assumed to be the responsibility of the GUI. Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) { /* A FEN string defines a particular position using only the ASCII character set. A FEN string contains six fields separated by a space. The fields are: 1) Piece placement (from white's perspective). Each rank is described, starting with rank 8 and ending with rank 1. Within each rank, the contents of each square are described from file A through file H. Following the Standard Algebraic Notation (SAN), each piece is identified by a single letter taken from the standard English names. White pieces are designated using upper-case letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are noted using digits 1 through 8 (the number of blank squares), and "/" separates ranks. 2) Active color. "w" means white moves next, "b" means black. 3) Castling availability. If neither side can castle, this is "-". Otherwise, this has one or more letters: "K" (White can castle kingside), "Q" (White can castle queenside), "k" (Black can castle kingside), and/or "q" (Black can castle queenside). 4) En passant target square (in algebraic notation). If there's no en passant target square, this is "-". If a pawn has just made a 2-square move, this is the position "behind" the pawn. This is recorded only if there is a pawn in position to make an en passant capture, and if there really is a pawn that might have advanced two squares. 5) Halfmove clock. This is the number of halfmoves since the last pawn advance or capture. This is used to determine if a draw can be claimed under the fifty-move rule. 6) Fullmove number. The number of the full move. It starts at 1, and is incremented after Black's move. */ unsigned char col, row, token; size_t idx; Square sq = SQ_A8; std::istringstream ss(fenStr); std::memset(this, 0, sizeof(Position)); std::memset(si, 0, sizeof(StateInfo)); std::fill_n(&pieceList[0][0], sizeof(pieceList) / sizeof(Square), SQ_NONE); st = si; ss >> std::noskipws; // 1. Piece placement while ((ss >> token) && !isspace(token)) { if (isdigit(token)) sq += Square(token - '0'); // Advance the given number of files else if (token == '/') sq -= Square(16); else if ((idx = PieceToChar.find(token)) != string::npos) { put_piece(Piece(idx), sq); ++sq; } } // 2. Active color ss >> token; sideToMove = (token == 'w' ? WHITE : BLACK); ss >> token; // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, // Shredder-FEN that uses the letters of the columns on which the rooks began // the game instead of KQkq and also X-FEN standard that, in case of Chess960, // if an inner rook is associated with the castling right, the castling tag is // replaced by the file letter of the involved rook, as for the Shredder-FEN. while ((ss >> token) && !isspace(token)) { Square rsq; Color c = islower(token) ? BLACK : WHITE; Piece rook = make_piece(c, ROOK); token = char(toupper(token)); if (token == 'K') for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} else if (token == 'Q') for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} else if (token >= 'A' && token <= 'H') rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); else continue; set_castling_right(c, rsq); } // 4. En passant square. Ignore if no pawn capture is possible if ( ((ss >> col) && (col >= 'a' && col <= 'h')) && ((ss >> row) && (row == '3' || row == '6'))) { st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); if ( !(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)) || !(pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove)))) st->epSquare = SQ_NONE; } else st->epSquare = SQ_NONE; // 5-6. Halfmove clock and fullmove number ss >> std::skipws >> st->rule50 >> gamePly; // Convert from fullmove starting from 1 to ply starting from 0, // handle also common incorrect FEN with fullmove = 0. gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); chess960 = isChess960; thisThread = th; set_state(st); assert(pos_is_ok()); return *this; } /// Position::set_castling_right() is a helper function used to set castling /// rights given the corresponding color and the rook starting square. void Position::set_castling_right(Color c, Square rfrom) { Square kfrom = square(c); CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; CastlingRight cr = (c | cs); st->castlingRights |= cr; castlingRightsMask[kfrom] |= cr; castlingRightsMask[rfrom] |= cr; castlingRookSquare[cr] = rfrom; Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s) if (s != kfrom && s != rfrom) castlingPath[cr] |= s; for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s) if (s != kfrom && s != rfrom) castlingPath[cr] |= s; } /// Position::set_check_info() sets king attacks to detect if a move gives check void Position::set_check_info(StateInfo* si) const { si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square(WHITE), si->pinnersForKing[WHITE]); si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square(BLACK), si->pinnersForKing[BLACK]); Square ksq = square(~sideToMove); si->checkSquares[PAWN] = attacks_from(ksq, ~sideToMove); si->checkSquares[KNIGHT] = attacks_from(ksq); si->checkSquares[BISHOP] = attacks_from(ksq); si->checkSquares[ROOK] = attacks_from(ksq); si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK]; si->checkSquares[KING] = 0; } /// Position::set_state() computes the hash keys of the position, and other /// data that once computed is updated incrementally as moves are made. /// The function is only used when a new position is set up, and to verify /// the correctness of the StateInfo data when running in debug mode. void Position::set_state(StateInfo* si) const { si->key = si->materialKey = 0; si->pawnKey = Zobrist::noPawns; si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; si->psq = SCORE_ZERO; si->checkersBB = attackers_to(square(sideToMove)) & pieces(~sideToMove); set_check_info(si); for (Bitboard b = pieces(); b; ) { Square s = pop_lsb(&b); Piece pc = piece_on(s); si->key ^= Zobrist::psq[pc][s]; si->psq += PSQT::psq[pc][s]; } if (si->epSquare != SQ_NONE) si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; if (sideToMove == BLACK) si->key ^= Zobrist::side; si->key ^= Zobrist::castling[si->castlingRights]; for (Bitboard b = pieces(PAWN); b; ) { Square s = pop_lsb(&b); si->pawnKey ^= Zobrist::psq[piece_on(s)][s]; } for (Piece pc : Pieces) { if (type_of(pc) != PAWN && type_of(pc) != KING) si->nonPawnMaterial[color_of(pc)] += pieceCount[pc] * PieceValue[MG][pc]; for (int cnt = 0; cnt < pieceCount[pc]; ++cnt) si->materialKey ^= Zobrist::psq[pc][cnt]; } } /// Position::set() is an overload to initialize the position object with /// the given endgame code string like "KBPKN". It is mainly a helper to /// get the material key out of an endgame code. Position& Position::set(const string& code, Color c, StateInfo* si) { assert(code.length() > 0 && code.length() < 8); assert(code[0] == 'K'); string sides[] = { code.substr(code.find('K', 1)), // Weak code.substr(0, code.find('K', 1)) }; // Strong std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower); string fenStr = "8/" + sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/" + sides[1] + char(8 - sides[1].length() + '0') + "/8 w - - 0 10"; return set(fenStr, false, si, nullptr); } /// Position::fen() returns a FEN representation of the position. In case of /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. const string Position::fen() const { int emptyCnt; std::ostringstream ss; for (Rank r = RANK_8; r >= RANK_1; --r) { for (File f = FILE_A; f <= FILE_H; ++f) { for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) ++emptyCnt; if (emptyCnt) ss << emptyCnt; if (f <= FILE_H) ss << PieceToChar[piece_on(make_square(f, r))]; } if (r > RANK_1) ss << '/'; } ss << (sideToMove == WHITE ? " w " : " b "); if (can_castle(WHITE_OO)) ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K'); if (can_castle(WHITE_OOO)) ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q'); if (can_castle(BLACK_OO)) ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k'); if (can_castle(BLACK_OOO)) ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q'); if (!can_castle(WHITE) && !can_castle(BLACK)) ss << '-'; ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ") << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; return ss.str(); } /// Position::slider_blockers() returns a bitboard of all the pieces (both colors) /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a /// slider if removing that piece from the board would result in a position where /// square 's' is attacked. For example, a king-attack blocking piece can be either /// a pinned or a discovered check piece, according if its color is the opposite /// or the same of the color of the slider. Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const { Bitboard result = 0; pinners = 0; // Snipers are sliders that attack 's' when a piece is removed Bitboard snipers = ( (PseudoAttacks[ ROOK][s] & pieces(QUEEN, ROOK)) | (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders; while (snipers) { Square sniperSq = pop_lsb(&snipers); Bitboard b = between_bb(s, sniperSq) & pieces(); if (!more_than_one(b)) { result |= b; if (b & pieces(color_of(piece_on(s)))) pinners |= sniperSq; } } return result; } /// Position::attackers_to() computes a bitboard of all pieces which attack a /// given square. Slider attacks use the occupied bitboard to indicate occupancy. Bitboard Position::attackers_to(Square s, Bitboard occupied) const { return (attacks_from(s, BLACK) & pieces(WHITE, PAWN)) | (attacks_from(s, WHITE) & pieces(BLACK, PAWN)) | (attacks_from(s) & pieces(KNIGHT)) | (attacks_bb< ROOK>(s, occupied) & pieces( ROOK, QUEEN)) | (attacks_bb(s, occupied) & pieces(BISHOP, QUEEN)) | (attacks_from(s) & pieces(KING)); } /// Position::legal() tests whether a pseudo-legal move is legal bool Position::legal(Move m) const { assert(is_ok(m)); Color us = sideToMove; Square from = from_sq(m); assert(color_of(moved_piece(m)) == us); assert(piece_on(square(us)) == make_piece(us, KING)); // En passant captures are a tricky special case. Because they are rather // uncommon, we do it simply by testing whether the king is attacked after // the move is made. if (type_of(m) == ENPASSANT) { Square ksq = square(us); Square to = to_sq(m); Square capsq = to - pawn_push(us); Bitboard occupied = (pieces() ^ from ^ capsq) | to; assert(to == ep_square()); assert(moved_piece(m) == make_piece(us, PAWN)); assert(piece_on(capsq) == make_piece(~us, PAWN)); assert(piece_on(to) == NO_PIECE); return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) && !(attacks_bb(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); } // If the moving piece is a king, check whether the destination // square is attacked by the opponent. Castling moves are checked // for legality during move generation. if (type_of(piece_on(from)) == KING) return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us)); // A non-king move is legal if and only if it is not pinned or it // is moving along the ray towards or away from the king. return !(pinned_pieces(us) & from) || aligned(from, to_sq(m), square(us)); } /// Position::pseudo_legal() takes a random move and tests whether the move is /// pseudo legal. It is used to validate moves from TT that can be corrupted /// due to SMP concurrent access or hash position key aliasing. bool Position::pseudo_legal(const Move m) const { Color us = sideToMove; Square from = from_sq(m); Square to = to_sq(m); Piece pc = moved_piece(m); // Use a slower but simpler function for uncommon cases if (type_of(m) != NORMAL) return MoveList(*this).contains(m); // Is not a promotion, so promotion piece must be empty if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) return false; // If the 'from' square is not occupied by a piece belonging to the side to // move, the move is obviously not legal. if (pc == NO_PIECE || color_of(pc) != us) return false; // The destination square cannot be occupied by a friendly piece if (pieces(us) & to) return false; // Handle the special case of a pawn move if (type_of(pc) == PAWN) { // We have already handled promotion moves, so destination // cannot be on the 8th/1st rank. if (rank_of(to) == relative_rank(us, RANK_8)) return false; if ( !(attacks_from(from, us) & pieces(~us) & to) // Not a capture && !((from + pawn_push(us) == to) && empty(to)) // Not a single push && !( (from + 2 * pawn_push(us) == to) // Not a double push && (rank_of(from) == relative_rank(us, RANK_2)) && empty(to) && empty(to - pawn_push(us)))) return false; } else if (!(attacks_from(type_of(pc), from) & to)) return false; // Evasions generator already takes care to avoid some kind of illegal moves // and legal() relies on this. We therefore have to take care that the same // kind of moves are filtered out here. if (checkers()) { if (type_of(pc) != KING) { // Double check? In this case a king move is required if (more_than_one(checkers())) return false; // Our move must be a blocking evasion or a capture of the checking piece if (!((between_bb(lsb(checkers()), square(us)) | checkers()) & to)) return false; } // In case of king moves under check we have to remove king so as to catch // invalid moves like b1a1 when opposite queen is on c1. else if (attackers_to(to, pieces() ^ from) & pieces(~us)) return false; } return true; } /// Position::gives_check() tests whether a pseudo-legal move gives a check bool Position::gives_check(Move m) const { assert(is_ok(m)); assert(color_of(moved_piece(m)) == sideToMove); Square from = from_sq(m); Square to = to_sq(m); // Is there a direct check? if (st->checkSquares[type_of(piece_on(from))] & to) return true; // Is there a discovered check? if ( (discovered_check_candidates() & from) && !aligned(from, to, square(~sideToMove))) return true; switch (type_of(m)) { case NORMAL: return false; case PROMOTION: return attacks_bb(promotion_type(m), to, pieces() ^ from) & square(~sideToMove); // En passant capture with check? We have already handled the case // of direct checks and ordinary discovered check, so the only case we // need to handle is the unusual case of a discovered check through // the captured pawn. case ENPASSANT: { Square capsq = make_square(file_of(to), rank_of(from)); Bitboard b = (pieces() ^ from ^ capsq) | to; return (attacks_bb< ROOK>(square(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK)) | (attacks_bb(square(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP)); } case CASTLING: { Square kfrom = from; Square rfrom = to; // Castling is encoded as 'King captures the rook' Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1); Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1); return (PseudoAttacks[ROOK][rto] & square(~sideToMove)) && (attacks_bb(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & square(~sideToMove)); } default: assert(false); return false; } } /// Position::do_move() makes a move, and saves all information necessary /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal /// moves should be filtered out before this function is called. void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { assert(is_ok(m)); assert(&newSt != st); thisThread->nodes.fetch_add(1, std::memory_order_relaxed); Key k = st->key ^ Zobrist::side; // Copy some fields of the old state to our new StateInfo object except the // ones which are going to be recalculated from scratch anyway and then switch // our state pointer to point to the new (ready to be updated) state. std::memcpy(&newSt, st, offsetof(StateInfo, key)); newSt.previous = st; st = &newSt; // Increment ply counters. In particular, rule50 will be reset to zero later on // in case of a capture or a pawn move. ++gamePly; ++st->rule50; ++st->pliesFromNull; Color us = sideToMove; Color them = ~us; Square from = from_sq(m); Square to = to_sq(m); Piece pc = piece_on(from); Piece captured = type_of(m) == ENPASSANT ? make_piece(them, PAWN) : piece_on(to); assert(color_of(pc) == us); assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us)); assert(type_of(captured) != KING); if (type_of(m) == CASTLING) { assert(pc == make_piece(us, KING)); assert(captured == make_piece(us, ROOK)); Square rfrom, rto; do_castling(us, from, to, rfrom, rto); st->psq += PSQT::psq[captured][rto] - PSQT::psq[captured][rfrom]; k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto]; captured = NO_PIECE; } if (captured) { Square capsq = to; // If the captured piece is a pawn, update pawn hash key, otherwise // update non-pawn material. if (type_of(captured) == PAWN) { if (type_of(m) == ENPASSANT) { capsq -= pawn_push(us); assert(pc == make_piece(us, PAWN)); assert(to == st->epSquare); assert(relative_rank(us, to) == RANK_6); assert(piece_on(to) == NO_PIECE); assert(piece_on(capsq) == make_piece(them, PAWN)); board[capsq] = NO_PIECE; // Not done by remove_piece() } st->pawnKey ^= Zobrist::psq[captured][capsq]; } else st->nonPawnMaterial[them] -= PieceValue[MG][captured]; // Update board and piece lists remove_piece(captured, capsq); // Update material hash key and prefetch access to materialTable k ^= Zobrist::psq[captured][capsq]; st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]]; prefetch(thisThread->materialTable[st->materialKey]); // Update incremental scores st->psq -= PSQT::psq[captured][capsq]; // Reset rule 50 counter st->rule50 = 0; } // Update hash key k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; // Reset en passant square if (st->epSquare != SQ_NONE) { k ^= Zobrist::enpassant[file_of(st->epSquare)]; st->epSquare = SQ_NONE; } // Update castling rights if needed if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) { int cr = castlingRightsMask[from] | castlingRightsMask[to]; k ^= Zobrist::castling[st->castlingRights & cr]; st->castlingRights &= ~cr; } // Move the piece. The tricky Chess960 castling is handled earlier if (type_of(m) != CASTLING) move_piece(pc, from, to); // If the moving piece is a pawn do some special extra work if (type_of(pc) == PAWN) { // Set en-passant square if the moved pawn can be captured if ( (int(to) ^ int(from)) == 16 && (attacks_from(to - pawn_push(us), us) & pieces(them, PAWN))) { st->epSquare = (from + to) / 2; k ^= Zobrist::enpassant[file_of(st->epSquare)]; } else if (type_of(m) == PROMOTION) { Piece promotion = make_piece(us, promotion_type(m)); assert(relative_rank(us, to) == RANK_8); assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN); remove_piece(pc, to); put_piece(promotion, to); // Update hash keys k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to]; st->pawnKey ^= Zobrist::psq[pc][to]; st->materialKey ^= Zobrist::psq[promotion][pieceCount[promotion]-1] ^ Zobrist::psq[pc][pieceCount[pc]]; // Update incremental score st->psq += PSQT::psq[promotion][to] - PSQT::psq[pc][to]; // Update material st->nonPawnMaterial[us] += PieceValue[MG][promotion]; } // Update pawn hash key and prefetch access to pawnsTable st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; prefetch2(thisThread->pawnsTable[st->pawnKey]); // Reset rule 50 draw counter st->rule50 = 0; } // Update incremental scores st->psq += PSQT::psq[pc][to] - PSQT::psq[pc][from]; // Set capture piece st->capturedPiece = captured; // Update the key with the final value st->key = k; // Calculate checkers bitboard (if move gives check) st->checkersBB = givesCheck ? attackers_to(square(them)) & pieces(us) : 0; sideToMove = ~sideToMove; // Update king attacks used for fast check detection set_check_info(st); assert(pos_is_ok()); } /// Position::undo_move() unmakes a move. When it returns, the position should /// be restored to exactly the same state as before the move was made. void Position::undo_move(Move m) { assert(is_ok(m)); sideToMove = ~sideToMove; Color us = sideToMove; Square from = from_sq(m); Square to = to_sq(m); Piece pc = piece_on(to); assert(empty(from) || type_of(m) == CASTLING); assert(type_of(st->capturedPiece) != KING); if (type_of(m) == PROMOTION) { assert(relative_rank(us, to) == RANK_8); assert(type_of(pc) == promotion_type(m)); assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN); remove_piece(pc, to); pc = make_piece(us, PAWN); put_piece(pc, to); } if (type_of(m) == CASTLING) { Square rfrom, rto; do_castling(us, from, to, rfrom, rto); } else { move_piece(pc, to, from); // Put the piece back at the source square if (st->capturedPiece) { Square capsq = to; if (type_of(m) == ENPASSANT) { capsq -= pawn_push(us); assert(type_of(pc) == PAWN); assert(to == st->previous->epSquare); assert(relative_rank(us, to) == RANK_6); assert(piece_on(capsq) == NO_PIECE); assert(st->capturedPiece == make_piece(~us, PAWN)); } put_piece(st->capturedPiece, capsq); // Restore the captured piece } } // Finally point our state pointer back to the previous state st = st->previous; --gamePly; assert(pos_is_ok()); } /// Position::do_castling() is a helper used to do/undo a castling move. This /// is a bit tricky in Chess960 where from/to squares can overlap. template void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { bool kingSide = to > from; rfrom = to; // Castling is encoded as "king captures friendly rook" rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); // Remove both pieces first since squares could overlap in Chess960 remove_piece(make_piece(us, KING), Do ? from : to); remove_piece(make_piece(us, ROOK), Do ? rfrom : rto); board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us put_piece(make_piece(us, KING), Do ? to : from); put_piece(make_piece(us, ROOK), Do ? rto : rfrom); } /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips /// the side to move without executing any move on the board. void Position::do_null_move(StateInfo& newSt) { assert(!checkers()); assert(&newSt != st); std::memcpy(&newSt, st, sizeof(StateInfo)); newSt.previous = st; st = &newSt; if (st->epSquare != SQ_NONE) { st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; st->epSquare = SQ_NONE; } st->key ^= Zobrist::side; prefetch(TT.first_entry(st->key)); ++st->rule50; st->pliesFromNull = 0; sideToMove = ~sideToMove; set_check_info(st); assert(pos_is_ok()); } void Position::undo_null_move() { assert(!checkers()); st = st->previous; sideToMove = ~sideToMove; } /// Position::key_after() computes the new hash key after the given move. Needed /// for speculative prefetch. It doesn't recognize special moves like castling, /// en-passant and promotions. Key Position::key_after(Move m) const { Square from = from_sq(m); Square to = to_sq(m); Piece pc = piece_on(from); Piece captured = piece_on(to); Key k = st->key ^ Zobrist::side; if (captured) k ^= Zobrist::psq[captured][to]; return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from]; } /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the /// SEE value of move is greater or equal to the given threshold. We'll use an /// algorithm similar to alpha-beta pruning with a null window. bool Position::see_ge(Move m, Value threshold) const { assert(is_ok(m)); // Only deal with normal moves, assume others pass a simple see if (type_of(m) != NORMAL) return VALUE_ZERO >= threshold; Square from = from_sq(m), to = to_sq(m); PieceType nextVictim = type_of(piece_on(from)); Color stm = ~color_of(piece_on(from)); // First consider opponent's move Value balance; // Values of the pieces taken by us minus opponent's ones Bitboard occupied, stmAttackers; balance = PieceValue[MG][piece_on(to)]; if (balance < threshold) return false; balance -= PieceValue[MG][nextVictim]; if (balance >= threshold) // Always true if nextVictim == KING return true; bool relativeStm = true; // True if the opponent is to move occupied = pieces() ^ from ^ to; // Find all attackers to the destination square, with the moving piece removed, // but possibly an X-ray attacker added behind it. Bitboard attackers = attackers_to(to, occupied) & occupied; while (true) { stmAttackers = attackers & pieces(stm); // Don't allow pinned pieces to attack pieces except the king as long all // pinners are on their original square. if (!(st->pinnersForKing[stm] & ~occupied)) stmAttackers &= ~st->blockersForKing[stm]; if (!stmAttackers) return relativeStm; // Locate and remove the next least valuable attacker nextVictim = min_attacker(byTypeBB, to, stmAttackers, occupied, attackers); if (nextVictim == KING) return relativeStm == bool(attackers & pieces(~stm)); balance += relativeStm ? PieceValue[MG][nextVictim] : -PieceValue[MG][nextVictim]; relativeStm = !relativeStm; if (relativeStm == (balance >= threshold)) return relativeStm; stm = ~stm; } } /// Position::is_draw() tests whether the position is drawn by 50-move rule /// or by repetition. It does not detect stalemates. bool Position::is_draw(int ply) const { if (st->rule50 > 99 && (!checkers() || MoveList(*this).size())) return true; int end = std::min(st->rule50, st->pliesFromNull); if (end < 4) return false; StateInfo* stp = st->previous->previous; int cnt = 0; for (int i = 4; i <= end; i += 2) { stp = stp->previous->previous; // At root position ply is 1, so return a draw score if a position // repeats once earlier but strictly after the root, or repeats twice // before or at the root. if ( stp->key == st->key && ++cnt + (ply - 1 > i) == 2) return true; } return false; } /// Position::flip() flips position with the white and black sides reversed. This /// is only useful for debugging e.g. for finding evaluation symmetry bugs. void Position::flip() { string f, token; std::stringstream ss(fen()); for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement { std::getline(ss, token, r > RANK_1 ? '/' : ' '); f.insert(0, token + (f.empty() ? " " : "/")); } ss >> token; // Active color f += (token == "w" ? "B " : "W "); // Will be lowercased later ss >> token; // Castling availability f += token + " "; std::transform(f.begin(), f.end(), f.begin(), [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); ss >> token; // En passant square f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3")); std::getline(ss, token); // Half and full moves f += token; set(f, is_chess960(), st, this_thread()); assert(pos_is_ok()); } /// Position::pos_is_ok() performs some consistency checks for the /// position object and raises an asserts if something wrong is detected. /// This is meant to be helpful when debugging. bool Position::pos_is_ok() const { const bool Fast = true; // Quick (default) or full check? if ( (sideToMove != WHITE && sideToMove != BLACK) || piece_on(square(WHITE)) != W_KING || piece_on(square(BLACK)) != B_KING || ( ep_square() != SQ_NONE && relative_rank(sideToMove, ep_square()) != RANK_6)) assert(0 && "pos_is_ok: Default"); if (Fast) return true; if ( pieceCount[W_KING] != 1 || pieceCount[B_KING] != 1 || attackers_to(square(~sideToMove)) & pieces(sideToMove)) assert(0 && "pos_is_ok: Kings"); if ( (pieces(PAWN) & (Rank1BB | Rank8BB)) || pieceCount[W_PAWN] > 8 || pieceCount[B_PAWN] > 8) assert(0 && "pos_is_ok: Pawns"); if ( (pieces(WHITE) & pieces(BLACK)) || (pieces(WHITE) | pieces(BLACK)) != pieces() || popcount(pieces(WHITE)) > 16 || popcount(pieces(BLACK)) > 16) assert(0 && "pos_is_ok: Bitboards"); for (PieceType p1 = PAWN; p1 <= KING; ++p1) for (PieceType p2 = PAWN; p2 <= KING; ++p2) if (p1 != p2 && (pieces(p1) & pieces(p2))) assert(0 && "pos_is_ok: Bitboards"); StateInfo si = *st; set_state(&si); if (std::memcmp(&si, st, sizeof(StateInfo))) assert(0 && "pos_is_ok: State"); for (Piece pc : Pieces) { if ( pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc))) || pieceCount[pc] != std::count(board, board + SQUARE_NB, pc)) assert(0 && "pos_is_ok: Pieces"); for (int i = 0; i < pieceCount[pc]; ++i) if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i) assert(0 && "pos_is_ok: Index"); } for (Color c = WHITE; c <= BLACK; ++c) for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) { if (!can_castle(c | s)) continue; if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK) || castlingRightsMask[castlingRookSquare[c | s]] != (c | s) || (castlingRightsMask[square(c)] & (c | s)) != (c | s)) assert(0 && "pos_is_ok: Castling"); } return true; }