mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2024-11-23 11:31:33 +01:00
Update Stockfish to development version from 2020-06-17
This commit is contained in:
parent
a64eab03cc
commit
6bcbd6d080
|
@ -2,7 +2,8 @@ LOCAL_PATH := $(call my-dir)
|
|||
|
||||
SF_SRC_FILES := \
|
||||
benchmark.cpp main.cpp movegen.cpp pawns.cpp thread.cpp uci.cpp psqt.cpp \
|
||||
bitbase.cpp endgame.cpp material.cpp movepick.cpp position.cpp timeman.cpp ucioption.cpp \
|
||||
bitbase.cpp endgame.cpp material.cpp movepick.cpp position.cpp timeman.cpp \
|
||||
tune.cpp ucioption.cpp \
|
||||
bitboard.cpp evaluate.cpp misc.cpp search.cpp tt.cpp syzygy/tbprobe.cpp
|
||||
|
||||
MY_ARCH_DEF :=
|
||||
|
|
|
@ -65,6 +65,7 @@ const vector<string> Defaults = {
|
|||
"4rrk1/1p1nq3/p7/2p1P1pp/3P2bp/3Q1Bn1/PPPB4/1K2R1NR w - - 40 21",
|
||||
"r3k2r/3nnpbp/q2pp1p1/p7/Pp1PPPP1/4BNN1/1P5P/R2Q1RK1 w kq - 0 16",
|
||||
"3Qb1k1/1r2ppb1/pN1n2q1/Pp1Pp1Pr/4P2p/4BP2/4B1R1/1R5K b - - 11 40",
|
||||
"4k3/3q1r2/1N2r1b1/3ppN2/2nPP3/1B1R2n1/2R1Q3/3K4 w - - 5 1",
|
||||
|
||||
// 5-man positions
|
||||
"8/8/8/8/5kp1/P7/8/1K1N4 w - - 0 1", // Kc2 - mate
|
||||
|
|
|
@ -19,8 +19,8 @@
|
|||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
#include <bitset>
|
||||
|
||||
#include "bitboard.h"
|
||||
#include "types.h"
|
||||
|
@ -31,8 +31,7 @@ namespace {
|
|||
// Positions with the pawn on files E to H will be mirrored before probing.
|
||||
constexpr unsigned MAX_INDEX = 2*24*64*64; // stm * psq * wksq * bksq = 196608
|
||||
|
||||
// Each uint32_t stores results of 32 positions, one per bit
|
||||
uint32_t KPKBitbase[MAX_INDEX / 32];
|
||||
std::bitset<MAX_INDEX> KPKBitbase;
|
||||
|
||||
// A KPK bitbase index is an integer in [0, IndexMax] range
|
||||
//
|
||||
|
@ -43,8 +42,8 @@ namespace {
|
|||
// bit 12: side to move (WHITE or BLACK)
|
||||
// bit 13-14: white pawn file (from FILE_A to FILE_D)
|
||||
// bit 15-17: white pawn RANK_7 - rank (from RANK_7 - RANK_7 to RANK_7 - RANK_2)
|
||||
unsigned index(Color us, Square bksq, Square wksq, Square psq) {
|
||||
return int(wksq) | (bksq << 6) | (us << 12) | (file_of(psq) << 13) | ((RANK_7 - rank_of(psq)) << 15);
|
||||
unsigned index(Color stm, Square bksq, Square wksq, Square psq) {
|
||||
return int(wksq) | (bksq << 6) | (stm << 12) | (file_of(psq) << 13) | ((RANK_7 - rank_of(psq)) << 15);
|
||||
}
|
||||
|
||||
enum Result {
|
||||
|
@ -60,12 +59,9 @@ namespace {
|
|||
KPKPosition() = default;
|
||||
explicit KPKPosition(unsigned idx);
|
||||
operator Result() const { return result; }
|
||||
Result classify(const std::vector<KPKPosition>& db)
|
||||
{ return us == WHITE ? classify<WHITE>(db) : classify<BLACK>(db); }
|
||||
Result classify(const std::vector<KPKPosition>& db);
|
||||
|
||||
template<Color Us> Result classify(const std::vector<KPKPosition>& db);
|
||||
|
||||
Color us;
|
||||
Color stm;
|
||||
Square ksq[COLOR_NB], psq;
|
||||
Result result;
|
||||
};
|
||||
|
@ -73,12 +69,11 @@ namespace {
|
|||
} // namespace
|
||||
|
||||
|
||||
bool Bitbases::probe(Square wksq, Square wpsq, Square bksq, Color us) {
|
||||
bool Bitbases::probe(Square wksq, Square wpsq, Square bksq, Color stm) {
|
||||
|
||||
assert(file_of(wpsq) <= FILE_D);
|
||||
|
||||
unsigned idx = index(us, bksq, wksq, wpsq);
|
||||
return KPKBitbase[idx / 32] & (1 << (idx & 0x1F));
|
||||
return KPKBitbase[index(stm, bksq, wksq, wpsq)];
|
||||
}
|
||||
|
||||
|
||||
|
@ -97,10 +92,10 @@ void Bitbases::init() {
|
|||
for (repeat = idx = 0; idx < MAX_INDEX; ++idx)
|
||||
repeat |= (db[idx] == UNKNOWN && db[idx].classify(db) != UNKNOWN);
|
||||
|
||||
// Map 32 results into one KPKBitbase[] entry
|
||||
// Fill the bitbase with the decisive results
|
||||
for (idx = 0; idx < MAX_INDEX; ++idx)
|
||||
if (db[idx] == WIN)
|
||||
KPKBitbase[idx / 32] |= 1 << (idx & 0x1F);
|
||||
KPKBitbase.set(idx);
|
||||
}
|
||||
|
||||
|
||||
|
@ -110,28 +105,28 @@ namespace {
|
|||
|
||||
ksq[WHITE] = Square((idx >> 0) & 0x3F);
|
||||
ksq[BLACK] = Square((idx >> 6) & 0x3F);
|
||||
us = Color ((idx >> 12) & 0x01);
|
||||
stm = Color ((idx >> 12) & 0x01);
|
||||
psq = make_square(File((idx >> 13) & 0x3), Rank(RANK_7 - ((idx >> 15) & 0x7)));
|
||||
|
||||
// Check if two pieces are on the same square or if a king can be captured
|
||||
if ( distance(ksq[WHITE], ksq[BLACK]) <= 1
|
||||
|| ksq[WHITE] == psq
|
||||
|| ksq[BLACK] == psq
|
||||
|| (us == WHITE && (PawnAttacks[WHITE][psq] & ksq[BLACK])))
|
||||
|| (stm == WHITE && (pawn_attacks_bb(WHITE, psq) & ksq[BLACK])))
|
||||
result = INVALID;
|
||||
|
||||
// Immediate win if a pawn can be promoted without getting captured
|
||||
else if ( us == WHITE
|
||||
else if ( stm == WHITE
|
||||
&& rank_of(psq) == RANK_7
|
||||
&& ksq[us] != psq + NORTH
|
||||
&& ( distance(ksq[~us], psq + NORTH) > 1
|
||||
|| (PseudoAttacks[KING][ksq[us]] & (psq + NORTH))))
|
||||
&& ksq[stm] != psq + NORTH
|
||||
&& ( distance(ksq[~stm], psq + NORTH) > 1
|
||||
|| (attacks_bb<KING>(ksq[stm]) & (psq + NORTH))))
|
||||
result = WIN;
|
||||
|
||||
// Immediate draw if it is a stalemate or a king captures undefended pawn
|
||||
else if ( us == BLACK
|
||||
&& ( !(PseudoAttacks[KING][ksq[us]] & ~(PseudoAttacks[KING][ksq[~us]] | PawnAttacks[~us][psq]))
|
||||
|| (PseudoAttacks[KING][ksq[us]] & psq & ~PseudoAttacks[KING][ksq[~us]])))
|
||||
else if ( stm == BLACK
|
||||
&& ( !(attacks_bb<KING>(ksq[stm]) & ~(attacks_bb<KING>(ksq[~stm]) | pawn_attacks_bb(~stm, psq)))
|
||||
|| (attacks_bb<KING>(ksq[stm]) & psq & ~attacks_bb<KING>(ksq[~stm]))))
|
||||
result = DRAW;
|
||||
|
||||
// Position will be classified later
|
||||
|
@ -139,7 +134,6 @@ namespace {
|
|||
result = UNKNOWN;
|
||||
}
|
||||
|
||||
template<Color Us>
|
||||
Result KPKPosition::classify(const std::vector<KPKPosition>& db) {
|
||||
|
||||
// White to move: If one move leads to a position classified as WIN, the result
|
||||
|
@ -151,27 +145,25 @@ namespace {
|
|||
// of the current position is DRAW. If all moves lead to positions classified
|
||||
// as WIN, the position is classified as WIN, otherwise the current position is
|
||||
// classified as UNKNOWN.
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Result Good = (Us == WHITE ? WIN : DRAW);
|
||||
constexpr Result Bad = (Us == WHITE ? DRAW : WIN);
|
||||
const Result Good = (stm == WHITE ? WIN : DRAW);
|
||||
const Result Bad = (stm == WHITE ? DRAW : WIN);
|
||||
|
||||
Result r = INVALID;
|
||||
Bitboard b = PseudoAttacks[KING][ksq[Us]];
|
||||
Bitboard b = attacks_bb<KING>(ksq[stm]);
|
||||
|
||||
while (b)
|
||||
r |= Us == WHITE ? db[index(Them, ksq[Them] , pop_lsb(&b), psq)]
|
||||
: db[index(Them, pop_lsb(&b), ksq[Them] , psq)];
|
||||
r |= stm == WHITE ? db[index(BLACK, ksq[BLACK] , pop_lsb(&b), psq)]
|
||||
: db[index(WHITE, pop_lsb(&b), ksq[WHITE], psq)];
|
||||
|
||||
if (Us == WHITE)
|
||||
if (stm == WHITE)
|
||||
{
|
||||
if (rank_of(psq) < RANK_7) // Single push
|
||||
r |= db[index(Them, ksq[Them], ksq[Us], psq + NORTH)];
|
||||
r |= db[index(BLACK, ksq[BLACK], ksq[WHITE], psq + NORTH)];
|
||||
|
||||
if ( rank_of(psq) == RANK_2 // Double push
|
||||
&& psq + NORTH != ksq[Us]
|
||||
&& psq + NORTH != ksq[Them])
|
||||
r |= db[index(Them, ksq[Them], ksq[Us], psq + NORTH + NORTH)];
|
||||
&& psq + NORTH != ksq[WHITE]
|
||||
&& psq + NORTH != ksq[BLACK])
|
||||
r |= db[index(BLACK, ksq[BLACK], ksq[WHITE], psq + NORTH + NORTH)];
|
||||
}
|
||||
|
||||
return result = r & Good ? Good : r & UNKNOWN ? UNKNOWN : Bad;
|
||||
|
|
|
@ -56,8 +56,9 @@ const std::string Bitboards::pretty(Bitboard b) {
|
|||
for (File f = FILE_A; f <= FILE_H; ++f)
|
||||
s += b & make_square(f, r) ? "| X " : "| ";
|
||||
|
||||
s += "|\n+---+---+---+---+---+---+---+---+\n";
|
||||
s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n";
|
||||
}
|
||||
s += " a b c d e f g h\n";
|
||||
|
||||
return s;
|
||||
}
|
||||
|
@ -69,7 +70,7 @@ const std::string Bitboards::pretty(Bitboard b) {
|
|||
void Bitboards::init() {
|
||||
|
||||
for (unsigned i = 0; i < (1 << 16); ++i)
|
||||
PopCnt16[i] = std::bitset<16>(i).count();
|
||||
PopCnt16[i] = uint8_t(std::bitset<16>(i).count());
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
||||
SquareBB[s] = (1ULL << s);
|
||||
|
@ -78,28 +79,6 @@ void Bitboards::init() {
|
|||
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
|
||||
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
||||
{
|
||||
PawnAttacks[WHITE][s] = pawn_attacks_bb<WHITE>(square_bb(s));
|
||||
PawnAttacks[BLACK][s] = pawn_attacks_bb<BLACK>(square_bb(s));
|
||||
}
|
||||
|
||||
// Helper returning the target bitboard of a step from a square
|
||||
auto landing_square_bb = [&](Square s, int step)
|
||||
{
|
||||
Square to = Square(s + step);
|
||||
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
|
||||
};
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
||||
{
|
||||
for (int step : {-9, -8, -7, -1, 1, 7, 8, 9} )
|
||||
PseudoAttacks[KING][s] |= landing_square_bb(s, step);
|
||||
|
||||
for (int step : {-17, -15, -10, -6, 6, 10, 15, 17} )
|
||||
PseudoAttacks[KNIGHT][s] |= landing_square_bb(s, step);
|
||||
}
|
||||
|
||||
Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST };
|
||||
Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
|
||||
|
||||
|
@ -108,6 +87,15 @@ void Bitboards::init() {
|
|||
|
||||
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
|
||||
{
|
||||
PawnAttacks[WHITE][s1] = pawn_attacks_bb<WHITE>(square_bb(s1));
|
||||
PawnAttacks[BLACK][s1] = pawn_attacks_bb<BLACK>(square_bb(s1));
|
||||
|
||||
for (int step : {-9, -8, -7, -1, 1, 7, 8, 9} )
|
||||
PseudoAttacks[KING][s1] |= safe_destination(s1, step);
|
||||
|
||||
for (int step : {-17, -15, -10, -6, 6, 10, 15, 17} )
|
||||
PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step);
|
||||
|
||||
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
|
||||
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0);
|
||||
|
||||
|
@ -123,20 +111,16 @@ namespace {
|
|||
|
||||
Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) {
|
||||
|
||||
Bitboard attack = 0;
|
||||
Bitboard attacks = 0;
|
||||
|
||||
for (int i = 0; i < 4; ++i)
|
||||
for (Square s = sq + directions[i];
|
||||
is_ok(s) && distance(s, s - directions[i]) == 1;
|
||||
s += directions[i])
|
||||
{
|
||||
attack |= s;
|
||||
|
||||
if (occupied & s)
|
||||
break;
|
||||
Square s = sq;
|
||||
while(safe_destination(s, directions[i]) && !(occupied & s))
|
||||
attacks |= (s += directions[i]);
|
||||
}
|
||||
|
||||
return attack;
|
||||
return attacks;
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -106,7 +106,7 @@ extern Magic RookMagics[SQUARE_NB];
|
|||
extern Magic BishopMagics[SQUARE_NB];
|
||||
|
||||
inline Bitboard square_bb(Square s) {
|
||||
assert(s >= SQ_A1 && s <= SQ_H8);
|
||||
assert(is_ok(s));
|
||||
return SquareBB[s];
|
||||
}
|
||||
|
||||
|
@ -123,14 +123,14 @@ inline Bitboard operator&(Square s, Bitboard b) { return b & s; }
|
|||
inline Bitboard operator|(Square s, Bitboard b) { return b | s; }
|
||||
inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
|
||||
|
||||
inline Bitboard operator|(Square s, Square s2) { return square_bb(s) | square_bb(s2); }
|
||||
inline Bitboard operator|(Square s, Square s2) { return square_bb(s) | s2; }
|
||||
|
||||
constexpr bool more_than_one(Bitboard b) {
|
||||
return b & (b - 1);
|
||||
}
|
||||
|
||||
inline bool opposite_colors(Square s1, Square s2) {
|
||||
return bool(DarkSquares & s1) != bool(DarkSquares & s2);
|
||||
constexpr bool opposite_colors(Square s1, Square s2) {
|
||||
return (s1 + rank_of(s1) + s2 + rank_of(s2)) & 1;
|
||||
}
|
||||
|
||||
|
||||
|
@ -154,7 +154,7 @@ inline Bitboard file_bb(Square s) {
|
|||
}
|
||||
|
||||
|
||||
/// shift() moves a bitboard one step along direction D
|
||||
/// shift() moves a bitboard one or two steps as specified by the direction D
|
||||
|
||||
template<Direction D>
|
||||
constexpr Bitboard shift(Bitboard b) {
|
||||
|
@ -176,6 +176,12 @@ constexpr Bitboard pawn_attacks_bb(Bitboard b) {
|
|||
: shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
|
||||
}
|
||||
|
||||
inline Bitboard pawn_attacks_bb(Color c, Square s) {
|
||||
|
||||
assert(is_ok(s));
|
||||
return PawnAttacks[c][s];
|
||||
}
|
||||
|
||||
|
||||
/// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the
|
||||
/// given color from the squares in the given bitboard.
|
||||
|
@ -194,13 +200,25 @@ inline Bitboard adjacent_files_bb(Square s) {
|
|||
return shift<EAST>(file_bb(s)) | shift<WEST>(file_bb(s));
|
||||
}
|
||||
|
||||
|
||||
/// between_bb() returns squares that are linearly between the given squares
|
||||
/// line_bb(Square, Square) returns a Bitboard representing an entire line
|
||||
/// (from board edge to board edge) that intersects the given squares.
|
||||
/// If the given squares are not on a same file/rank/diagonal, return 0.
|
||||
/// Ex. line_bb(SQ_C4, SQ_F7) returns a bitboard with the A2-G8 diagonal.
|
||||
|
||||
inline Bitboard line_bb(Square s1, Square s2) {
|
||||
|
||||
assert(is_ok(s1) && is_ok(s2));
|
||||
return LineBB[s1][s2];
|
||||
}
|
||||
|
||||
/// between_bb() returns a Bitboard representing squares that are linearly
|
||||
/// between the given squares (excluding the given squares).
|
||||
/// If the given squares are not on a same file/rank/diagonal, return 0.
|
||||
/// Ex. between_bb(SQ_C4, SQ_F7) returns a bitboard with squares D5 and E6.
|
||||
|
||||
inline Bitboard between_bb(Square s1, Square s2) {
|
||||
return LineBB[s1][s2] & ( (AllSquares << (s1 + (s1 < s2)))
|
||||
^(AllSquares << (s2 + !(s1 < s2))));
|
||||
Bitboard b = line_bb(s1, s2) & ((AllSquares << s1) ^ (AllSquares << s2));
|
||||
return b & (b - 1); //exclude lsb
|
||||
}
|
||||
|
||||
|
||||
|
@ -209,8 +227,8 @@ inline Bitboard between_bb(Square s1, Square s2) {
|
|||
/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
|
||||
|
||||
inline Bitboard forward_ranks_bb(Color c, Square s) {
|
||||
return c == WHITE ? ~Rank1BB << 8 * (rank_of(s) - RANK_1)
|
||||
: ~Rank8BB >> 8 * (RANK_8 - rank_of(s));
|
||||
return c == WHITE ? ~Rank1BB << 8 * relative_rank(WHITE, s)
|
||||
: ~Rank8BB >> 8 * relative_rank(BLACK, s);
|
||||
}
|
||||
|
||||
|
||||
|
@ -243,7 +261,7 @@ inline Bitboard passed_pawn_span(Color c, Square s) {
|
|||
/// straight or on a diagonal line.
|
||||
|
||||
inline bool aligned(Square s1, Square s2, Square s3) {
|
||||
return LineBB[s1][s2] & s3;
|
||||
return line_bb(s1, s2) & s3;
|
||||
}
|
||||
|
||||
|
||||
|
@ -255,23 +273,49 @@ template<> inline int distance<File>(Square x, Square y) { return std::abs(file_
|
|||
template<> inline int distance<Rank>(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); }
|
||||
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
|
||||
|
||||
template<class T> constexpr const T& clamp(const T& v, const T& lo, const T& hi) {
|
||||
return v < lo ? lo : v > hi ? hi : v;
|
||||
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
|
||||
inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); }
|
||||
|
||||
/// Return the target square bitboard if we do not step off the board, empty otherwise
|
||||
|
||||
inline Bitboard safe_destination(Square s, int step)
|
||||
{
|
||||
Square to = Square(s + step);
|
||||
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
|
||||
}
|
||||
|
||||
/// attacks_bb() returns a bitboard representing all the squares attacked by a
|
||||
/// piece of type Pt (bishop or rook) placed on 's'.
|
||||
/// attacks_bb(Square) returns the pseudo attacks of the give piece type
|
||||
/// assuming an empty board.
|
||||
|
||||
template<PieceType Pt>
|
||||
inline Bitboard attacks_bb(Square s) {
|
||||
|
||||
assert((Pt != PAWN) && (is_ok(s)));
|
||||
|
||||
return PseudoAttacks[Pt][s];
|
||||
}
|
||||
|
||||
/// attacks_bb(Square, Bitboard) returns the attacks by the given piece
|
||||
/// assuming the board is occupied according to the passed Bitboard.
|
||||
/// Sliding piece attacks do not continue passed an occupied square.
|
||||
|
||||
template<PieceType Pt>
|
||||
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
|
||||
|
||||
const Magic& m = Pt == ROOK ? RookMagics[s] : BishopMagics[s];
|
||||
return m.attacks[m.index(occupied)];
|
||||
assert((Pt != PAWN) && (is_ok(s)));
|
||||
|
||||
switch (Pt)
|
||||
{
|
||||
case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
|
||||
case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)];
|
||||
case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
|
||||
default : return PseudoAttacks[Pt][s];
|
||||
}
|
||||
}
|
||||
|
||||
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
|
||||
|
||||
assert(pt != PAWN);
|
||||
assert((pt != PAWN) && (is_ok(s)));
|
||||
|
||||
switch (pt)
|
||||
{
|
||||
|
@ -376,14 +420,17 @@ inline Square msb(Bitboard b) {
|
|||
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
|
||||
|
||||
inline Square pop_lsb(Bitboard* b) {
|
||||
assert(*b);
|
||||
const Square s = lsb(*b);
|
||||
*b &= *b - 1;
|
||||
return s;
|
||||
}
|
||||
|
||||
|
||||
/// frontmost_sq() returns the most advanced square for the given color
|
||||
/// frontmost_sq() returns the most advanced square for the given color,
|
||||
/// requires a non-zero bitboard.
|
||||
inline Square frontmost_sq(Color c, Bitboard b) {
|
||||
assert(b);
|
||||
return c == WHITE ? msb(b) : lsb(b);
|
||||
}
|
||||
|
||||
|
|
|
@ -24,42 +24,23 @@
|
|||
#include "endgame.h"
|
||||
#include "movegen.h"
|
||||
|
||||
using std::string;
|
||||
|
||||
namespace {
|
||||
|
||||
// Table used to drive the king towards the edge of the board
|
||||
// Used to drive the king towards the edge of the board
|
||||
// in KX vs K and KQ vs KR endgames.
|
||||
constexpr int PushToEdges[SQUARE_NB] = {
|
||||
100, 90, 80, 70, 70, 80, 90, 100,
|
||||
90, 70, 60, 50, 50, 60, 70, 90,
|
||||
80, 60, 40, 30, 30, 40, 60, 80,
|
||||
70, 50, 30, 20, 20, 30, 50, 70,
|
||||
70, 50, 30, 20, 20, 30, 50, 70,
|
||||
80, 60, 40, 30, 30, 40, 60, 80,
|
||||
90, 70, 60, 50, 50, 60, 70, 90,
|
||||
100, 90, 80, 70, 70, 80, 90, 100
|
||||
};
|
||||
inline int push_to_edge(Square s) {
|
||||
int rd = edge_distance(rank_of(s)), fd = edge_distance(file_of(s));
|
||||
return 90 - (7 * fd * fd / 2 + 7 * rd * rd / 2);
|
||||
}
|
||||
|
||||
// Table used to drive the king towards a corner square of the
|
||||
// right color in KBN vs K endgames.
|
||||
constexpr int PushToCorners[SQUARE_NB] = {
|
||||
6400, 6080, 5760, 5440, 5120, 4800, 4480, 4160,
|
||||
6080, 5760, 5440, 5120, 4800, 4480, 4160, 4480,
|
||||
5760, 5440, 4960, 4480, 4480, 4000, 4480, 4800,
|
||||
5440, 5120, 4480, 3840, 3520, 4480, 4800, 5120,
|
||||
5120, 4800, 4480, 3520, 3840, 4480, 5120, 5440,
|
||||
4800, 4480, 4000, 4480, 4480, 4960, 5440, 5760,
|
||||
4480, 4160, 4480, 4800, 5120, 5440, 5760, 6080,
|
||||
4160, 4480, 4800, 5120, 5440, 5760, 6080, 6400
|
||||
};
|
||||
// Used to drive the king towards A1H8 corners in KBN vs K endgames.
|
||||
inline int push_to_corner(Square s) {
|
||||
return abs(7 - rank_of(s) - file_of(s));
|
||||
}
|
||||
|
||||
// Tables used to drive a piece towards or away from another piece
|
||||
constexpr int PushClose[8] = { 0, 0, 100, 80, 60, 40, 20, 10 };
|
||||
constexpr int PushAway [8] = { 0, 5, 20, 40, 60, 80, 90, 100 };
|
||||
|
||||
// Pawn Rank based scaling factors used in KRPPKRP endgame
|
||||
constexpr int KRPPKRPScaleFactors[RANK_NB] = { 0, 9, 10, 14, 21, 44, 0, 0 };
|
||||
// Drive a piece close to or away from another piece
|
||||
inline int push_close(Square s1, Square s2) { return 140 - 20 * distance(s1, s2); }
|
||||
inline int push_away(Square s1, Square s2) { return 120 - push_close(s1, s2); }
|
||||
|
||||
#ifndef NDEBUG
|
||||
bool verify_material(const Position& pos, Color c, Value npm, int pawnsCnt) {
|
||||
|
@ -74,9 +55,9 @@ namespace {
|
|||
assert(pos.count<PAWN>(strongSide) == 1);
|
||||
|
||||
if (file_of(pos.square<PAWN>(strongSide)) >= FILE_E)
|
||||
sq = Square(int(sq) ^ 7); // Mirror SQ_H1 -> SQ_A1
|
||||
sq = flip_file(sq);
|
||||
|
||||
return strongSide == WHITE ? sq : ~sq;
|
||||
return strongSide == WHITE ? sq : flip_rank(sq);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
@ -98,8 +79,6 @@ namespace Endgames {
|
|||
add<KQKR>("KQKR");
|
||||
add<KNNKP>("KNNKP");
|
||||
|
||||
add<KNPK>("KNPK");
|
||||
add<KNPKB>("KNPKB");
|
||||
add<KRPKR>("KRPKR");
|
||||
add<KRPKB>("KRPKB");
|
||||
add<KBPKB>("KBPKB");
|
||||
|
@ -129,15 +108,15 @@ Value Endgame<KXK>::operator()(const Position& pos) const {
|
|||
|
||||
Value result = pos.non_pawn_material(strongSide)
|
||||
+ pos.count<PAWN>(strongSide) * PawnValueEg
|
||||
+ PushToEdges[loserKSq]
|
||||
+ PushClose[distance(winnerKSq, loserKSq)];
|
||||
+ push_to_edge(loserKSq)
|
||||
+ push_close(winnerKSq, loserKSq);
|
||||
|
||||
if ( pos.count<QUEEN>(strongSide)
|
||||
|| pos.count<ROOK>(strongSide)
|
||||
||(pos.count<BISHOP>(strongSide) && pos.count<KNIGHT>(strongSide))
|
||||
|| ( (pos.pieces(strongSide, BISHOP) & ~DarkSquares)
|
||||
&& (pos.pieces(strongSide, BISHOP) & DarkSquares)))
|
||||
result = std::min(result + VALUE_KNOWN_WIN, VALUE_MATE_IN_MAX_PLY - 1);
|
||||
result = std::min(result + VALUE_KNOWN_WIN, VALUE_TB_WIN_IN_MAX_PLY - 1);
|
||||
|
||||
return strongSide == pos.side_to_move() ? result : -result;
|
||||
}
|
||||
|
@ -158,11 +137,11 @@ Value Endgame<KBNK>::operator()(const Position& pos) const {
|
|||
// If our bishop does not attack A1/H8, we flip the enemy king square
|
||||
// to drive to opposite corners (A8/H1).
|
||||
|
||||
Value result = VALUE_KNOWN_WIN
|
||||
+ PushClose[distance(winnerKSq, loserKSq)]
|
||||
+ PushToCorners[opposite_colors(bishopSq, SQ_A1) ? ~loserKSq : loserKSq];
|
||||
Value result = (VALUE_KNOWN_WIN + 3520)
|
||||
+ push_close(winnerKSq, loserKSq)
|
||||
+ 420 * push_to_corner(opposite_colors(bishopSq, SQ_A1) ? flip_file(loserKSq) : loserKSq);
|
||||
|
||||
assert(abs(result) < VALUE_MATE_IN_MAX_PLY);
|
||||
assert(abs(result) < VALUE_TB_WIN_IN_MAX_PLY);
|
||||
return strongSide == pos.side_to_move() ? result : -result;
|
||||
}
|
||||
|
||||
|
@ -243,7 +222,7 @@ Value Endgame<KRKB>::operator()(const Position& pos) const {
|
|||
assert(verify_material(pos, strongSide, RookValueMg, 0));
|
||||
assert(verify_material(pos, weakSide, BishopValueMg, 0));
|
||||
|
||||
Value result = Value(PushToEdges[pos.square<KING>(weakSide)]);
|
||||
Value result = Value(push_to_edge(pos.square<KING>(weakSide)));
|
||||
return strongSide == pos.side_to_move() ? result : -result;
|
||||
}
|
||||
|
||||
|
@ -258,7 +237,7 @@ Value Endgame<KRKN>::operator()(const Position& pos) const {
|
|||
|
||||
Square bksq = pos.square<KING>(weakSide);
|
||||
Square bnsq = pos.square<KNIGHT>(weakSide);
|
||||
Value result = Value(PushToEdges[bksq] + PushAway[distance(bksq, bnsq)]);
|
||||
Value result = Value(push_to_edge(bksq) + push_away(bksq, bnsq));
|
||||
return strongSide == pos.side_to_move() ? result : -result;
|
||||
}
|
||||
|
||||
|
@ -277,11 +256,11 @@ Value Endgame<KQKP>::operator()(const Position& pos) const {
|
|||
Square loserKSq = pos.square<KING>(weakSide);
|
||||
Square pawnSq = pos.square<PAWN>(weakSide);
|
||||
|
||||
Value result = Value(PushClose[distance(winnerKSq, loserKSq)]);
|
||||
Value result = Value(push_close(winnerKSq, loserKSq));
|
||||
|
||||
if ( relative_rank(weakSide, pawnSq) != RANK_7
|
||||
|| distance(loserKSq, pawnSq) != 1
|
||||
|| !((FileABB | FileCBB | FileFBB | FileHBB) & pawnSq))
|
||||
|| ((FileBBB | FileDBB | FileEBB | FileGBB) & pawnSq))
|
||||
result += QueenValueEg - PawnValueEg;
|
||||
|
||||
return strongSide == pos.side_to_move() ? result : -result;
|
||||
|
@ -303,23 +282,24 @@ Value Endgame<KQKR>::operator()(const Position& pos) const {
|
|||
|
||||
Value result = QueenValueEg
|
||||
- RookValueEg
|
||||
+ PushToEdges[loserKSq]
|
||||
+ PushClose[distance(winnerKSq, loserKSq)];
|
||||
+ push_to_edge(loserKSq)
|
||||
+ push_close(winnerKSq, loserKSq);
|
||||
|
||||
return strongSide == pos.side_to_move() ? result : -result;
|
||||
}
|
||||
|
||||
|
||||
/// KNN vs KP. Simply push the opposing king to the corner
|
||||
/// KNN vs KP. Very drawish, but there are some mate opportunities if we can
|
||||
// press the weakSide King to a corner before the pawn advances too much.
|
||||
template<>
|
||||
Value Endgame<KNNKP>::operator()(const Position& pos) const {
|
||||
|
||||
assert(verify_material(pos, strongSide, 2 * KnightValueMg, 0));
|
||||
assert(verify_material(pos, weakSide, VALUE_ZERO, 1));
|
||||
|
||||
Value result = 2 * KnightValueEg
|
||||
- PawnValueEg
|
||||
+ PushToEdges[pos.square<KING>(weakSide)];
|
||||
Value result = PawnValueEg
|
||||
+ 2 * push_to_edge(pos.square<KING>(weakSide))
|
||||
- 10 * relative_rank(weakSide, pos.square<PAWN>(weakSide));
|
||||
|
||||
return strongSide == pos.side_to_move() ? result : -result;
|
||||
}
|
||||
|
@ -342,29 +322,27 @@ ScaleFactor Endgame<KBPsK>::operator()(const Position& pos) const {
|
|||
// No assertions about the material of weakSide, because we want draws to
|
||||
// be detected even when the weaker side has some pawns.
|
||||
|
||||
Bitboard pawns = pos.pieces(strongSide, PAWN);
|
||||
File pawnsFile = file_of(lsb(pawns));
|
||||
Bitboard strongPawns = pos.pieces(strongSide, PAWN);
|
||||
Bitboard allPawns = pos.pieces(PAWN);
|
||||
|
||||
// All pawns are on a single rook file?
|
||||
if ( (pawnsFile == FILE_A || pawnsFile == FILE_H)
|
||||
&& !(pawns & ~file_bb(pawnsFile)))
|
||||
// All strongSide pawns are on a single rook file?
|
||||
if (!(strongPawns & ~FileABB) || !(strongPawns & ~FileHBB))
|
||||
{
|
||||
Square bishopSq = pos.square<BISHOP>(strongSide);
|
||||
Square queeningSq = relative_square(strongSide, make_square(pawnsFile, RANK_8));
|
||||
Square kingSq = pos.square<KING>(weakSide);
|
||||
Square queeningSq = relative_square(strongSide, make_square(file_of(lsb(strongPawns)), RANK_8));
|
||||
Square weakKingSq = pos.square<KING>(weakSide);
|
||||
|
||||
if ( opposite_colors(queeningSq, bishopSq)
|
||||
&& distance(queeningSq, kingSq) <= 1)
|
||||
&& distance(queeningSq, weakKingSq) <= 1)
|
||||
return SCALE_FACTOR_DRAW;
|
||||
}
|
||||
|
||||
// If all the pawns are on the same B or G file, then it's potentially a draw
|
||||
if ( (pawnsFile == FILE_B || pawnsFile == FILE_G)
|
||||
&& !(pos.pieces(PAWN) & ~file_bb(pawnsFile))
|
||||
if ((!(allPawns & ~FileBBB) || !(allPawns & ~FileGBB))
|
||||
&& pos.non_pawn_material(weakSide) == 0
|
||||
&& pos.count<PAWN>(weakSide) >= 1)
|
||||
{
|
||||
// Get weakSide pawn that is closest to the home rank
|
||||
// Get the least advanced weakSide pawn
|
||||
Square weakPawnSq = frontmost_sq(strongSide, pos.pieces(weakSide, PAWN));
|
||||
|
||||
Square strongKingSq = pos.square<KING>(strongSide);
|
||||
|
@ -374,8 +352,8 @@ ScaleFactor Endgame<KBPsK>::operator()(const Position& pos) const {
|
|||
// There's potential for a draw if our pawn is blocked on the 7th rank,
|
||||
// the bishop cannot attack it or they only have one pawn left
|
||||
if ( relative_rank(strongSide, weakPawnSq) == RANK_7
|
||||
&& (pos.pieces(strongSide, PAWN) & (weakPawnSq + pawn_push(weakSide)))
|
||||
&& (opposite_colors(bishopSq, weakPawnSq) || pos.count<PAWN>(strongSide) == 1))
|
||||
&& (strongPawns & (weakPawnSq + pawn_push(weakSide)))
|
||||
&& (opposite_colors(bishopSq, weakPawnSq) || !more_than_one(strongPawns)))
|
||||
{
|
||||
int strongKingDist = distance(weakPawnSq, strongKingSq);
|
||||
int weakKingDist = distance(weakPawnSq, weakKingSq);
|
||||
|
@ -413,8 +391,8 @@ ScaleFactor Endgame<KQKRPs>::operator()(const Position& pos) const {
|
|||
&& relative_rank(weakSide, pos.square<KING>(strongSide)) >= RANK_4
|
||||
&& relative_rank(weakSide, rsq) == RANK_3
|
||||
&& ( pos.pieces(weakSide, PAWN)
|
||||
& pos.attacks_from<KING>(kingSq)
|
||||
& pos.attacks_from<PAWN>(rsq, strongSide)))
|
||||
& attacks_bb<KING>(kingSq)
|
||||
& pawn_attacks_bb(strongSide, rsq)))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
@ -557,7 +535,7 @@ ScaleFactor Endgame<KRPKB>::operator()(const Position& pos) const {
|
|||
// the corner
|
||||
if ( rk == RANK_6
|
||||
&& distance(psq + 2 * push, ksq) <= 1
|
||||
&& (PseudoAttacks[BISHOP][bsq] & (psq + push))
|
||||
&& (attacks_bb<BISHOP>(bsq) & (psq + push))
|
||||
&& distance<File>(bsq, psq) >= 2)
|
||||
return ScaleFactor(8);
|
||||
}
|
||||
|
@ -588,7 +566,7 @@ ScaleFactor Endgame<KRPPKRP>::operator()(const Position& pos) const {
|
|||
&& relative_rank(strongSide, bksq) > r)
|
||||
{
|
||||
assert(r > RANK_1 && r < RANK_7);
|
||||
return ScaleFactor(KRPPKRPScaleFactors[r]);
|
||||
return ScaleFactor(7 * r);
|
||||
}
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
@ -606,11 +584,9 @@ ScaleFactor Endgame<KPsK>::operator()(const Position& pos) const {
|
|||
Square ksq = pos.square<KING>(weakSide);
|
||||
Bitboard pawns = pos.pieces(strongSide, PAWN);
|
||||
|
||||
// If all pawns are ahead of the king, on a single rook file and
|
||||
// the king is within one file of the pawns, it's a draw.
|
||||
if ( !(pawns & ~forward_ranks_bb(weakSide, ksq))
|
||||
&& !((pawns & ~FileABB) && (pawns & ~FileHBB))
|
||||
&& distance<File>(ksq, lsb(pawns)) <= 1)
|
||||
// If all pawns are ahead of the king on a single rook file, it's a draw.
|
||||
if (!((pawns & ~FileABB) || (pawns & ~FileHBB)) &&
|
||||
!(pawns & ~passed_pawn_span(weakSide, ksq)))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
@ -633,8 +609,7 @@ ScaleFactor Endgame<KBPKB>::operator()(const Position& pos) const {
|
|||
Square weakKingSq = pos.square<KING>(weakSide);
|
||||
|
||||
// Case 1: Defending king blocks the pawn, and cannot be driven away
|
||||
if ( file_of(weakKingSq) == file_of(pawnSq)
|
||||
&& relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq)
|
||||
if ( (forward_file_bb(strongSide, pawnSq) & weakKingSq)
|
||||
&& ( opposite_colors(weakKingSq, strongBishopSq)
|
||||
|| relative_rank(strongSide, weakKingSq) <= RANK_6))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
@ -695,14 +670,14 @@ ScaleFactor Endgame<KBPPKB>::operator()(const Position& pos) const {
|
|||
if ( ksq == blockSq1
|
||||
&& opposite_colors(ksq, wbsq)
|
||||
&& ( bbsq == blockSq2
|
||||
|| (pos.attacks_from<BISHOP>(blockSq2) & pos.pieces(weakSide, BISHOP))
|
||||
|| (attacks_bb<BISHOP>(blockSq2, pos.pieces()) & pos.pieces(weakSide, BISHOP))
|
||||
|| distance<Rank>(psq1, psq2) >= 2))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
else if ( ksq == blockSq2
|
||||
&& opposite_colors(ksq, wbsq)
|
||||
&& ( bbsq == blockSq1
|
||||
|| (pos.attacks_from<BISHOP>(blockSq1) & pos.pieces(weakSide, BISHOP))))
|
||||
|| (attacks_bb<BISHOP>(blockSq1, pos.pieces()) & pos.pieces(weakSide, BISHOP))))
|
||||
return SCALE_FACTOR_DRAW;
|
||||
else
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
@ -737,46 +712,6 @@ ScaleFactor Endgame<KBPKN>::operator()(const Position& pos) const {
|
|||
}
|
||||
|
||||
|
||||
/// KNP vs K. There is a single rule: if the pawn is a rook pawn on the 7th rank
|
||||
/// and the defending king prevents the pawn from advancing, the position is drawn.
|
||||
template<>
|
||||
ScaleFactor Endgame<KNPK>::operator()(const Position& pos) const {
|
||||
|
||||
assert(verify_material(pos, strongSide, KnightValueMg, 1));
|
||||
assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
|
||||
|
||||
// Assume strongSide is white and the pawn is on files A-D
|
||||
Square pawnSq = normalize(pos, strongSide, pos.square<PAWN>(strongSide));
|
||||
Square weakKingSq = normalize(pos, strongSide, pos.square<KING>(weakSide));
|
||||
|
||||
if (pawnSq == SQ_A7 && distance(SQ_A8, weakKingSq) <= 1)
|
||||
return SCALE_FACTOR_DRAW;
|
||||
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KNP vs KB. If knight can block bishop from taking pawn, it's a win.
|
||||
/// Otherwise the position is drawn.
|
||||
template<>
|
||||
ScaleFactor Endgame<KNPKB>::operator()(const Position& pos) const {
|
||||
|
||||
assert(verify_material(pos, strongSide, KnightValueMg, 1));
|
||||
assert(verify_material(pos, weakSide, BishopValueMg, 0));
|
||||
|
||||
Square pawnSq = pos.square<PAWN>(strongSide);
|
||||
Square bishopSq = pos.square<BISHOP>(weakSide);
|
||||
Square weakKingSq = pos.square<KING>(weakSide);
|
||||
|
||||
// King needs to get close to promoting pawn to prevent knight from blocking.
|
||||
// Rules for this are very tricky, so just approximate.
|
||||
if (forward_file_bb(strongSide, pawnSq) & pos.attacks_from<BISHOP>(bishopSq))
|
||||
return ScaleFactor(distance(weakKingSq, pawnSq));
|
||||
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KP vs KP. This is done by removing the weakest side's pawn and probing the
|
||||
/// KP vs K bitbase: If the weakest side has a draw without the pawn, it probably
|
||||
/// has at least a draw with the pawn as well. The exception is when the stronger
|
||||
|
|
|
@ -21,10 +21,10 @@
|
|||
#ifndef ENDGAME_H_INCLUDED
|
||||
#define ENDGAME_H_INCLUDED
|
||||
|
||||
#include <unordered_map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
#include "position.h"
|
||||
|
@ -57,8 +57,6 @@ enum EndgameCode {
|
|||
KBPKB, // KBP vs KB
|
||||
KBPPKB, // KBPP vs KB
|
||||
KBPKN, // KBP vs KN
|
||||
KNPK, // KNP vs K
|
||||
KNPKB, // KNP vs KB
|
||||
KPKP // KP vs KP
|
||||
};
|
||||
|
||||
|
|
|
@ -35,7 +35,7 @@ namespace Trace {
|
|||
enum Tracing { NO_TRACE, TRACE };
|
||||
|
||||
enum Term { // The first 8 entries are reserved for PieceType
|
||||
MATERIAL = 8, IMBALANCE, MOBILITY, THREAT, PASSED, SPACE, INITIATIVE, TOTAL, TERM_NB
|
||||
MATERIAL = 8, IMBALANCE, MOBILITY, THREAT, PASSED, SPACE, WINNABLE, TOTAL, TERM_NB
|
||||
};
|
||||
|
||||
Score scores[TERM_NB][COLOR_NB];
|
||||
|
@ -59,7 +59,7 @@ namespace Trace {
|
|||
|
||||
std::ostream& operator<<(std::ostream& os, Term t) {
|
||||
|
||||
if (t == MATERIAL || t == IMBALANCE || t == INITIATIVE || t == TOTAL)
|
||||
if (t == MATERIAL || t == IMBALANCE || t == WINNABLE || t == TOTAL)
|
||||
os << " ---- ----" << " | " << " ---- ----";
|
||||
else
|
||||
os << scores[t][WHITE] << " | " << scores[t][BLACK];
|
||||
|
@ -81,44 +81,44 @@ namespace {
|
|||
constexpr int KingAttackWeights[PIECE_TYPE_NB] = { 0, 0, 81, 52, 44, 10 };
|
||||
|
||||
// Penalties for enemy's safe checks
|
||||
constexpr int QueenSafeCheck = 780;
|
||||
constexpr int RookSafeCheck = 1080;
|
||||
constexpr int BishopSafeCheck = 635;
|
||||
constexpr int KnightSafeCheck = 790;
|
||||
constexpr int QueenSafeCheck = 772;
|
||||
constexpr int RookSafeCheck = 1084;
|
||||
constexpr int BishopSafeCheck = 645;
|
||||
constexpr int KnightSafeCheck = 792;
|
||||
|
||||
#define S(mg, eg) make_score(mg, eg)
|
||||
|
||||
// MobilityBonus[PieceType-2][attacked] contains bonuses for middle and end game,
|
||||
// indexed by piece type and number of attacked squares in the mobility area.
|
||||
constexpr Score MobilityBonus[][32] = {
|
||||
{ S(-62,-81), S(-53,-56), S(-12,-30), S( -4,-14), S( 3, 8), S( 13, 15), // Knights
|
||||
S( 22, 23), S( 28, 27), S( 33, 33) },
|
||||
{ S(-48,-59), S(-20,-23), S( 16, -3), S( 26, 13), S( 38, 24), S( 51, 42), // Bishops
|
||||
{ S(-62,-81), S(-53,-56), S(-12,-31), S( -4,-16), S( 3, 5), S( 13, 11), // Knight
|
||||
S( 22, 17), S( 28, 20), S( 33, 25) },
|
||||
{ S(-48,-59), S(-20,-23), S( 16, -3), S( 26, 13), S( 38, 24), S( 51, 42), // Bishop
|
||||
S( 55, 54), S( 63, 57), S( 63, 65), S( 68, 73), S( 81, 78), S( 81, 86),
|
||||
S( 91, 88), S( 98, 97) },
|
||||
{ S(-58,-76), S(-27,-18), S(-15, 28), S(-10, 55), S( -5, 69), S( -2, 82), // Rooks
|
||||
S( 9,112), S( 16,118), S( 30,132), S( 29,142), S( 32,155), S( 38,165),
|
||||
S( 46,166), S( 48,169), S( 58,171) },
|
||||
{ S(-39,-36), S(-21,-15), S( 3, 8), S( 3, 18), S( 14, 34), S( 22, 54), // Queens
|
||||
S( 28, 61), S( 41, 73), S( 43, 79), S( 48, 92), S( 56, 94), S( 60,104),
|
||||
S( 60,113), S( 66,120), S( 67,123), S( 70,126), S( 71,133), S( 73,136),
|
||||
S( 79,140), S( 88,143), S( 88,148), S( 99,166), S(102,170), S(102,175),
|
||||
S(106,184), S(109,191), S(113,206), S(116,212) }
|
||||
{ S(-60,-78), S(-20,-17), S( 2, 23), S( 3, 39), S( 3, 70), S( 11, 99), // Rook
|
||||
S( 22,103), S( 31,121), S( 40,134), S( 40,139), S( 41,158), S( 48,164),
|
||||
S( 57,168), S( 57,169), S( 62,172) },
|
||||
{ S(-30,-48), S(-12,-30), S( -8, -7), S( -9, 19), S( 20, 40), S( 23, 55), // Queen
|
||||
S( 23, 59), S( 35, 75), S( 38, 78), S( 53, 96), S( 64, 96), S( 65,100),
|
||||
S( 65,121), S( 66,127), S( 67,131), S( 67,133), S( 72,136), S( 72,141),
|
||||
S( 77,147), S( 79,150), S( 93,151), S(108,168), S(108,168), S(108,171),
|
||||
S(110,182), S(114,182), S(114,192), S(116,219) }
|
||||
};
|
||||
|
||||
// RookOnFile[semiopen/open] contains bonuses for each rook when there is
|
||||
// no (friendly) pawn on the rook file.
|
||||
constexpr Score RookOnFile[] = { S(21, 4), S(47, 25) };
|
||||
constexpr Score RookOnFile[] = { S(19, 7), S(48, 29) };
|
||||
|
||||
// ThreatByMinor/ByRook[attacked PieceType] contains bonuses according to
|
||||
// which piece type attacks which one. Attacks on lesser pieces which are
|
||||
// pawn-defended are not considered.
|
||||
constexpr Score ThreatByMinor[PIECE_TYPE_NB] = {
|
||||
S(0, 0), S(6, 32), S(59, 41), S(79, 56), S(90, 119), S(79, 161)
|
||||
S(0, 0), S(5, 32), S(57, 41), S(77, 56), S(88, 119), S(79, 161)
|
||||
};
|
||||
|
||||
constexpr Score ThreatByRook[PIECE_TYPE_NB] = {
|
||||
S(0, 0), S(3, 44), S(38, 71), S(38, 61), S(0, 38), S(51, 38)
|
||||
S(0, 0), S(3, 46), S(37, 68), S(42, 60), S(0, 38), S(58, 41)
|
||||
};
|
||||
|
||||
// PassedRank[Rank] contains a bonus according to the rank of a passed pawn
|
||||
|
@ -128,25 +128,31 @@ namespace {
|
|||
|
||||
// Assorted bonuses and penalties
|
||||
constexpr Score BishopPawns = S( 3, 7);
|
||||
constexpr Score BishopOnKingRing = S( 24, 0);
|
||||
constexpr Score BishopXRayPawns = S( 4, 5);
|
||||
constexpr Score CorneredBishop = S( 50, 50);
|
||||
constexpr Score FlankAttacks = S( 8, 0);
|
||||
constexpr Score Hanging = S( 69, 36);
|
||||
constexpr Score KingProtector = S( 7, 8);
|
||||
constexpr Score KnightOnQueen = S( 16, 12);
|
||||
constexpr Score BishopKingProtector = S( 6, 9);
|
||||
constexpr Score KnightKingProtector = S( 8, 9);
|
||||
constexpr Score KnightOnQueen = S( 16, 11);
|
||||
constexpr Score LongDiagonalBishop = S( 45, 0);
|
||||
constexpr Score MinorBehindPawn = S( 18, 3);
|
||||
constexpr Score Outpost = S( 30, 21);
|
||||
constexpr Score KnightOutpost = S( 56, 36);
|
||||
constexpr Score BishopOutpost = S( 30, 23);
|
||||
constexpr Score ReachableOutpost = S( 31, 22);
|
||||
constexpr Score PassedFile = S( 11, 8);
|
||||
constexpr Score PawnlessFlank = S( 17, 95);
|
||||
constexpr Score RestrictedPiece = S( 7, 7);
|
||||
constexpr Score ReachableOutpost = S( 32, 10);
|
||||
constexpr Score RookOnQueenFile = S( 7, 6);
|
||||
constexpr Score RookOnKingRing = S( 16, 0);
|
||||
constexpr Score RookOnQueenFile = S( 5, 9);
|
||||
constexpr Score SliderOnQueen = S( 59, 18);
|
||||
constexpr Score ThreatByKing = S( 24, 89);
|
||||
constexpr Score ThreatByPawnPush = S( 48, 39);
|
||||
constexpr Score ThreatBySafePawn = S(173, 94);
|
||||
constexpr Score TrappedRook = S( 52, 10);
|
||||
constexpr Score WeakQueen = S( 49, 15);
|
||||
constexpr Score TrappedRook = S( 55, 13);
|
||||
constexpr Score WeakQueen = S( 51, 14);
|
||||
constexpr Score WeakQueenProtection = S( 15, 0);
|
||||
|
||||
#undef S
|
||||
|
||||
|
@ -167,8 +173,7 @@ namespace {
|
|||
template<Color Us> Score threats() const;
|
||||
template<Color Us> Score passed() const;
|
||||
template<Color Us> Score space() const;
|
||||
ScaleFactor scale_factor(Value eg) const;
|
||||
Score initiative(Score score) const;
|
||||
Value winnable(Score score) const;
|
||||
|
||||
const Position& pos;
|
||||
Material::Entry* me;
|
||||
|
@ -213,7 +218,7 @@ namespace {
|
|||
template<Tracing T> template<Color Us>
|
||||
void Evaluation<T>::initialize() {
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
constexpr Direction Up = pawn_push(Us);
|
||||
constexpr Direction Down = -Up;
|
||||
constexpr Bitboard LowRanks = (Us == WHITE ? Rank2BB | Rank3BB : Rank7BB | Rank6BB);
|
||||
|
@ -230,15 +235,15 @@ namespace {
|
|||
mobilityArea[Us] = ~(b | pos.pieces(Us, KING, QUEEN) | pos.blockers_for_king(Us) | pe->pawn_attacks(Them));
|
||||
|
||||
// Initialize attackedBy[] for king and pawns
|
||||
attackedBy[Us][KING] = pos.attacks_from<KING>(ksq);
|
||||
attackedBy[Us][KING] = attacks_bb<KING>(ksq);
|
||||
attackedBy[Us][PAWN] = pe->pawn_attacks(Us);
|
||||
attackedBy[Us][ALL_PIECES] = attackedBy[Us][KING] | attackedBy[Us][PAWN];
|
||||
attackedBy2[Us] = dblAttackByPawn | (attackedBy[Us][KING] & attackedBy[Us][PAWN]);
|
||||
|
||||
// Init our king safety tables
|
||||
Square s = make_square(clamp(file_of(ksq), FILE_B, FILE_G),
|
||||
clamp(rank_of(ksq), RANK_2, RANK_7));
|
||||
kingRing[Us] = PseudoAttacks[KING][s] | s;
|
||||
Square s = make_square(Utility::clamp(file_of(ksq), FILE_B, FILE_G),
|
||||
Utility::clamp(rank_of(ksq), RANK_2, RANK_7));
|
||||
kingRing[Us] = attacks_bb<KING>(s) | s;
|
||||
|
||||
kingAttackersCount[Them] = popcount(kingRing[Us] & pe->pawn_attacks(Them));
|
||||
kingAttacksCount[Them] = kingAttackersWeight[Them] = 0;
|
||||
|
@ -252,7 +257,7 @@ namespace {
|
|||
template<Tracing T> template<Color Us, PieceType Pt>
|
||||
Score Evaluation<T>::pieces() {
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
constexpr Direction Down = -pawn_push(Us);
|
||||
constexpr Bitboard OutpostRanks = (Us == WHITE ? Rank4BB | Rank5BB | Rank6BB
|
||||
: Rank5BB | Rank4BB | Rank3BB);
|
||||
|
@ -268,10 +273,10 @@ namespace {
|
|||
// Find attacked squares, including x-ray attacks for bishops and rooks
|
||||
b = Pt == BISHOP ? attacks_bb<BISHOP>(s, pos.pieces() ^ pos.pieces(QUEEN))
|
||||
: Pt == ROOK ? attacks_bb< ROOK>(s, pos.pieces() ^ pos.pieces(QUEEN) ^ pos.pieces(Us, ROOK))
|
||||
: pos.attacks_from<Pt>(s);
|
||||
: attacks_bb<Pt>(s, pos.pieces());
|
||||
|
||||
if (pos.blockers_for_king(Us) & s)
|
||||
b &= LineBB[pos.square<KING>(Us)][s];
|
||||
b &= line_bb(pos.square<KING>(Us), s);
|
||||
|
||||
attackedBy2[Us] |= attackedBy[Us][ALL_PIECES] & b;
|
||||
attackedBy[Us][Pt] |= b;
|
||||
|
@ -284,6 +289,12 @@ namespace {
|
|||
kingAttacksCount[Us] += popcount(b & attackedBy[Them][KING]);
|
||||
}
|
||||
|
||||
else if (Pt == ROOK && (file_bb(s) & kingRing[Them]))
|
||||
score += RookOnKingRing;
|
||||
|
||||
else if (Pt == BISHOP && (attacks_bb<BISHOP>(s, pos.pieces(PAWN)) & kingRing[Them]))
|
||||
score += BishopOnKingRing;
|
||||
|
||||
int mob = popcount(b & mobilityArea[Us]);
|
||||
|
||||
mobility[Us] += MobilityBonus[Pt - 2][mob];
|
||||
|
@ -293,26 +304,30 @@ namespace {
|
|||
// Bonus if piece is on an outpost square or can reach one
|
||||
bb = OutpostRanks & attackedBy[Us][PAWN] & ~pe->pawn_attacks_span(Them);
|
||||
if (bb & s)
|
||||
score += Outpost * (Pt == KNIGHT ? 2 : 1);
|
||||
|
||||
score += (Pt == KNIGHT) ? KnightOutpost : BishopOutpost;
|
||||
else if (Pt == KNIGHT && bb & b & ~pos.pieces(Us))
|
||||
score += ReachableOutpost;
|
||||
|
||||
// Knight and Bishop bonus for being right behind a pawn
|
||||
// Bonus for a knight or bishop shielded by pawn
|
||||
if (shift<Down>(pos.pieces(PAWN)) & s)
|
||||
score += MinorBehindPawn;
|
||||
|
||||
// Penalty if the piece is far from the king
|
||||
score -= KingProtector * distance(s, pos.square<KING>(Us));
|
||||
score -= (Pt == KNIGHT ? KnightKingProtector
|
||||
: BishopKingProtector) * distance(pos.square<KING>(Us), s);
|
||||
|
||||
if (Pt == BISHOP)
|
||||
{
|
||||
// Penalty according to number of pawns on the same color square as the
|
||||
// bishop, bigger when the center files are blocked with pawns.
|
||||
// Penalty according to the number of our pawns on the same color square as the
|
||||
// bishop, bigger when the center files are blocked with pawns and smaller
|
||||
// when the bishop is outside the pawn chain.
|
||||
Bitboard blocked = pos.pieces(Us, PAWN) & shift<Down>(pos.pieces());
|
||||
|
||||
score -= BishopPawns * pos.pawns_on_same_color_squares(Us, s)
|
||||
* (1 + popcount(blocked & CenterFiles));
|
||||
* (!(attackedBy[Us][PAWN] & s) + popcount(blocked & CenterFiles));
|
||||
|
||||
// Penalty for all enemy pawns x-rayed
|
||||
score -= BishopXRayPawns * popcount(attacks_bb<BISHOP>(s) & pos.pieces(Them, PAWN));
|
||||
|
||||
// Bonus for bishop on a long diagonal which can "see" both center squares
|
||||
if (more_than_one(attacks_bb<BISHOP>(s, pos.pieces(PAWN)) & Center))
|
||||
|
@ -371,7 +386,7 @@ namespace {
|
|||
template<Tracing T> template<Color Us>
|
||||
Score Evaluation<T>::king() const {
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
constexpr Bitboard Camp = (Us == WHITE ? AllSquares ^ Rank6BB ^ Rank7BB ^ Rank8BB
|
||||
: AllSquares ^ Rank1BB ^ Rank2BB ^ Rank3BB);
|
||||
|
||||
|
@ -397,9 +412,9 @@ namespace {
|
|||
|
||||
// Enemy rooks checks
|
||||
rookChecks = b1 & safe & attackedBy[Them][ROOK];
|
||||
|
||||
if (rookChecks)
|
||||
kingDanger += RookSafeCheck;
|
||||
kingDanger += more_than_one(rookChecks) ? RookSafeCheck * 175/100
|
||||
: RookSafeCheck;
|
||||
else
|
||||
unsafeChecks |= b1 & attackedBy[Them][ROOK];
|
||||
|
||||
|
@ -410,9 +425,9 @@ namespace {
|
|||
& safe
|
||||
& ~attackedBy[Us][QUEEN]
|
||||
& ~rookChecks;
|
||||
|
||||
if (queenChecks)
|
||||
kingDanger += QueenSafeCheck;
|
||||
kingDanger += more_than_one(queenChecks) ? QueenSafeCheck * 145/100
|
||||
: QueenSafeCheck;
|
||||
|
||||
// Enemy bishops checks: we count them only if they are from squares from
|
||||
// which we can't give a queen check, because queen checks are more valuable.
|
||||
|
@ -420,17 +435,17 @@ namespace {
|
|||
& attackedBy[Them][BISHOP]
|
||||
& safe
|
||||
& ~queenChecks;
|
||||
|
||||
if (bishopChecks)
|
||||
kingDanger += BishopSafeCheck;
|
||||
kingDanger += more_than_one(bishopChecks) ? BishopSafeCheck * 3/2
|
||||
: BishopSafeCheck;
|
||||
else
|
||||
unsafeChecks |= b2 & attackedBy[Them][BISHOP];
|
||||
|
||||
// Enemy knights checks
|
||||
knightChecks = pos.attacks_from<KNIGHT>(ksq) & attackedBy[Them][KNIGHT];
|
||||
|
||||
knightChecks = attacks_bb<KNIGHT>(ksq) & attackedBy[Them][KNIGHT];
|
||||
if (knightChecks & safe)
|
||||
kingDanger += KnightSafeCheck;
|
||||
kingDanger += more_than_one(knightChecks & safe) ? KnightSafeCheck * 162/100
|
||||
: KnightSafeCheck;
|
||||
else
|
||||
unsafeChecks |= knightChecks;
|
||||
|
||||
|
@ -479,7 +494,7 @@ namespace {
|
|||
template<Tracing T> template<Color Us>
|
||||
Score Evaluation<T>::threats() const {
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
constexpr Direction Up = pawn_push(Us);
|
||||
constexpr Bitboard TRank3BB = (Us == WHITE ? Rank3BB : Rank6BB);
|
||||
|
||||
|
@ -517,13 +532,15 @@ namespace {
|
|||
b = ~attackedBy[Them][ALL_PIECES]
|
||||
| (nonPawnEnemies & attackedBy2[Us]);
|
||||
score += Hanging * popcount(weak & b);
|
||||
|
||||
// Additional bonus if weak piece is only protected by a queen
|
||||
score += WeakQueenProtection * popcount(weak & attackedBy[Them][QUEEN]);
|
||||
}
|
||||
|
||||
// Bonus for restricting their piece moves
|
||||
b = attackedBy[Them][ALL_PIECES]
|
||||
& ~stronglyProtected
|
||||
& attackedBy[Us][ALL_PIECES];
|
||||
|
||||
score += RestrictedPiece * popcount(b);
|
||||
|
||||
// Protected or unattacked squares
|
||||
|
@ -551,12 +568,12 @@ namespace {
|
|||
Square s = pos.square<QUEEN>(Them);
|
||||
safe = mobilityArea[Us] & ~stronglyProtected;
|
||||
|
||||
b = attackedBy[Us][KNIGHT] & pos.attacks_from<KNIGHT>(s);
|
||||
b = attackedBy[Us][KNIGHT] & attacks_bb<KNIGHT>(s);
|
||||
|
||||
score += KnightOnQueen * popcount(b & safe);
|
||||
|
||||
b = (attackedBy[Us][BISHOP] & pos.attacks_from<BISHOP>(s))
|
||||
| (attackedBy[Us][ROOK ] & pos.attacks_from<ROOK >(s));
|
||||
b = (attackedBy[Us][BISHOP] & attacks_bb<BISHOP>(s, pos.pieces()))
|
||||
| (attackedBy[Us][ROOK ] & attacks_bb<ROOK >(s, pos.pieces()));
|
||||
|
||||
score += SliderOnQueen * popcount(b & safe & attackedBy2[Us]);
|
||||
}
|
||||
|
@ -573,18 +590,32 @@ namespace {
|
|||
template<Tracing T> template<Color Us>
|
||||
Score Evaluation<T>::passed() const {
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
constexpr Direction Up = pawn_push(Us);
|
||||
constexpr Direction Down = -Up;
|
||||
|
||||
auto king_proximity = [&](Color c, Square s) {
|
||||
return std::min(distance(pos.square<KING>(c), s), 5);
|
||||
};
|
||||
|
||||
Bitboard b, bb, squaresToQueen, unsafeSquares;
|
||||
Bitboard b, bb, squaresToQueen, unsafeSquares, blockedPassers, helpers;
|
||||
Score score = SCORE_ZERO;
|
||||
|
||||
b = pe->passed_pawns(Us);
|
||||
|
||||
blockedPassers = b & shift<Down>(pos.pieces(Them, PAWN));
|
||||
if (blockedPassers)
|
||||
{
|
||||
helpers = shift<Up>(pos.pieces(Us, PAWN))
|
||||
& ~pos.pieces(Them)
|
||||
& (~attackedBy2[Them] | attackedBy[Us][ALL_PIECES]);
|
||||
|
||||
// Remove blocked candidate passers that don't have help to pass
|
||||
b &= ~blockedPassers
|
||||
| shift<WEST>(helpers)
|
||||
| shift<EAST>(helpers);
|
||||
}
|
||||
|
||||
while (b)
|
||||
{
|
||||
Square s = pop_lsb(&b);
|
||||
|
@ -635,13 +666,7 @@ namespace {
|
|||
}
|
||||
} // r > RANK_3
|
||||
|
||||
// Scale down bonus for candidate passers which need more than one
|
||||
// pawn push to become passed, or have a pawn in front of them.
|
||||
if ( !pos.pawn_passed(Us, s + Up)
|
||||
|| (pos.pieces(PAWN) & (s + Up)))
|
||||
bonus = bonus / 2;
|
||||
|
||||
score += bonus - PassedFile * map_to_queenside(file_of(s));
|
||||
score += bonus - PassedFile * edge_distance(file_of(s));
|
||||
}
|
||||
|
||||
if (T)
|
||||
|
@ -664,7 +689,7 @@ namespace {
|
|||
if (pos.non_pawn_material() < SpaceThreshold)
|
||||
return SCORE_ZERO;
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
constexpr Direction Down = -pawn_push(Us);
|
||||
constexpr Bitboard SpaceMask =
|
||||
Us == WHITE ? CenterFiles & (Rank2BB | Rank3BB | Rank4BB)
|
||||
|
@ -681,7 +706,7 @@ namespace {
|
|||
behind |= shift<Down+Down>(behind);
|
||||
|
||||
int bonus = popcount(safe) + popcount(behind & safe & ~attackedBy[Them][ALL_PIECES]);
|
||||
int weight = pos.count<ALL_PIECES>(Us) - 1;
|
||||
int weight = pos.count<ALL_PIECES>(Us) - 3 + std::min(pe->blocked_count(), 9);
|
||||
Score score = make_score(bonus * weight * weight / 16, 0);
|
||||
|
||||
if (T)
|
||||
|
@ -691,56 +716,48 @@ namespace {
|
|||
}
|
||||
|
||||
|
||||
// Evaluation::initiative() computes the initiative correction value
|
||||
// for the position. It is a second order bonus/malus based on the
|
||||
// Evaluation::winnable() adjusts the mg and eg score components based on the
|
||||
// known attacking/defending status of the players.
|
||||
// A single value is derived from the mg and eg values and returned.
|
||||
|
||||
template<Tracing T>
|
||||
Score Evaluation<T>::initiative(Score score) const {
|
||||
|
||||
Value mg = mg_value(score);
|
||||
Value eg = eg_value(score);
|
||||
Value Evaluation<T>::winnable(Score score) const {
|
||||
|
||||
int outflanking = distance<File>(pos.square<KING>(WHITE), pos.square<KING>(BLACK))
|
||||
- distance<Rank>(pos.square<KING>(WHITE), pos.square<KING>(BLACK));
|
||||
|
||||
bool infiltration = rank_of(pos.square<KING>(WHITE)) > RANK_4
|
||||
|| rank_of(pos.square<KING>(BLACK)) < RANK_5;
|
||||
|
||||
bool pawnsOnBothFlanks = (pos.pieces(PAWN) & QueenSide)
|
||||
&& (pos.pieces(PAWN) & KingSide);
|
||||
|
||||
bool almostUnwinnable = !pe->passed_count()
|
||||
&& outflanking < 0
|
||||
bool almostUnwinnable = outflanking < 0
|
||||
&& !pawnsOnBothFlanks;
|
||||
|
||||
bool infiltration = rank_of(pos.square<KING>(WHITE)) > RANK_4
|
||||
|| rank_of(pos.square<KING>(BLACK)) < RANK_5;
|
||||
|
||||
// Compute the initiative bonus for the attacking side
|
||||
int complexity = 9 * pe->passed_count()
|
||||
+ 11 * pos.count<PAWN>()
|
||||
+ 12 * pos.count<PAWN>()
|
||||
+ 9 * outflanking
|
||||
+ 12 * infiltration
|
||||
+ 21 * pawnsOnBothFlanks
|
||||
+ 24 * infiltration
|
||||
+ 51 * !pos.non_pawn_material()
|
||||
- 43 * almostUnwinnable
|
||||
- 100 ;
|
||||
-110 ;
|
||||
|
||||
Value mg = mg_value(score);
|
||||
Value eg = eg_value(score);
|
||||
|
||||
// Now apply the bonus: note that we find the attacking side by extracting the
|
||||
// sign of the midgame or endgame values, and that we carefully cap the bonus
|
||||
// so that the midgame and endgame scores do not change sign after the bonus.
|
||||
int u = ((mg > 0) - (mg < 0)) * std::max(std::min(complexity + 50, 0), -abs(mg));
|
||||
int u = ((mg > 0) - (mg < 0)) * Utility::clamp(complexity + 50, -abs(mg), 0);
|
||||
int v = ((eg > 0) - (eg < 0)) * std::max(complexity, -abs(eg));
|
||||
|
||||
if (T)
|
||||
Trace::add(INITIATIVE, make_score(u, v));
|
||||
mg += u;
|
||||
eg += v;
|
||||
|
||||
return make_score(u, v);
|
||||
}
|
||||
|
||||
|
||||
// Evaluation::scale_factor() computes the scale factor for the winning side
|
||||
|
||||
template<Tracing T>
|
||||
ScaleFactor Evaluation<T>::scale_factor(Value eg) const {
|
||||
// Compute the scale factor for the winning side
|
||||
|
||||
Color strongSide = eg > VALUE_DRAW ? WHITE : BLACK;
|
||||
int sf = me->scale_factor(pos, strongSide);
|
||||
|
@ -748,16 +765,30 @@ namespace {
|
|||
// If scale is not already specific, scale down the endgame via general heuristics
|
||||
if (sf == SCALE_FACTOR_NORMAL)
|
||||
{
|
||||
if ( pos.opposite_bishops()
|
||||
&& pos.non_pawn_material() == 2 * BishopValueMg)
|
||||
sf = 22 ;
|
||||
if (pos.opposite_bishops())
|
||||
{
|
||||
if ( pos.non_pawn_material(WHITE) == BishopValueMg
|
||||
&& pos.non_pawn_material(BLACK) == BishopValueMg)
|
||||
sf = 18 + 4 * popcount(pe->passed_pawns(strongSide));
|
||||
else
|
||||
sf = std::min(sf, 36 + (pos.opposite_bishops() ? 2 : 7) * pos.count<PAWN>(strongSide));
|
||||
|
||||
sf = std::max(0, sf - (pos.rule50_count() - 12) / 4);
|
||||
sf = 22 + 3 * pos.count<ALL_PIECES>(strongSide);
|
||||
}
|
||||
else
|
||||
sf = std::min(sf, 36 + 7 * pos.count<PAWN>(strongSide));
|
||||
}
|
||||
|
||||
return ScaleFactor(sf);
|
||||
// Interpolate between the middlegame and (scaled by 'sf') endgame score
|
||||
v = mg * int(me->game_phase())
|
||||
+ eg * int(PHASE_MIDGAME - me->game_phase()) * ScaleFactor(sf) / SCALE_FACTOR_NORMAL;
|
||||
v /= PHASE_MIDGAME;
|
||||
|
||||
if (T)
|
||||
{
|
||||
Trace::add(WINNABLE, make_score(u, eg * ScaleFactor(sf) / SCALE_FACTOR_NORMAL - eg_value(score)));
|
||||
Trace::add(TOTAL, make_score(mg, eg * ScaleFactor(sf) / SCALE_FACTOR_NORMAL));
|
||||
}
|
||||
|
||||
return Value(v);
|
||||
}
|
||||
|
||||
|
||||
|
@ -797,7 +828,8 @@ namespace {
|
|||
initialize<WHITE>();
|
||||
initialize<BLACK>();
|
||||
|
||||
// Pieces should be evaluated first (populate attack tables)
|
||||
// Pieces evaluated first (also populates attackedBy, attackedBy2).
|
||||
// Note that the order of evaluation of the terms is left unspecified
|
||||
score += pieces<WHITE, KNIGHT>() - pieces<BLACK, KNIGHT>()
|
||||
+ pieces<WHITE, BISHOP>() - pieces<BLACK, BISHOP>()
|
||||
+ pieces<WHITE, ROOK >() - pieces<BLACK, ROOK >()
|
||||
|
@ -805,19 +837,14 @@ namespace {
|
|||
|
||||
score += mobility[WHITE] - mobility[BLACK];
|
||||
|
||||
// More complex interactions that require fully populated attack bitboards
|
||||
score += king< WHITE>() - king< BLACK>()
|
||||
+ threats<WHITE>() - threats<BLACK>()
|
||||
+ passed< WHITE>() - passed< BLACK>()
|
||||
+ space< WHITE>() - space< BLACK>();
|
||||
|
||||
score += initiative(score);
|
||||
|
||||
// Interpolate between a middlegame and a (scaled by 'sf') endgame score
|
||||
ScaleFactor sf = scale_factor(eg_value(score));
|
||||
v = mg_value(score) * int(me->game_phase())
|
||||
+ eg_value(score) * int(PHASE_MIDGAME - me->game_phase()) * sf / SCALE_FACTOR_NORMAL;
|
||||
|
||||
v /= PHASE_MIDGAME;
|
||||
// Derive single value from mg and eg parts of score
|
||||
v = winnable(score);
|
||||
|
||||
// In case of tracing add all remaining individual evaluation terms
|
||||
if (T)
|
||||
|
@ -826,11 +853,18 @@ namespace {
|
|||
Trace::add(IMBALANCE, me->imbalance());
|
||||
Trace::add(PAWN, pe->pawn_score(WHITE), pe->pawn_score(BLACK));
|
||||
Trace::add(MOBILITY, mobility[WHITE], mobility[BLACK]);
|
||||
Trace::add(TOTAL, score);
|
||||
}
|
||||
|
||||
return (pos.side_to_move() == WHITE ? v : -v) // Side to move point of view
|
||||
+ Eval::Tempo;
|
||||
// Evaluation grain
|
||||
v = (v / 16) * 16;
|
||||
|
||||
// Side to move point of view
|
||||
v = (pos.side_to_move() == WHITE ? v : -v) + Tempo;
|
||||
|
||||
// Damp down the evaluation linearly when shuffling
|
||||
v = v * (100 - pos.rule50_count()) / 100;
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
@ -878,11 +912,11 @@ std::string Eval::trace(const Position& pos) {
|
|||
<< " Threats | " << Term(THREAT)
|
||||
<< " Passed | " << Term(PASSED)
|
||||
<< " Space | " << Term(SPACE)
|
||||
<< " Initiative | " << Term(INITIATIVE)
|
||||
<< " Winnable | " << Term(WINNABLE)
|
||||
<< " ------------+-------------+-------------+------------\n"
|
||||
<< " Total | " << Term(TOTAL);
|
||||
|
||||
ss << "\nTotal evaluation: " << to_cp(v) << " (white side)\n";
|
||||
ss << "\nFinal evaluation: " << to_cp(v) << " (white side)\n";
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
|
|
|
@ -29,8 +29,6 @@ class Position;
|
|||
|
||||
namespace Eval {
|
||||
|
||||
constexpr Value Tempo = Value(28); // Must be visible to search
|
||||
|
||||
std::string trace(const Position& pos);
|
||||
|
||||
Value evaluate(const Position& pos);
|
||||
|
|
|
@ -21,12 +21,12 @@
|
|||
#include <iostream>
|
||||
|
||||
#include "bitboard.h"
|
||||
#include "endgame.h"
|
||||
#include "position.h"
|
||||
#include "search.h"
|
||||
#include "thread.h"
|
||||
#include "tt.h"
|
||||
#include "uci.h"
|
||||
#include "endgame.h"
|
||||
#include "syzygy/tbprobe.h"
|
||||
|
||||
namespace PSQT {
|
||||
|
@ -38,12 +38,13 @@ int main(int argc, char* argv[]) {
|
|||
std::cout << engine_info() << std::endl;
|
||||
|
||||
UCI::init(Options);
|
||||
Tune::init();
|
||||
PSQT::init();
|
||||
Bitboards::init();
|
||||
Position::init();
|
||||
Bitbases::init();
|
||||
Endgames::init();
|
||||
Threads.set(Options["Threads"]);
|
||||
Threads.set(size_t(Options["Threads"]));
|
||||
Search::clear(); // After threads are up
|
||||
|
||||
UCI::loop(argc, argv);
|
||||
|
|
|
@ -84,7 +84,7 @@ namespace {
|
|||
template<Color Us>
|
||||
int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
|
||||
int bonus = 0;
|
||||
|
||||
|
@ -129,7 +129,7 @@ Entry* probe(const Position& pos) {
|
|||
|
||||
Value npm_w = pos.non_pawn_material(WHITE);
|
||||
Value npm_b = pos.non_pawn_material(BLACK);
|
||||
Value npm = clamp(npm_w + npm_b, EndgameLimit, MidgameLimit);
|
||||
Value npm = Utility::clamp(npm_w + npm_b, EndgameLimit, MidgameLimit);
|
||||
|
||||
// Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME]
|
||||
e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit));
|
||||
|
|
|
@ -47,6 +47,11 @@ typedef bool(*fun3_t)(HANDLE, CONST GROUP_AFFINITY*, PGROUP_AFFINITY);
|
|||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
#if defined(__linux__) && !defined(__ANDROID__)
|
||||
#include <stdlib.h>
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
|
||||
#include "misc.h"
|
||||
#include "thread.h"
|
||||
|
||||
|
@ -56,7 +61,7 @@ namespace {
|
|||
|
||||
/// Version number. If Version is left empty, then compile date in the format
|
||||
/// DD-MM-YY and show in engine_info.
|
||||
const string Version = "11";
|
||||
const string Version = "";
|
||||
|
||||
/// Our fancy logging facility. The trick here is to replace cin.rdbuf() and
|
||||
/// cout.rdbuf() with two Tie objects that tie cin and cout to a file stream. We
|
||||
|
@ -142,7 +147,9 @@ const string engine_info(bool to_uci) {
|
|||
ss << setw(2) << day << setw(2) << (1 + months.find(month) / 4) << year.substr(2);
|
||||
}
|
||||
|
||||
ss << (to_uci ? "\nid author ": " by ")
|
||||
ss << (Is64Bit ? " 64" : "")
|
||||
<< (HasPext ? " BMI2" : (HasPopCnt ? " POPCNT" : ""))
|
||||
<< (to_uci ? "\nid author ": " by ")
|
||||
<< "T. Romstad, M. Costalba, J. Kiiski, G. Linscott";
|
||||
|
||||
return ss.str();
|
||||
|
@ -153,9 +160,9 @@ const string engine_info(bool to_uci) {
|
|||
|
||||
const std::string compiler_info() {
|
||||
|
||||
#define STRINGIFY2(x) #x
|
||||
#define STRINGIFY(x) STRINGIFY2(x)
|
||||
#define VER_STRING(major, minor, patch) STRINGIFY(major) "." STRINGIFY(minor) "." STRINGIFY(patch)
|
||||
#define stringify2(x) #x
|
||||
#define stringify(x) stringify2(x)
|
||||
#define make_version_string(major, minor, patch) stringify(major) "." stringify(minor) "." stringify(patch)
|
||||
|
||||
/// Predefined macros hell:
|
||||
///
|
||||
|
@ -169,20 +176,20 @@ const std::string compiler_info() {
|
|||
|
||||
#ifdef __clang__
|
||||
compiler += "clang++ ";
|
||||
compiler += VER_STRING(__clang_major__, __clang_minor__, __clang_patchlevel__);
|
||||
compiler += make_version_string(__clang_major__, __clang_minor__, __clang_patchlevel__);
|
||||
#elif __INTEL_COMPILER
|
||||
compiler += "Intel compiler ";
|
||||
compiler += "(version ";
|
||||
compiler += STRINGIFY(__INTEL_COMPILER) " update " STRINGIFY(__INTEL_COMPILER_UPDATE);
|
||||
compiler += stringify(__INTEL_COMPILER) " update " stringify(__INTEL_COMPILER_UPDATE);
|
||||
compiler += ")";
|
||||
#elif _MSC_VER
|
||||
compiler += "MSVC ";
|
||||
compiler += "(version ";
|
||||
compiler += STRINGIFY(_MSC_FULL_VER) "." STRINGIFY(_MSC_BUILD);
|
||||
compiler += stringify(_MSC_FULL_VER) "." stringify(_MSC_BUILD);
|
||||
compiler += ")";
|
||||
#elif __GNUC__
|
||||
compiler += "g++ (GNUC) ";
|
||||
compiler += VER_STRING(__GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);
|
||||
compiler += make_version_string(__GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);
|
||||
#else
|
||||
compiler += "Unknown compiler ";
|
||||
compiler += "(unknown version)";
|
||||
|
@ -286,6 +293,130 @@ void prefetch(void* addr) {
|
|||
|
||||
#endif
|
||||
|
||||
|
||||
/// aligned_ttmem_alloc will return suitably aligned memory, and if possible use large pages.
|
||||
/// The returned pointer is the aligned one, while the mem argument is the one that needs to be passed to free.
|
||||
/// With c++17 some of this functionality can be simplified.
|
||||
#if defined(__linux__) && !defined(__ANDROID__)
|
||||
|
||||
void* aligned_ttmem_alloc(size_t allocSize, void*& mem) {
|
||||
|
||||
constexpr size_t alignment = 2 * 1024 * 1024; // assumed 2MB page sizes
|
||||
size_t size = ((allocSize + alignment - 1) / alignment) * alignment; // multiple of alignment
|
||||
if (posix_memalign(&mem, alignment, size))
|
||||
mem = nullptr;
|
||||
madvise(mem, allocSize, MADV_HUGEPAGE);
|
||||
return mem;
|
||||
}
|
||||
|
||||
#elif defined(_WIN64)
|
||||
|
||||
static void* aligned_ttmem_alloc_large_pages(size_t allocSize) {
|
||||
|
||||
HANDLE hProcessToken { };
|
||||
LUID luid { };
|
||||
void* mem = nullptr;
|
||||
|
||||
const size_t largePageSize = GetLargePageMinimum();
|
||||
if (!largePageSize)
|
||||
return nullptr;
|
||||
|
||||
// We need SeLockMemoryPrivilege, so try to enable it for the process
|
||||
if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hProcessToken))
|
||||
return nullptr;
|
||||
|
||||
if (LookupPrivilegeValue(NULL, SE_LOCK_MEMORY_NAME, &luid))
|
||||
{
|
||||
TOKEN_PRIVILEGES tp { };
|
||||
TOKEN_PRIVILEGES prevTp { };
|
||||
DWORD prevTpLen = 0;
|
||||
|
||||
tp.PrivilegeCount = 1;
|
||||
tp.Privileges[0].Luid = luid;
|
||||
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
|
||||
|
||||
// Try to enable SeLockMemoryPrivilege. Note that even if AdjustTokenPrivileges() succeeds,
|
||||
// we still need to query GetLastError() to ensure that the privileges were actually obtained...
|
||||
if (AdjustTokenPrivileges(
|
||||
hProcessToken, FALSE, &tp, sizeof(TOKEN_PRIVILEGES), &prevTp, &prevTpLen) &&
|
||||
GetLastError() == ERROR_SUCCESS)
|
||||
{
|
||||
// round up size to full pages and allocate
|
||||
allocSize = (allocSize + largePageSize - 1) & ~size_t(largePageSize - 1);
|
||||
mem = VirtualAlloc(
|
||||
NULL, allocSize, MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES, PAGE_READWRITE);
|
||||
|
||||
// privilege no longer needed, restore previous state
|
||||
AdjustTokenPrivileges(hProcessToken, FALSE, &prevTp, 0, NULL, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
CloseHandle(hProcessToken);
|
||||
|
||||
return mem;
|
||||
}
|
||||
|
||||
void* aligned_ttmem_alloc(size_t allocSize, void*& mem) {
|
||||
|
||||
static bool firstCall = true;
|
||||
|
||||
// try to allocate large pages
|
||||
mem = aligned_ttmem_alloc_large_pages(allocSize);
|
||||
|
||||
// Suppress info strings on the first call. The first call occurs before 'uci'
|
||||
// is received and in that case this output confuses some GUIs.
|
||||
if (!firstCall)
|
||||
{
|
||||
if (mem)
|
||||
sync_cout << "info string Hash table allocation: Windows large pages used." << sync_endl;
|
||||
else
|
||||
sync_cout << "info string Hash table allocation: Windows large pages not used." << sync_endl;
|
||||
}
|
||||
firstCall = false;
|
||||
|
||||
// fall back to regular, page aligned, allocation if necessary
|
||||
if (!mem)
|
||||
mem = VirtualAlloc(NULL, allocSize, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
|
||||
|
||||
return mem;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void* aligned_ttmem_alloc(size_t allocSize, void*& mem) {
|
||||
|
||||
constexpr size_t alignment = 64; // assumed cache line size
|
||||
size_t size = allocSize + alignment - 1; // allocate some extra space
|
||||
mem = malloc(size);
|
||||
void* ret = reinterpret_cast<void*>((uintptr_t(mem) + alignment - 1) & ~uintptr_t(alignment - 1));
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/// aligned_ttmem_free will free the previously allocated ttmem
|
||||
#if defined(_WIN64)
|
||||
|
||||
void aligned_ttmem_free(void* mem) {
|
||||
|
||||
if (mem && !VirtualFree(mem, 0, MEM_RELEASE))
|
||||
{
|
||||
DWORD err = GetLastError();
|
||||
std::cerr << "Failed to free transposition table. Error code: 0x" <<
|
||||
std::hex << err << std::dec << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void aligned_ttmem_free(void *mem) {
|
||||
free(mem);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
namespace WinProcGroup {
|
||||
|
||||
#ifndef _WIN32
|
||||
|
|
|
@ -33,6 +33,8 @@ const std::string engine_info(bool to_uci = false);
|
|||
const std::string compiler_info();
|
||||
void prefetch(void* addr);
|
||||
void start_logger(const std::string& fname);
|
||||
void* aligned_ttmem_alloc(size_t size, void*& mem);
|
||||
void aligned_ttmem_free(void* mem); // nop if mem == nullptr
|
||||
|
||||
void dbg_hit_on(bool b);
|
||||
void dbg_hit_on(bool c, bool b);
|
||||
|
@ -63,6 +65,14 @@ std::ostream& operator<<(std::ostream&, SyncCout);
|
|||
#define sync_cout std::cout << IO_LOCK
|
||||
#define sync_endl std::endl << IO_UNLOCK
|
||||
|
||||
namespace Utility {
|
||||
|
||||
/// Clamp a value between lo and hi. Available in c++17.
|
||||
template<class T> constexpr const T& clamp(const T& v, const T& lo, const T& hi) {
|
||||
return v < lo ? lo : v > hi ? hi : v;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/// xorshift64star Pseudo-Random Number Generator
|
||||
/// This class is based on original code written and dedicated
|
||||
|
@ -100,6 +110,19 @@ public:
|
|||
{ return T(rand64() & rand64() & rand64()); }
|
||||
};
|
||||
|
||||
inline uint64_t mul_hi64(uint64_t a, uint64_t b) {
|
||||
#if defined(__GNUC__) && defined(IS_64BIT)
|
||||
__extension__ typedef unsigned __int128 uint128;
|
||||
return ((uint128)a * (uint128)b) >> 64;
|
||||
#else
|
||||
uint64_t aL = (uint32_t)a, aH = a >> 32;
|
||||
uint64_t bL = (uint32_t)b, bH = b >> 32;
|
||||
uint64_t c1 = (aL * bL) >> 32;
|
||||
uint64_t c2 = aH * bL + c1;
|
||||
uint64_t c3 = aL * bH + (uint32_t)c2;
|
||||
return aH * bH + (c2 >> 32) + (c3 >> 32);
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Under Windows it is not possible for a process to run on more than one
|
||||
/// logical processor group. This usually means to be limited to use max 64
|
||||
|
|
|
@ -40,7 +40,7 @@ namespace {
|
|||
|
||||
// Knight promotion is the only promotion that can give a direct check
|
||||
// that's not already included in the queen promotion.
|
||||
if (Type == QUIET_CHECKS && (PseudoAttacks[KNIGHT][to] & ksq))
|
||||
if (Type == QUIET_CHECKS && (attacks_bb<KNIGHT>(to) & ksq))
|
||||
*moveList++ = make<PROMOTION>(to - D, to, KNIGHT);
|
||||
else
|
||||
(void)ksq; // Silence a warning under MSVC
|
||||
|
@ -52,8 +52,7 @@ namespace {
|
|||
template<Color Us, GenType Type>
|
||||
ExtMove* generate_pawn_moves(const Position& pos, ExtMove* moveList, Bitboard target) {
|
||||
|
||||
// Compute some compile time parameters relative to the white side
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
constexpr Bitboard TRank7BB = (Us == WHITE ? Rank7BB : Rank2BB);
|
||||
constexpr Bitboard TRank3BB = (Us == WHITE ? Rank3BB : Rank6BB);
|
||||
constexpr Direction Up = pawn_push(Us);
|
||||
|
@ -85,8 +84,8 @@ namespace {
|
|||
|
||||
if (Type == QUIET_CHECKS)
|
||||
{
|
||||
b1 &= pos.attacks_from<PAWN>(ksq, Them);
|
||||
b2 &= pos.attacks_from<PAWN>(ksq, Them);
|
||||
b1 &= pawn_attacks_bb(Them, ksq);
|
||||
b2 &= pawn_attacks_bb(Them, ksq);
|
||||
|
||||
// Add pawn pushes which give discovered check. This is possible only
|
||||
// if the pawn is not on the same file as the enemy king, because we
|
||||
|
@ -167,7 +166,7 @@ namespace {
|
|||
if (Type == EVASIONS && !(target & (pos.ep_square() - Up)))
|
||||
return moveList;
|
||||
|
||||
b1 = pawnsNotOn7 & pos.attacks_from<PAWN>(pos.ep_square(), Them);
|
||||
b1 = pawnsNotOn7 & pawn_attacks_bb(Them, pos.ep_square());
|
||||
|
||||
assert(b1);
|
||||
|
||||
|
@ -180,27 +179,26 @@ namespace {
|
|||
}
|
||||
|
||||
|
||||
template<PieceType Pt, bool Checks>
|
||||
ExtMove* generate_moves(const Position& pos, ExtMove* moveList, Color us,
|
||||
Bitboard target) {
|
||||
template<Color Us, PieceType Pt, bool Checks>
|
||||
ExtMove* generate_moves(const Position& pos, ExtMove* moveList, Bitboard target) {
|
||||
|
||||
static_assert(Pt != KING && Pt != PAWN, "Unsupported piece type in generate_moves()");
|
||||
|
||||
const Square* pl = pos.squares<Pt>(us);
|
||||
const Square* pl = pos.squares<Pt>(Us);
|
||||
|
||||
for (Square from = *pl; from != SQ_NONE; from = *++pl)
|
||||
{
|
||||
if (Checks)
|
||||
{
|
||||
if ( (Pt == BISHOP || Pt == ROOK || Pt == QUEEN)
|
||||
&& !(PseudoAttacks[Pt][from] & target & pos.check_squares(Pt)))
|
||||
&& !(attacks_bb<Pt>(from) & target & pos.check_squares(Pt)))
|
||||
continue;
|
||||
|
||||
if (pos.blockers_for_king(~us) & from)
|
||||
if (pos.blockers_for_king(~Us) & from)
|
||||
continue;
|
||||
}
|
||||
|
||||
Bitboard b = pos.attacks_from<Pt>(from) & target;
|
||||
Bitboard b = attacks_bb<Pt>(from, pos.pieces()) & target;
|
||||
|
||||
if (Checks)
|
||||
b &= pos.check_squares(Pt);
|
||||
|
@ -214,33 +212,49 @@ namespace {
|
|||
|
||||
|
||||
template<Color Us, GenType Type>
|
||||
ExtMove* generate_all(const Position& pos, ExtMove* moveList, Bitboard target) {
|
||||
|
||||
constexpr CastlingRights OO = Us & KING_SIDE;
|
||||
constexpr CastlingRights OOO = Us & QUEEN_SIDE;
|
||||
ExtMove* generate_all(const Position& pos, ExtMove* moveList) {
|
||||
constexpr bool Checks = Type == QUIET_CHECKS; // Reduce template instantations
|
||||
Bitboard target;
|
||||
|
||||
switch (Type)
|
||||
{
|
||||
case CAPTURES:
|
||||
target = pos.pieces(~Us);
|
||||
break;
|
||||
case QUIETS:
|
||||
case QUIET_CHECKS:
|
||||
target = ~pos.pieces();
|
||||
break;
|
||||
case EVASIONS:
|
||||
{
|
||||
Square checksq = lsb(pos.checkers());
|
||||
target = between_bb(pos.square<KING>(Us), checksq) | checksq;
|
||||
break;
|
||||
}
|
||||
case NON_EVASIONS:
|
||||
target = ~pos.pieces(Us);
|
||||
break;
|
||||
default:
|
||||
static_assert(true, "Unsupported type in generate_all()");
|
||||
}
|
||||
|
||||
moveList = generate_pawn_moves<Us, Type>(pos, moveList, target);
|
||||
moveList = generate_moves<KNIGHT, Checks>(pos, moveList, Us, target);
|
||||
moveList = generate_moves<BISHOP, Checks>(pos, moveList, Us, target);
|
||||
moveList = generate_moves< ROOK, Checks>(pos, moveList, Us, target);
|
||||
moveList = generate_moves< QUEEN, Checks>(pos, moveList, Us, target);
|
||||
moveList = generate_moves<Us, KNIGHT, Checks>(pos, moveList, target);
|
||||
moveList = generate_moves<Us, BISHOP, Checks>(pos, moveList, target);
|
||||
moveList = generate_moves<Us, ROOK, Checks>(pos, moveList, target);
|
||||
moveList = generate_moves<Us, QUEEN, Checks>(pos, moveList, target);
|
||||
|
||||
if (Type != QUIET_CHECKS && Type != EVASIONS)
|
||||
{
|
||||
Square ksq = pos.square<KING>(Us);
|
||||
Bitboard b = pos.attacks_from<KING>(ksq) & target;
|
||||
Bitboard b = attacks_bb<KING>(ksq) & target;
|
||||
while (b)
|
||||
*moveList++ = make_move(ksq, pop_lsb(&b));
|
||||
|
||||
if (Type != CAPTURES && pos.can_castle(CastlingRights(OO | OOO)))
|
||||
{
|
||||
if (!pos.castling_impeded(OO) && pos.can_castle(OO))
|
||||
*moveList++ = make<CASTLING>(ksq, pos.castling_rook_square(OO));
|
||||
|
||||
if (!pos.castling_impeded(OOO) && pos.can_castle(OOO))
|
||||
*moveList++ = make<CASTLING>(ksq, pos.castling_rook_square(OOO));
|
||||
}
|
||||
if ((Type != CAPTURES) && pos.can_castle(Us & ANY_CASTLING))
|
||||
for(CastlingRights cr : { Us & KING_SIDE, Us & QUEEN_SIDE } )
|
||||
if (!pos.castling_impeded(cr) && pos.can_castle(cr))
|
||||
*moveList++ = make<CASTLING>(ksq, pos.castling_rook_square(cr));
|
||||
}
|
||||
|
||||
return moveList;
|
||||
|
@ -263,12 +277,8 @@ ExtMove* generate(const Position& pos, ExtMove* moveList) {
|
|||
|
||||
Color us = pos.side_to_move();
|
||||
|
||||
Bitboard target = Type == CAPTURES ? pos.pieces(~us)
|
||||
: Type == QUIETS ? ~pos.pieces()
|
||||
: Type == NON_EVASIONS ? ~pos.pieces(us) : 0;
|
||||
|
||||
return us == WHITE ? generate_all<WHITE, Type>(pos, moveList, target)
|
||||
: generate_all<BLACK, Type>(pos, moveList, target);
|
||||
return us == WHITE ? generate_all<WHITE, Type>(pos, moveList)
|
||||
: generate_all<BLACK, Type>(pos, moveList);
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
|
@ -285,27 +295,24 @@ ExtMove* generate<QUIET_CHECKS>(const Position& pos, ExtMove* moveList) {
|
|||
assert(!pos.checkers());
|
||||
|
||||
Color us = pos.side_to_move();
|
||||
Bitboard dc = pos.blockers_for_king(~us) & pos.pieces(us);
|
||||
Bitboard dc = pos.blockers_for_king(~us) & pos.pieces(us) & ~pos.pieces(PAWN);
|
||||
|
||||
while (dc)
|
||||
{
|
||||
Square from = pop_lsb(&dc);
|
||||
PieceType pt = type_of(pos.piece_on(from));
|
||||
|
||||
if (pt == PAWN)
|
||||
continue; // Will be generated together with direct checks
|
||||
|
||||
Bitboard b = pos.attacks_from(pt, from) & ~pos.pieces();
|
||||
Bitboard b = attacks_bb(pt, from, pos.pieces()) & ~pos.pieces();
|
||||
|
||||
if (pt == KING)
|
||||
b &= ~PseudoAttacks[QUEEN][pos.square<KING>(~us)];
|
||||
b &= ~attacks_bb<QUEEN>(pos.square<KING>(~us));
|
||||
|
||||
while (b)
|
||||
*moveList++ = make_move(from, pop_lsb(&b));
|
||||
}
|
||||
|
||||
return us == WHITE ? generate_all<WHITE, QUIET_CHECKS>(pos, moveList, ~pos.pieces())
|
||||
: generate_all<BLACK, QUIET_CHECKS>(pos, moveList, ~pos.pieces());
|
||||
return us == WHITE ? generate_all<WHITE, QUIET_CHECKS>(pos, moveList)
|
||||
: generate_all<BLACK, QUIET_CHECKS>(pos, moveList);
|
||||
}
|
||||
|
||||
|
||||
|
@ -325,13 +332,10 @@ ExtMove* generate<EVASIONS>(const Position& pos, ExtMove* moveList) {
|
|||
// the king evasions in order to skip known illegal moves, which avoids any
|
||||
// useless legality checks later on.
|
||||
while (sliders)
|
||||
{
|
||||
Square checksq = pop_lsb(&sliders);
|
||||
sliderAttacks |= LineBB[checksq][ksq] ^ checksq;
|
||||
}
|
||||
sliderAttacks |= line_bb(ksq, pop_lsb(&sliders)) & ~pos.checkers();
|
||||
|
||||
// Generate evasions for king, capture and non capture moves
|
||||
Bitboard b = pos.attacks_from<KING>(ksq) & ~pos.pieces(us) & ~sliderAttacks;
|
||||
Bitboard b = attacks_bb<KING>(ksq) & ~pos.pieces(us) & ~sliderAttacks;
|
||||
while (b)
|
||||
*moveList++ = make_move(ksq, pop_lsb(&b));
|
||||
|
||||
|
@ -339,11 +343,8 @@ ExtMove* generate<EVASIONS>(const Position& pos, ExtMove* moveList) {
|
|||
return moveList; // Double check, only a king move can save the day
|
||||
|
||||
// Generate blocking evasions or captures of the checking piece
|
||||
Square checksq = lsb(pos.checkers());
|
||||
Bitboard target = between_bb(checksq, ksq) | checksq;
|
||||
|
||||
return us == WHITE ? generate_all<WHITE, EVASIONS>(pos, moveList, target)
|
||||
: generate_all<BLACK, EVASIONS>(pos, moveList, target);
|
||||
return us == WHITE ? generate_all<WHITE, EVASIONS>(pos, moveList)
|
||||
: generate_all<BLACK, EVASIONS>(pos, moveList);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -56,45 +56,39 @@ namespace {
|
|||
/// ordering is at the current node.
|
||||
|
||||
/// MovePicker constructor for the main search
|
||||
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh,
|
||||
const CapturePieceToHistory* cph, const PieceToHistory** ch, Move cm, Move* killers)
|
||||
: pos(p), mainHistory(mh), captureHistory(cph), continuationHistory(ch),
|
||||
refutations{{killers[0], 0}, {killers[1], 0}, {cm, 0}}, depth(d) {
|
||||
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh, const LowPlyHistory* lp,
|
||||
const CapturePieceToHistory* cph, const PieceToHistory** ch, Move cm, Move* killers, int pl)
|
||||
: pos(p), mainHistory(mh), lowPlyHistory(lp), captureHistory(cph), continuationHistory(ch),
|
||||
ttMove(ttm), refutations{{killers[0], 0}, {killers[1], 0}, {cm, 0}}, depth(d), ply(pl) {
|
||||
|
||||
assert(d > 0);
|
||||
|
||||
stage = pos.checkers() ? EVASION_TT : MAIN_TT;
|
||||
ttMove = ttm && pos.pseudo_legal(ttm) ? ttm : MOVE_NONE;
|
||||
stage += (ttMove == MOVE_NONE);
|
||||
stage = (pos.checkers() ? EVASION_TT : MAIN_TT) +
|
||||
!(ttm && pos.pseudo_legal(ttm));
|
||||
}
|
||||
|
||||
/// MovePicker constructor for quiescence search
|
||||
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, const ButterflyHistory* mh,
|
||||
const CapturePieceToHistory* cph, const PieceToHistory** ch, Square rs)
|
||||
: pos(p), mainHistory(mh), captureHistory(cph), continuationHistory(ch), recaptureSquare(rs), depth(d) {
|
||||
: pos(p), mainHistory(mh), captureHistory(cph), continuationHistory(ch), ttMove(ttm), recaptureSquare(rs), depth(d) {
|
||||
|
||||
assert(d <= 0);
|
||||
|
||||
stage = pos.checkers() ? EVASION_TT : QSEARCH_TT;
|
||||
ttMove = ttm
|
||||
&& (depth > DEPTH_QS_RECAPTURES || to_sq(ttm) == recaptureSquare)
|
||||
&& pos.pseudo_legal(ttm) ? ttm : MOVE_NONE;
|
||||
stage += (ttMove == MOVE_NONE);
|
||||
stage = (pos.checkers() ? EVASION_TT : QSEARCH_TT) +
|
||||
!(ttm && (depth > DEPTH_QS_RECAPTURES || to_sq(ttm) == recaptureSquare)
|
||||
&& pos.pseudo_legal(ttm));
|
||||
}
|
||||
|
||||
/// MovePicker constructor for ProbCut: we generate captures with SEE greater
|
||||
/// than or equal to the given threshold.
|
||||
MovePicker::MovePicker(const Position& p, Move ttm, Value th, const CapturePieceToHistory* cph)
|
||||
: pos(p), captureHistory(cph), threshold(th) {
|
||||
: pos(p), captureHistory(cph), ttMove(ttm), threshold(th) {
|
||||
|
||||
assert(!pos.checkers());
|
||||
|
||||
stage = PROBCUT_TT;
|
||||
ttMove = ttm
|
||||
&& pos.capture(ttm)
|
||||
stage = PROBCUT_TT + !(ttm && pos.capture(ttm)
|
||||
&& pos.pseudo_legal(ttm)
|
||||
&& pos.see_ge(ttm, threshold) ? ttm : MOVE_NONE;
|
||||
stage += (ttMove == MOVE_NONE);
|
||||
&& pos.see_ge(ttm, threshold));
|
||||
}
|
||||
|
||||
/// MovePicker::score() assigns a numerical value to each move in a list, used
|
||||
|
@ -115,7 +109,8 @@ void MovePicker::score() {
|
|||
+ 2 * (*continuationHistory[0])[pos.moved_piece(m)][to_sq(m)]
|
||||
+ 2 * (*continuationHistory[1])[pos.moved_piece(m)][to_sq(m)]
|
||||
+ 2 * (*continuationHistory[3])[pos.moved_piece(m)][to_sq(m)]
|
||||
+ (*continuationHistory[5])[pos.moved_piece(m)][to_sq(m)];
|
||||
+ (*continuationHistory[5])[pos.moved_piece(m)][to_sq(m)]
|
||||
+ (ply < MAX_LPH ? std::min(4, depth / 3) * (*lowPlyHistory)[ply][from_to(m)] : 0);
|
||||
|
||||
else // Type == EVASIONS
|
||||
{
|
||||
|
@ -174,7 +169,7 @@ top:
|
|||
|
||||
case GOOD_CAPTURE:
|
||||
if (select<Best>([&](){
|
||||
return pos.see_ge(*cur, Value(-55 * cur->value / 1024)) ?
|
||||
return pos.see_ge(*cur, Value(-69 * cur->value / 1024)) ?
|
||||
// Move losing capture to endBadCaptures to be tried later
|
||||
true : (*endBadCaptures++ = *cur, false); }))
|
||||
return *(cur - 1);
|
||||
|
|
|
@ -88,6 +88,12 @@ enum StatsType { NoCaptures, Captures };
|
|||
/// the move's from and to squares, see www.chessprogramming.org/Butterfly_Boards
|
||||
typedef Stats<int16_t, 10692, COLOR_NB, int(SQUARE_NB) * int(SQUARE_NB)> ButterflyHistory;
|
||||
|
||||
/// LowPlyHistory at higher depths records successful quiet moves on plies 0 to 3
|
||||
/// and quiet moves which are/were in the PV (ttPv)
|
||||
/// It get cleared with each new search and get filled during iterative deepening
|
||||
constexpr int MAX_LPH = 4;
|
||||
typedef Stats<int16_t, 10692, MAX_LPH, int(SQUARE_NB) * int(SQUARE_NB)> LowPlyHistory;
|
||||
|
||||
/// CounterMoveHistory stores counter moves indexed by [piece][to] of the previous
|
||||
/// move, see www.chessprogramming.org/Countermove_Heuristic
|
||||
typedef Stats<Move, NOT_USED, PIECE_NB, SQUARE_NB> CounterMoveHistory;
|
||||
|
@ -123,10 +129,12 @@ public:
|
|||
const PieceToHistory**,
|
||||
Square);
|
||||
MovePicker(const Position&, Move, Depth, const ButterflyHistory*,
|
||||
const LowPlyHistory*,
|
||||
const CapturePieceToHistory*,
|
||||
const PieceToHistory**,
|
||||
Move,
|
||||
Move*);
|
||||
Move*,
|
||||
int);
|
||||
Move next_move(bool skipQuiets = false);
|
||||
|
||||
private:
|
||||
|
@ -137,6 +145,7 @@ private:
|
|||
|
||||
const Position& pos;
|
||||
const ButterflyHistory* mainHistory;
|
||||
const LowPlyHistory* lowPlyHistory;
|
||||
const CapturePieceToHistory* captureHistory;
|
||||
const PieceToHistory** continuationHistory;
|
||||
Move ttMove;
|
||||
|
@ -145,6 +154,7 @@ private:
|
|||
Square recaptureSquare;
|
||||
Value threshold;
|
||||
Depth depth;
|
||||
int ply;
|
||||
ExtMove moves[MAX_MOVES];
|
||||
};
|
||||
|
||||
|
|
|
@ -33,12 +33,13 @@ namespace {
|
|||
|
||||
// Pawn penalties
|
||||
constexpr Score Backward = S( 9, 24);
|
||||
constexpr Score BlockedStorm = S(82, 82);
|
||||
constexpr Score Doubled = S(11, 56);
|
||||
constexpr Score Isolated = S( 5, 15);
|
||||
constexpr Score WeakLever = S( 0, 56);
|
||||
constexpr Score WeakUnopposed = S(13, 27);
|
||||
|
||||
constexpr Score BlockedStorm[RANK_NB] = {S( 0, 0), S( 0, 0), S( 76, 78), S(-10, 15), S(-7, 10), S(-4, 6), S(-1, 2)};
|
||||
|
||||
// Connected pawn bonus
|
||||
constexpr int Connected[RANK_NB] = { 0, 7, 8, 12, 29, 48, 86 };
|
||||
|
||||
|
@ -68,7 +69,7 @@ namespace {
|
|||
template<Color Us>
|
||||
Score evaluate(const Position& pos, Pawns::Entry* e) {
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
constexpr Direction Up = pawn_push(Us);
|
||||
|
||||
Bitboard neighbours, stoppers, support, phalanx, opposed;
|
||||
|
@ -86,6 +87,7 @@ namespace {
|
|||
e->passedPawns[Us] = 0;
|
||||
e->kingSquares[Us] = SQ_NONE;
|
||||
e->pawnAttacks[Us] = e->pawnAttacksSpan[Us] = pawn_attacks_bb<Us>(ourPawns);
|
||||
e->blockedCount += popcount(shift<Up>(ourPawns) & (theirPawns | doubleAttackThem));
|
||||
|
||||
// Loop through all pawns of the current color and score each pawn
|
||||
while ((s = *pl++) != SQ_NONE)
|
||||
|
@ -98,8 +100,8 @@ namespace {
|
|||
opposed = theirPawns & forward_file_bb(Us, s);
|
||||
blocked = theirPawns & (s + Up);
|
||||
stoppers = theirPawns & passed_pawn_span(Us, s);
|
||||
lever = theirPawns & PawnAttacks[Us][s];
|
||||
leverPush = theirPawns & PawnAttacks[Us][s + Up];
|
||||
lever = theirPawns & pawn_attacks_bb(Us, s);
|
||||
leverPush = theirPawns & pawn_attacks_bb(Us, s + Up);
|
||||
doubled = ourPawns & (s - Up);
|
||||
neighbours = ourPawns & adjacent_files_bb(s);
|
||||
phalanx = neighbours & rank_bb(s);
|
||||
|
@ -118,12 +120,15 @@ namespace {
|
|||
// (a) there is no stoppers except some levers
|
||||
// (b) the only stoppers are the leverPush, but we outnumber them
|
||||
// (c) there is only one front stopper which can be levered.
|
||||
// (Refined in Evaluation::passed)
|
||||
passed = !(stoppers ^ lever)
|
||||
|| ( !(stoppers ^ leverPush)
|
||||
&& popcount(phalanx) >= popcount(leverPush))
|
||||
|| ( stoppers == blocked && r >= RANK_5
|
||||
&& (shift<Up>(support) & ~(theirPawns | doubleAttackThem)));
|
||||
|
||||
passed &= !(forward_file_bb(Us, s) & ourPawns);
|
||||
|
||||
// Passed pawns will be properly scored later in evaluation when we have
|
||||
// full attack info.
|
||||
if (passed)
|
||||
|
@ -132,15 +137,22 @@ namespace {
|
|||
// Score this pawn
|
||||
if (support | phalanx)
|
||||
{
|
||||
int v = Connected[r] * (2 + bool(phalanx) - bool(opposed))
|
||||
int v = Connected[r] * (4 + 2 * bool(phalanx) - 2 * bool(opposed) - bool(blocked)) / 2
|
||||
+ 21 * popcount(support);
|
||||
|
||||
score += make_score(v, v * (r - 2) / 4);
|
||||
}
|
||||
|
||||
else if (!neighbours)
|
||||
{
|
||||
if ( opposed
|
||||
&& (ourPawns & forward_file_bb(Them, s))
|
||||
&& !(theirPawns & adjacent_files_bb(s)))
|
||||
score -= Doubled;
|
||||
else
|
||||
score -= Isolated
|
||||
+ WeakUnopposed * !opposed;
|
||||
}
|
||||
|
||||
else if (backward)
|
||||
score -= Backward
|
||||
|
@ -172,6 +184,7 @@ Entry* probe(const Position& pos) {
|
|||
return e;
|
||||
|
||||
e->key = key;
|
||||
e->blockedCount = 0;
|
||||
e->scores[WHITE] = evaluate<WHITE>(pos, e);
|
||||
e->scores[BLACK] = evaluate<BLACK>(pos, e);
|
||||
|
||||
|
@ -185,15 +198,15 @@ Entry* probe(const Position& pos) {
|
|||
template<Color Us>
|
||||
Score Entry::evaluate_shelter(const Position& pos, Square ksq) {
|
||||
|
||||
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
constexpr Color Them = ~Us;
|
||||
|
||||
Bitboard b = pos.pieces(PAWN) & ~forward_ranks_bb(Them, ksq);
|
||||
Bitboard ourPawns = b & pos.pieces(Us);
|
||||
Bitboard ourPawns = b & pos.pieces(Us) & ~pawnAttacks[Them];
|
||||
Bitboard theirPawns = b & pos.pieces(Them);
|
||||
|
||||
Score bonus = make_score(5, 5);
|
||||
|
||||
File center = clamp(file_of(ksq), FILE_B, FILE_G);
|
||||
File center = Utility::clamp(file_of(ksq), FILE_B, FILE_G);
|
||||
for (File f = File(center - 1); f <= File(center + 1); ++f)
|
||||
{
|
||||
b = ourPawns & file_bb(f);
|
||||
|
@ -202,11 +215,11 @@ Score Entry::evaluate_shelter(const Position& pos, Square ksq) {
|
|||
b = theirPawns & file_bb(f);
|
||||
int theirRank = b ? relative_rank(Us, frontmost_sq(Them, b)) : 0;
|
||||
|
||||
File d = map_to_queenside(f);
|
||||
int d = edge_distance(f);
|
||||
bonus += make_score(ShelterStrength[d][ourRank], 0);
|
||||
|
||||
if (ourRank && (ourRank == theirRank - 1))
|
||||
bonus -= BlockedStorm * int(theirRank == RANK_3);
|
||||
bonus -= BlockedStorm[theirRank];
|
||||
else
|
||||
bonus -= make_score(UnblockedStorm[d][theirRank], 0);
|
||||
}
|
||||
|
@ -238,9 +251,9 @@ Score Entry::do_king_safety(const Position& pos) {
|
|||
|
||||
// In endgame we like to bring our king near our closest pawn
|
||||
Bitboard pawns = pos.pieces(Us, PAWN);
|
||||
int minPawnDist = pawns ? 8 : 0;
|
||||
int minPawnDist = 6;
|
||||
|
||||
if (pawns & PseudoAttacks[KING][ksq])
|
||||
if (pawns & attacks_bb<KING>(ksq))
|
||||
minPawnDist = 1;
|
||||
else while (pawns)
|
||||
minPawnDist = std::min(minPawnDist, distance(ksq, pop_lsb(&pawns)));
|
||||
|
|
|
@ -38,6 +38,7 @@ struct Entry {
|
|||
Bitboard passed_pawns(Color c) const { return passedPawns[c]; }
|
||||
Bitboard pawn_attacks_span(Color c) const { return pawnAttacksSpan[c]; }
|
||||
int passed_count() const { return popcount(passedPawns[WHITE] | passedPawns[BLACK]); }
|
||||
int blocked_count() const { return blockedCount; }
|
||||
|
||||
template<Color Us>
|
||||
Score king_safety(const Position& pos) {
|
||||
|
@ -59,6 +60,7 @@ struct Entry {
|
|||
Square kingSquares[COLOR_NB];
|
||||
Score kingSafety[COLOR_NB];
|
||||
int castlingRights[COLOR_NB];
|
||||
int blockedCount;
|
||||
};
|
||||
|
||||
typedef HashTable<Entry, 131072> Table;
|
||||
|
|
|
@ -64,10 +64,11 @@ std::ostream& operator<<(std::ostream& os, const Position& pos) {
|
|||
for (File f = FILE_A; f <= FILE_H; ++f)
|
||||
os << " | " << PieceToChar[pos.piece_on(make_square(f, r))];
|
||||
|
||||
os << " |\n +---+---+---+---+---+---+---+---+\n";
|
||||
os << " | " << (1 + r) << "\n +---+---+---+---+---+---+---+---+\n";
|
||||
}
|
||||
|
||||
os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase
|
||||
os << " a b c d e f g h\n"
|
||||
<< "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase
|
||||
<< std::setfill('0') << std::setw(16) << pos.key()
|
||||
<< std::setfill(' ') << std::dec << "\nCheckers: ";
|
||||
|
||||
|
@ -139,7 +140,7 @@ void Position::init() {
|
|||
for (Piece pc : Pieces)
|
||||
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
|
||||
for (Square s2 = Square(s1 + 1); s2 <= SQ_H8; ++s2)
|
||||
if (PseudoAttacks[type_of(pc)][s1] & s2)
|
||||
if ((type_of(pc) != PAWN) && (attacks_bb(type_of(pc), s1, 0) & s2))
|
||||
{
|
||||
Move move = make_move(s1, s2);
|
||||
Key key = Zobrist::psq[pc][s1] ^ Zobrist::psq[pc][s2] ^ Zobrist::side;
|
||||
|
@ -306,7 +307,7 @@ void Position::set_castling_right(Color c, Square rfrom) {
|
|||
Square rto = relative_square(c, cr & KING_SIDE ? SQ_F1 : SQ_D1);
|
||||
|
||||
castlingPath[cr] = (between_bb(rfrom, rto) | between_bb(kfrom, kto) | rto | kto)
|
||||
& ~(square_bb(kfrom) | rfrom);
|
||||
& ~(kfrom | rfrom);
|
||||
}
|
||||
|
||||
|
||||
|
@ -319,10 +320,10 @@ void Position::set_check_info(StateInfo* si) const {
|
|||
|
||||
Square ksq = square<KING>(~sideToMove);
|
||||
|
||||
si->checkSquares[PAWN] = attacks_from<PAWN>(ksq, ~sideToMove);
|
||||
si->checkSquares[KNIGHT] = attacks_from<KNIGHT>(ksq);
|
||||
si->checkSquares[BISHOP] = attacks_from<BISHOP>(ksq);
|
||||
si->checkSquares[ROOK] = attacks_from<ROOK>(ksq);
|
||||
si->checkSquares[PAWN] = pawn_attacks_bb(~sideToMove, ksq);
|
||||
si->checkSquares[KNIGHT] = attacks_bb<KNIGHT>(ksq);
|
||||
si->checkSquares[BISHOP] = attacks_bb<BISHOP>(ksq, pieces());
|
||||
si->checkSquares[ROOK] = attacks_bb<ROOK>(ksq, pieces());
|
||||
si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK];
|
||||
si->checkSquares[KING] = 0;
|
||||
}
|
||||
|
@ -375,11 +376,13 @@ void Position::set_state(StateInfo* si) const {
|
|||
|
||||
Position& Position::set(const string& code, Color c, StateInfo* si) {
|
||||
|
||||
assert(code.length() > 0 && code.length() < 8);
|
||||
assert(code[0] == 'K');
|
||||
|
||||
string sides[] = { code.substr(code.find('K', 1)), // Weak
|
||||
code.substr(0, code.find('K', 1)) }; // Strong
|
||||
code.substr(0, std::min(code.find('v'), code.find('K', 1))) }; // Strong
|
||||
|
||||
assert(sides[0].length() > 0 && sides[0].length() < 8);
|
||||
assert(sides[1].length() > 0 && sides[1].length() < 8);
|
||||
|
||||
std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower);
|
||||
|
||||
|
@ -453,8 +456,8 @@ Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners
|
|||
pinners = 0;
|
||||
|
||||
// Snipers are sliders that attack 's' when a piece and other snipers are removed
|
||||
Bitboard snipers = ( (PseudoAttacks[ ROOK][s] & pieces(QUEEN, ROOK))
|
||||
| (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders;
|
||||
Bitboard snipers = ( (attacks_bb< ROOK>(s) & pieces(QUEEN, ROOK))
|
||||
| (attacks_bb<BISHOP>(s) & pieces(QUEEN, BISHOP))) & sliders;
|
||||
Bitboard occupancy = pieces() ^ snipers;
|
||||
|
||||
while (snipers)
|
||||
|
@ -478,12 +481,12 @@ Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners
|
|||
|
||||
Bitboard Position::attackers_to(Square s, Bitboard occupied) const {
|
||||
|
||||
return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN))
|
||||
| (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN))
|
||||
| (attacks_from<KNIGHT>(s) & pieces(KNIGHT))
|
||||
return (pawn_attacks_bb(BLACK, s) & pieces(WHITE, PAWN))
|
||||
| (pawn_attacks_bb(WHITE, s) & pieces(BLACK, PAWN))
|
||||
| (attacks_bb<KNIGHT>(s) & pieces(KNIGHT))
|
||||
| (attacks_bb< ROOK>(s, occupied) & pieces( ROOK, QUEEN))
|
||||
| (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN))
|
||||
| (attacks_from<KING>(s) & pieces(KING));
|
||||
| (attacks_bb<KING>(s) & pieces(KING));
|
||||
}
|
||||
|
||||
|
||||
|
@ -586,15 +589,15 @@ bool Position::pseudo_legal(const Move m) const {
|
|||
if ((Rank8BB | Rank1BB) & to)
|
||||
return false;
|
||||
|
||||
if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture
|
||||
if ( !(pawn_attacks_bb(us, from) & pieces(~us) & to) // Not a capture
|
||||
&& !((from + pawn_push(us) == to) && empty(to)) // Not a single push
|
||||
&& !( (from + 2 * pawn_push(us) == to) // Not a double push
|
||||
&& (rank_of(from) == relative_rank(us, RANK_2))
|
||||
&& (relative_rank(us, from) == RANK_2)
|
||||
&& empty(to)
|
||||
&& empty(to - pawn_push(us))))
|
||||
return false;
|
||||
}
|
||||
else if (!(attacks_from(type_of(pc), from) & to))
|
||||
else if (!(attacks_bb(type_of(pc), from, pieces()) & to))
|
||||
return false;
|
||||
|
||||
// Evasions generator already takes care to avoid some kind of illegal moves
|
||||
|
@ -633,11 +636,11 @@ bool Position::gives_check(Move m) const {
|
|||
Square to = to_sq(m);
|
||||
|
||||
// Is there a direct check?
|
||||
if (st->checkSquares[type_of(piece_on(from))] & to)
|
||||
if (check_squares(type_of(piece_on(from))) & to)
|
||||
return true;
|
||||
|
||||
// Is there a discovered check?
|
||||
if ( (st->blockersForKing[~sideToMove] & from)
|
||||
if ( (blockers_for_king(~sideToMove) & from)
|
||||
&& !aligned(from, to, square<KING>(~sideToMove)))
|
||||
return true;
|
||||
|
||||
|
@ -664,11 +667,11 @@ bool Position::gives_check(Move m) const {
|
|||
case CASTLING:
|
||||
{
|
||||
Square kfrom = from;
|
||||
Square rfrom = to; // Castling is encoded as 'King captures the rook'
|
||||
Square rfrom = to; // Castling is encoded as 'king captures the rook'
|
||||
Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1);
|
||||
Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1);
|
||||
|
||||
return (PseudoAttacks[ROOK][rto] & square<KING>(~sideToMove))
|
||||
return (attacks_bb<ROOK>(rto) & square<KING>(~sideToMove))
|
||||
&& (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & square<KING>(~sideToMove));
|
||||
}
|
||||
default:
|
||||
|
@ -743,8 +746,6 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
|
|||
assert(relative_rank(us, to) == RANK_6);
|
||||
assert(piece_on(to) == NO_PIECE);
|
||||
assert(piece_on(capsq) == make_piece(them, PAWN));
|
||||
|
||||
board[capsq] = NO_PIECE; // Not done by remove_piece()
|
||||
}
|
||||
|
||||
st->pawnKey ^= Zobrist::psq[captured][capsq];
|
||||
|
@ -753,7 +754,10 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
|
|||
st->nonPawnMaterial[them] -= PieceValue[MG][captured];
|
||||
|
||||
// Update board and piece lists
|
||||
remove_piece(captured, capsq);
|
||||
remove_piece(capsq);
|
||||
|
||||
if (type_of(m) == ENPASSANT)
|
||||
board[capsq] = NO_PIECE;
|
||||
|
||||
// Update material hash key and prefetch access to materialTable
|
||||
k ^= Zobrist::psq[captured][capsq];
|
||||
|
@ -784,14 +788,14 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
|
|||
|
||||
// Move the piece. The tricky Chess960 castling is handled earlier
|
||||
if (type_of(m) != CASTLING)
|
||||
move_piece(pc, from, to);
|
||||
move_piece(from, to);
|
||||
|
||||
// If the moving piece is a pawn do some special extra work
|
||||
if (type_of(pc) == PAWN)
|
||||
{
|
||||
// Set en-passant square if the moved pawn can be captured
|
||||
if ( (int(to) ^ int(from)) == 16
|
||||
&& (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN)))
|
||||
&& (pawn_attacks_bb(us, to - pawn_push(us)) & pieces(them, PAWN)))
|
||||
{
|
||||
st->epSquare = to - pawn_push(us);
|
||||
k ^= Zobrist::enpassant[file_of(st->epSquare)];
|
||||
|
@ -804,7 +808,7 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
|
|||
assert(relative_rank(us, to) == RANK_8);
|
||||
assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN);
|
||||
|
||||
remove_piece(pc, to);
|
||||
remove_piece(to);
|
||||
put_piece(promotion, to);
|
||||
|
||||
// Update hash keys
|
||||
|
@ -884,7 +888,7 @@ void Position::undo_move(Move m) {
|
|||
assert(type_of(pc) == promotion_type(m));
|
||||
assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN);
|
||||
|
||||
remove_piece(pc, to);
|
||||
remove_piece(to);
|
||||
pc = make_piece(us, PAWN);
|
||||
put_piece(pc, to);
|
||||
}
|
||||
|
@ -896,7 +900,7 @@ void Position::undo_move(Move m) {
|
|||
}
|
||||
else
|
||||
{
|
||||
move_piece(pc, to, from); // Put the piece back at the source square
|
||||
move_piece(to, from); // Put the piece back at the source square
|
||||
|
||||
if (st->capturedPiece)
|
||||
{
|
||||
|
@ -936,9 +940,9 @@ void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Squ
|
|||
to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
|
||||
|
||||
// Remove both pieces first since squares could overlap in Chess960
|
||||
remove_piece(make_piece(us, KING), Do ? from : to);
|
||||
remove_piece(make_piece(us, ROOK), Do ? rfrom : rto);
|
||||
board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us
|
||||
remove_piece(Do ? from : to);
|
||||
remove_piece(Do ? rfrom : rto);
|
||||
board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do this for us
|
||||
put_piece(make_piece(us, KING), Do ? to : from);
|
||||
put_piece(make_piece(us, ROOK), Do ? rto : rfrom);
|
||||
}
|
||||
|
@ -1118,10 +1122,7 @@ bool Position::is_draw(int ply) const {
|
|||
|
||||
// Return a draw score if a position repeats once earlier but strictly
|
||||
// after the root, or repeats twice before or at the root.
|
||||
if (st->repetition && st->repetition < ply)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
return st->repetition && st->repetition < ply;
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -83,7 +83,6 @@ public:
|
|||
const std::string fen() const;
|
||||
|
||||
// Position representation
|
||||
Bitboard pieces() const;
|
||||
Bitboard pieces(PieceType pt) const;
|
||||
Bitboard pieces(PieceType pt1, PieceType pt2) const;
|
||||
Bitboard pieces(Color c) const;
|
||||
|
@ -99,7 +98,7 @@ public:
|
|||
bool is_on_semiopen_file(Color c, Square s) const;
|
||||
|
||||
// Castling
|
||||
int castling_rights(Color c) const;
|
||||
CastlingRights castling_rights(Color c) const;
|
||||
bool can_castle(CastlingRights cr) const;
|
||||
bool castling_impeded(CastlingRights cr) const;
|
||||
Square castling_rook_square(CastlingRights cr) const;
|
||||
|
@ -113,9 +112,6 @@ public:
|
|||
// Attacks to/from a given square
|
||||
Bitboard attackers_to(Square s) const;
|
||||
Bitboard attackers_to(Square s, Bitboard occupied) const;
|
||||
Bitboard attacks_from(PieceType pt, Square s) const;
|
||||
template<PieceType> Bitboard attacks_from(Square s) const;
|
||||
template<PieceType> Bitboard attacks_from(Square s, Color c) const;
|
||||
Bitboard slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const;
|
||||
|
||||
// Properties of moves
|
||||
|
@ -174,8 +170,8 @@ private:
|
|||
|
||||
// Other helpers
|
||||
void put_piece(Piece pc, Square s);
|
||||
void remove_piece(Piece pc, Square s);
|
||||
void move_piece(Piece pc, Square from, Square to);
|
||||
void remove_piece(Square s);
|
||||
void move_piece(Square from, Square to);
|
||||
template<bool Do>
|
||||
void do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto);
|
||||
|
||||
|
@ -207,28 +203,25 @@ inline Color Position::side_to_move() const {
|
|||
return sideToMove;
|
||||
}
|
||||
|
||||
inline bool Position::empty(Square s) const {
|
||||
return board[s] == NO_PIECE;
|
||||
}
|
||||
|
||||
inline Piece Position::piece_on(Square s) const {
|
||||
assert(is_ok(s));
|
||||
return board[s];
|
||||
}
|
||||
|
||||
inline bool Position::empty(Square s) const {
|
||||
return piece_on(s) == NO_PIECE;
|
||||
}
|
||||
|
||||
inline Piece Position::moved_piece(Move m) const {
|
||||
return board[from_sq(m)];
|
||||
return piece_on(from_sq(m));
|
||||
}
|
||||
|
||||
inline Bitboard Position::pieces() const {
|
||||
return byTypeBB[ALL_PIECES];
|
||||
}
|
||||
|
||||
inline Bitboard Position::pieces(PieceType pt) const {
|
||||
inline Bitboard Position::pieces(PieceType pt = ALL_PIECES) const {
|
||||
return byTypeBB[pt];
|
||||
}
|
||||
|
||||
inline Bitboard Position::pieces(PieceType pt1, PieceType pt2) const {
|
||||
return byTypeBB[pt1] | byTypeBB[pt2];
|
||||
return pieces(pt1) | pieces(pt2);
|
||||
}
|
||||
|
||||
inline Bitboard Position::pieces(Color c) const {
|
||||
|
@ -236,11 +229,11 @@ inline Bitboard Position::pieces(Color c) const {
|
|||
}
|
||||
|
||||
inline Bitboard Position::pieces(Color c, PieceType pt) const {
|
||||
return byColorBB[c] & byTypeBB[pt];
|
||||
return pieces(c) & pieces(pt);
|
||||
}
|
||||
|
||||
inline Bitboard Position::pieces(Color c, PieceType pt1, PieceType pt2) const {
|
||||
return byColorBB[c] & (byTypeBB[pt1] | byTypeBB[pt2]);
|
||||
return pieces(c) & (pieces(pt1) | pieces(pt2));
|
||||
}
|
||||
|
||||
template<PieceType Pt> inline int Position::count(Color c) const {
|
||||
|
@ -248,7 +241,7 @@ template<PieceType Pt> inline int Position::count(Color c) const {
|
|||
}
|
||||
|
||||
template<PieceType Pt> inline int Position::count() const {
|
||||
return pieceCount[make_piece(WHITE, Pt)] + pieceCount[make_piece(BLACK, Pt)];
|
||||
return count<Pt>(WHITE) + count<Pt>(BLACK);
|
||||
}
|
||||
|
||||
template<PieceType Pt> inline const Square* Position::squares(Color c) const {
|
||||
|
@ -257,7 +250,7 @@ template<PieceType Pt> inline const Square* Position::squares(Color c) const {
|
|||
|
||||
template<PieceType Pt> inline Square Position::square(Color c) const {
|
||||
assert(pieceCount[make_piece(c, Pt)] == 1);
|
||||
return pieceList[make_piece(c, Pt)][0];
|
||||
return squares<Pt>(c)[0];
|
||||
}
|
||||
|
||||
inline Square Position::ep_square() const {
|
||||
|
@ -272,14 +265,14 @@ inline bool Position::can_castle(CastlingRights cr) const {
|
|||
return st->castlingRights & cr;
|
||||
}
|
||||
|
||||
inline int Position::castling_rights(Color c) const {
|
||||
return st->castlingRights & (c == WHITE ? WHITE_CASTLING : BLACK_CASTLING);
|
||||
inline CastlingRights Position::castling_rights(Color c) const {
|
||||
return c & CastlingRights(st->castlingRights);
|
||||
}
|
||||
|
||||
inline bool Position::castling_impeded(CastlingRights cr) const {
|
||||
assert(cr == WHITE_OO || cr == WHITE_OOO || cr == BLACK_OO || cr == BLACK_OOO);
|
||||
|
||||
return byTypeBB[ALL_PIECES] & castlingPath[cr];
|
||||
return pieces() & castlingPath[cr];
|
||||
}
|
||||
|
||||
inline Square Position::castling_rook_square(CastlingRights cr) const {
|
||||
|
@ -288,26 +281,8 @@ inline Square Position::castling_rook_square(CastlingRights cr) const {
|
|||
return castlingRookSquare[cr];
|
||||
}
|
||||
|
||||
template<PieceType Pt>
|
||||
inline Bitboard Position::attacks_from(Square s) const {
|
||||
static_assert(Pt != PAWN, "Pawn attacks need color");
|
||||
|
||||
return Pt == BISHOP || Pt == ROOK ? attacks_bb<Pt>(s, byTypeBB[ALL_PIECES])
|
||||
: Pt == QUEEN ? attacks_from<ROOK>(s) | attacks_from<BISHOP>(s)
|
||||
: PseudoAttacks[Pt][s];
|
||||
}
|
||||
|
||||
template<>
|
||||
inline Bitboard Position::attacks_from<PAWN>(Square s, Color c) const {
|
||||
return PawnAttacks[c][s];
|
||||
}
|
||||
|
||||
inline Bitboard Position::attacks_from(PieceType pt, Square s) const {
|
||||
return attacks_bb(pt, s, byTypeBB[ALL_PIECES]);
|
||||
}
|
||||
|
||||
inline Bitboard Position::attackers_to(Square s) const {
|
||||
return attackers_to(s, byTypeBB[ALL_PIECES]);
|
||||
return attackers_to(s, pieces());
|
||||
}
|
||||
|
||||
inline Bitboard Position::checkers() const {
|
||||
|
@ -360,7 +335,7 @@ inline Value Position::non_pawn_material(Color c) const {
|
|||
}
|
||||
|
||||
inline Value Position::non_pawn_material() const {
|
||||
return st->nonPawnMaterial[WHITE] + st->nonPawnMaterial[BLACK];
|
||||
return non_pawn_material(WHITE) + non_pawn_material(BLACK);
|
||||
}
|
||||
|
||||
inline int Position::game_ply() const {
|
||||
|
@ -372,8 +347,8 @@ inline int Position::rule50_count() const {
|
|||
}
|
||||
|
||||
inline bool Position::opposite_bishops() const {
|
||||
return pieceCount[W_BISHOP] == 1
|
||||
&& pieceCount[B_BISHOP] == 1
|
||||
return count<BISHOP>(WHITE) == 1
|
||||
&& count<BISHOP>(BLACK) == 1
|
||||
&& opposite_colors(square<BISHOP>(WHITE), square<BISHOP>(BLACK));
|
||||
}
|
||||
|
||||
|
@ -403,8 +378,7 @@ inline Thread* Position::this_thread() const {
|
|||
inline void Position::put_piece(Piece pc, Square s) {
|
||||
|
||||
board[s] = pc;
|
||||
byTypeBB[ALL_PIECES] |= s;
|
||||
byTypeBB[type_of(pc)] |= s;
|
||||
byTypeBB[ALL_PIECES] |= byTypeBB[type_of(pc)] |= s;
|
||||
byColorBB[color_of(pc)] |= s;
|
||||
index[s] = pieceCount[pc]++;
|
||||
pieceList[pc][index[s]] = s;
|
||||
|
@ -412,12 +386,13 @@ inline void Position::put_piece(Piece pc, Square s) {
|
|||
psq += PSQT::psq[pc][s];
|
||||
}
|
||||
|
||||
inline void Position::remove_piece(Piece pc, Square s) {
|
||||
inline void Position::remove_piece(Square s) {
|
||||
|
||||
// WARNING: This is not a reversible operation. If we remove a piece in
|
||||
// do_move() and then replace it in undo_move() we will put it at the end of
|
||||
// the list and not in its original place, it means index[] and pieceList[]
|
||||
// are not invariant to a do_move() + undo_move() sequence.
|
||||
Piece pc = board[s];
|
||||
byTypeBB[ALL_PIECES] ^= s;
|
||||
byTypeBB[type_of(pc)] ^= s;
|
||||
byColorBB[color_of(pc)] ^= s;
|
||||
|
@ -430,10 +405,11 @@ inline void Position::remove_piece(Piece pc, Square s) {
|
|||
psq -= PSQT::psq[pc][s];
|
||||
}
|
||||
|
||||
inline void Position::move_piece(Piece pc, Square from, Square to) {
|
||||
inline void Position::move_piece(Square from, Square to) {
|
||||
|
||||
// index[from] is not updated and becomes stale. This works as long as index[]
|
||||
// is accessed just by known occupied squares.
|
||||
Piece pc = board[from];
|
||||
Bitboard fromTo = from | to;
|
||||
byTypeBB[ALL_PIECES] ^= fromTo;
|
||||
byTypeBB[type_of(pc)] ^= fromTo;
|
||||
|
|
|
@ -21,11 +21,7 @@
|
|||
#include <algorithm>
|
||||
|
||||
#include "types.h"
|
||||
|
||||
Value PieceValue[PHASE_NB][PIECE_NB] = {
|
||||
{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg },
|
||||
{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg }
|
||||
};
|
||||
#include "bitboard.h"
|
||||
|
||||
namespace PSQT {
|
||||
|
||||
|
@ -95,9 +91,9 @@ constexpr Score PBonus[RANK_NB][FILE_NB] =
|
|||
{ },
|
||||
{ S( 3,-10), S( 3, -6), S( 10, 10), S( 19, 0), S( 16, 14), S( 19, 7), S( 7, -5), S( -5,-19) },
|
||||
{ S( -9,-10), S(-15,-10), S( 11,-10), S( 15, 4), S( 32, 4), S( 22, 3), S( 5, -6), S(-22, -4) },
|
||||
{ S( -8, 6), S(-23, -2), S( 6, -8), S( 20, -4), S( 40,-13), S( 17,-12), S( 4,-10), S(-12, -9) },
|
||||
{ S( -4, 6), S(-23, -2), S( 6, -8), S( 20, -4), S( 40,-13), S( 17,-12), S( 4,-10), S( -8, -9) },
|
||||
{ S( 13, 9), S( 0, 4), S(-13, 3), S( 1,-12), S( 11,-12), S( -2, -6), S(-13, 13), S( 5, 8) },
|
||||
{ S( -5, 28), S(-12, 20), S( -7, 21), S( 22, 28), S( -8, 30), S( -5, 7), S(-15, 6), S(-18, 13) },
|
||||
{ S( 5, 28), S(-12, 20), S( -7, 21), S( 22, 28), S( -8, 30), S( -5, 7), S(-15, 6), S( -8, 13) },
|
||||
{ S( -7, 0), S( 7,-11), S( -3, 12), S(-13, 21), S( 5, 25), S(-16, 19), S( 10, 4), S( -8, 7) }
|
||||
};
|
||||
|
||||
|
@ -112,17 +108,14 @@ void init() {
|
|||
|
||||
for (Piece pc = W_PAWN; pc <= W_KING; ++pc)
|
||||
{
|
||||
PieceValue[MG][~pc] = PieceValue[MG][pc];
|
||||
PieceValue[EG][~pc] = PieceValue[EG][pc];
|
||||
|
||||
Score score = make_score(PieceValue[MG][pc], PieceValue[EG][pc]);
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
||||
{
|
||||
File f = map_to_queenside(file_of(s));
|
||||
File f = File(edge_distance(file_of(s)));
|
||||
psq[ pc][ s] = score + (type_of(pc) == PAWN ? PBonus[rank_of(s)][file_of(s)]
|
||||
: Bonus[pc][rank_of(s)][f]);
|
||||
psq[~pc][~s] = -psq[pc][s];
|
||||
psq[~pc][flip_rank(s)] = -psq[pc][s];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -61,13 +61,13 @@ namespace {
|
|||
// Different node types, used as a template parameter
|
||||
enum NodeType { NonPV, PV };
|
||||
|
||||
constexpr uint64_t ttHitAverageWindow = 4096;
|
||||
constexpr uint64_t ttHitAverageResolution = 1024;
|
||||
constexpr uint64_t TtHitAverageWindow = 4096;
|
||||
constexpr uint64_t TtHitAverageResolution = 1024;
|
||||
|
||||
// Razor and futility margins
|
||||
constexpr int RazorMargin = 531;
|
||||
constexpr int RazorMargin = 527;
|
||||
Value futility_margin(Depth d, bool improving) {
|
||||
return Value(217 * (d - improving));
|
||||
return Value(227 * (d - improving));
|
||||
}
|
||||
|
||||
// Reductions lookup table, initialized at startup
|
||||
|
@ -75,16 +75,16 @@ namespace {
|
|||
|
||||
Depth reduction(bool i, Depth d, int mn) {
|
||||
int r = Reductions[d] * Reductions[mn];
|
||||
return (r + 511) / 1024 + (!i && r > 1007);
|
||||
return (r + 570) / 1024 + (!i && r > 1018);
|
||||
}
|
||||
|
||||
constexpr int futility_move_count(bool improving, Depth depth) {
|
||||
return (5 + depth * depth) * (1 + improving) / 2 - 1;
|
||||
return (3 + depth * depth) / (2 - improving);
|
||||
}
|
||||
|
||||
// History and stats update bonus, based on depth
|
||||
int stat_bonus(Depth d) {
|
||||
return d > 15 ? -8 : 19 * d * d + 155 * d - 132;
|
||||
return d > 15 ? 27 : 17 * d * d + 133 * d - 134;
|
||||
}
|
||||
|
||||
// Add a small random component to draw evaluations to avoid 3fold-blindness
|
||||
|
@ -156,7 +156,7 @@ namespace {
|
|||
Value value_from_tt(Value v, int ply, int r50c);
|
||||
void update_pv(Move* pv, Move move, Move* childPv);
|
||||
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus);
|
||||
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus);
|
||||
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth);
|
||||
void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
|
||||
Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth);
|
||||
|
||||
|
@ -194,7 +194,7 @@ namespace {
|
|||
void Search::init() {
|
||||
|
||||
for (int i = 1; i < MAX_MOVES; ++i)
|
||||
Reductions[i] = int((24.8 + std::log(Threads.size()) / 2) * std::log(i));
|
||||
Reductions[i] = int((24.8 + std::log(Threads.size())) * std::log(i));
|
||||
}
|
||||
|
||||
|
||||
|
@ -236,14 +236,8 @@ void MainThread::search() {
|
|||
}
|
||||
else
|
||||
{
|
||||
for (Thread* th : Threads)
|
||||
{
|
||||
th->bestMoveChanges = 0;
|
||||
if (th != this)
|
||||
th->start_searching();
|
||||
}
|
||||
|
||||
Thread::search(); // Let's start searching!
|
||||
Threads.start_searching(); // start non-main threads
|
||||
Thread::search(); // main thread start searching
|
||||
}
|
||||
|
||||
// When we reach the maximum depth, we can arrive here without a raise of
|
||||
|
@ -260,9 +254,7 @@ void MainThread::search() {
|
|||
Threads.stop = true;
|
||||
|
||||
// Wait until all threads have finished
|
||||
for (Thread* th : Threads)
|
||||
if (th != this)
|
||||
th->wait_for_search_finished();
|
||||
Threads.wait_for_search_finished();
|
||||
|
||||
// When playing in 'nodes as time' mode, subtract the searched nodes from
|
||||
// the available ones before exiting.
|
||||
|
@ -271,38 +263,13 @@ void MainThread::search() {
|
|||
|
||||
Thread* bestThread = this;
|
||||
|
||||
// Check if there are threads with a better score than main thread
|
||||
if ( Options["MultiPV"] == 1
|
||||
&& !Limits.depth
|
||||
&& !(Skill(Options["Skill Level"]).enabled() || Options["UCI_LimitStrength"])
|
||||
&& rootMoves[0].pv[0] != MOVE_NONE)
|
||||
{
|
||||
std::map<Move, int64_t> votes;
|
||||
Value minScore = this->rootMoves[0].score;
|
||||
if (int(Options["MultiPV"]) == 1 &&
|
||||
!Limits.depth &&
|
||||
!(Skill(Options["Skill Level"]).enabled() || int(Options["UCI_LimitStrength"])) &&
|
||||
rootMoves[0].pv[0] != MOVE_NONE)
|
||||
bestThread = Threads.get_best_thread();
|
||||
|
||||
// Find out minimum score
|
||||
for (Thread* th: Threads)
|
||||
minScore = std::min(minScore, th->rootMoves[0].score);
|
||||
|
||||
// Vote according to score and depth, and select the best thread
|
||||
for (Thread* th : Threads)
|
||||
{
|
||||
votes[th->rootMoves[0].pv[0]] +=
|
||||
(th->rootMoves[0].score - minScore + 14) * int(th->completedDepth);
|
||||
|
||||
if (bestThread->rootMoves[0].score >= VALUE_MATE_IN_MAX_PLY)
|
||||
{
|
||||
// Make sure we pick the shortest mate
|
||||
if (th->rootMoves[0].score > bestThread->rootMoves[0].score)
|
||||
bestThread = th;
|
||||
}
|
||||
else if ( th->rootMoves[0].score >= VALUE_MATE_IN_MAX_PLY
|
||||
|| votes[th->rootMoves[0].pv[0]] > votes[bestThread->rootMoves[0].pv[0]])
|
||||
bestThread = th;
|
||||
}
|
||||
}
|
||||
|
||||
previousScore = bestThread->rootMoves[0].score;
|
||||
bestPreviousScore = bestThread->rootMoves[0].score;
|
||||
|
||||
// Send again PV info if we have a new best thread
|
||||
if (bestThread != this)
|
||||
|
@ -348,15 +315,18 @@ void Thread::search() {
|
|||
|
||||
if (mainThread)
|
||||
{
|
||||
if (mainThread->previousScore == VALUE_INFINITE)
|
||||
for (int i=0; i<4; ++i)
|
||||
if (mainThread->bestPreviousScore == VALUE_INFINITE)
|
||||
for (int i = 0; i < 4; ++i)
|
||||
mainThread->iterValue[i] = VALUE_ZERO;
|
||||
else
|
||||
for (int i=0; i<4; ++i)
|
||||
mainThread->iterValue[i] = mainThread->previousScore;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
mainThread->iterValue[i] = mainThread->bestPreviousScore;
|
||||
}
|
||||
|
||||
size_t multiPV = Options["MultiPV"];
|
||||
std::copy(&lowPlyHistory[2][0], &lowPlyHistory.back().back() + 1, &lowPlyHistory[0][0]);
|
||||
std::fill(&lowPlyHistory[MAX_LPH - 2][0], &lowPlyHistory.back().back() + 1, 0);
|
||||
|
||||
size_t multiPV = size_t(Options["MultiPV"]);
|
||||
|
||||
// Pick integer skill levels, but non-deterministically round up or down
|
||||
// such that the average integer skill corresponds to the input floating point one.
|
||||
|
@ -365,7 +335,7 @@ void Thread::search() {
|
|||
// for match (TC 60+0.6) results spanning a wide range of k values.
|
||||
PRNG rng(now());
|
||||
double floatLevel = Options["UCI_LimitStrength"] ?
|
||||
clamp(std::pow((Options["UCI_Elo"] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) :
|
||||
Utility::clamp(std::pow((Options["UCI_Elo"] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) :
|
||||
double(Options["Skill Level"]);
|
||||
int intLevel = int(floatLevel) +
|
||||
((floatLevel - int(floatLevel)) * 1024 > rng.rand<unsigned>() % 1024 ? 1 : 0);
|
||||
|
@ -377,7 +347,7 @@ void Thread::search() {
|
|||
multiPV = std::max(multiPV, (size_t)4);
|
||||
|
||||
multiPV = std::min(multiPV, rootMoves.size());
|
||||
ttHitAverage = ttHitAverageWindow * ttHitAverageResolution / 2;
|
||||
ttHitAverage = TtHitAverageWindow * TtHitAverageResolution / 2;
|
||||
|
||||
int ct = int(Options["Contempt"]) * PawnValueEg / 100; // From centipawns
|
||||
|
||||
|
@ -432,13 +402,13 @@ void Thread::search() {
|
|||
// Reset aspiration window starting size
|
||||
if (rootDepth >= 4)
|
||||
{
|
||||
Value previousScore = rootMoves[pvIdx].previousScore;
|
||||
delta = Value(21 + abs(previousScore) / 256);
|
||||
alpha = std::max(previousScore - delta,-VALUE_INFINITE);
|
||||
beta = std::min(previousScore + delta, VALUE_INFINITE);
|
||||
Value prev = rootMoves[pvIdx].previousScore;
|
||||
delta = Value(19);
|
||||
alpha = std::max(prev - delta,-VALUE_INFINITE);
|
||||
beta = std::min(prev + delta, VALUE_INFINITE);
|
||||
|
||||
// Adjust contempt based on root move's previousScore (dynamic contempt)
|
||||
int dct = ct + (102 - ct / 2) * previousScore / (abs(previousScore) + 157);
|
||||
int dct = ct + (110 - ct / 2) * prev / (abs(prev) + 140);
|
||||
|
||||
contempt = (us == WHITE ? make_score(dct, dct / 2)
|
||||
: -make_score(dct, dct / 2));
|
||||
|
@ -536,13 +506,13 @@ void Thread::search() {
|
|||
&& !Threads.stop
|
||||
&& !mainThread->stopOnPonderhit)
|
||||
{
|
||||
double fallingEval = (332 + 6 * (mainThread->previousScore - bestValue)
|
||||
+ 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 704.0;
|
||||
fallingEval = clamp(fallingEval, 0.5, 1.5);
|
||||
double fallingEval = (296 + 6 * (mainThread->bestPreviousScore - bestValue)
|
||||
+ 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 725.0;
|
||||
fallingEval = Utility::clamp(fallingEval, 0.5, 1.5);
|
||||
|
||||
// If the bestMove is stable over several iterations, reduce time accordingly
|
||||
timeReduction = lastBestMoveDepth + 9 < completedDepth ? 1.94 : 0.91;
|
||||
double reduction = (1.41 + mainThread->previousTimeReduction) / (2.27 * timeReduction);
|
||||
timeReduction = lastBestMoveDepth + 10 < completedDepth ? 1.92 : 0.95;
|
||||
double reduction = (1.47 + mainThread->previousTimeReduction) / (2.22 * timeReduction);
|
||||
|
||||
// Use part of the gained time from a previous stable move for the current move
|
||||
for (Thread* th : Threads)
|
||||
|
@ -552,9 +522,11 @@ void Thread::search() {
|
|||
}
|
||||
double bestMoveInstability = 1 + totBestMoveChanges / Threads.size();
|
||||
|
||||
// Stop the search if we have only one legal move, or if available time elapsed
|
||||
if ( rootMoves.size() == 1
|
||||
|| Time.elapsed() > Time.optimum() * fallingEval * reduction * bestMoveInstability)
|
||||
double totalTime = rootMoves.size() == 1 ? 0 :
|
||||
Time.optimum() * fallingEval * reduction * bestMoveInstability;
|
||||
|
||||
// Stop the search if we have exceeded the totalTime, at least 1ms search.
|
||||
if (Time.elapsed() > totalTime)
|
||||
{
|
||||
// If we are allowed to ponder do not stop the search now but
|
||||
// keep pondering until the GUI sends "ponderhit" or "stop".
|
||||
|
@ -565,7 +537,7 @@ void Thread::search() {
|
|||
}
|
||||
else if ( Threads.increaseDepth
|
||||
&& !mainThread->ponder
|
||||
&& Time.elapsed() > Time.optimum() * fallingEval * reduction * bestMoveInstability * 0.6)
|
||||
&& Time.elapsed() > totalTime * 0.56)
|
||||
Threads.increaseDepth = false;
|
||||
else
|
||||
Threads.increaseDepth = true;
|
||||
|
@ -625,14 +597,15 @@ namespace {
|
|||
Move ttMove, move, excludedMove, bestMove;
|
||||
Depth extension, newDepth;
|
||||
Value bestValue, value, ttValue, eval, maxValue;
|
||||
bool ttHit, ttPv, inCheck, givesCheck, improving, didLMR, priorCapture;
|
||||
bool captureOrPromotion, doFullDepthSearch, moveCountPruning, ttCapture, singularLMR;
|
||||
bool ttHit, ttPv, formerPv, givesCheck, improving, didLMR, priorCapture;
|
||||
bool captureOrPromotion, doFullDepthSearch, moveCountPruning,
|
||||
ttCapture, singularQuietLMR;
|
||||
Piece movedPiece;
|
||||
int moveCount, captureCount, quietCount;
|
||||
|
||||
// Step 1. Initialize node
|
||||
Thread* thisThread = pos.this_thread();
|
||||
inCheck = pos.checkers();
|
||||
ss->inCheck = pos.checkers();
|
||||
priorCapture = pos.captured_piece();
|
||||
Color us = pos.side_to_move();
|
||||
moveCount = captureCount = quietCount = ss->moveCount = 0;
|
||||
|
@ -653,7 +626,7 @@ namespace {
|
|||
if ( Threads.stop.load(std::memory_order_relaxed)
|
||||
|| pos.is_draw(ss->ply)
|
||||
|| ss->ply >= MAX_PLY)
|
||||
return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos)
|
||||
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos)
|
||||
: value_draw(pos.this_thread());
|
||||
|
||||
// Step 3. Mate distance pruning. Even if we mate at the next move our score
|
||||
|
@ -689,15 +662,20 @@ namespace {
|
|||
// search to overwrite a previous full search TT value, so we use a different
|
||||
// position key in case of an excluded move.
|
||||
excludedMove = ss->excludedMove;
|
||||
posKey = pos.key() ^ Key(excludedMove << 16); // Isn't a very good hash
|
||||
posKey = pos.key() ^ (Key(excludedMove) << 48); // Isn't a very good hash
|
||||
tte = TT.probe(posKey, ttHit);
|
||||
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
|
||||
ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0]
|
||||
: ttHit ? tte->move() : MOVE_NONE;
|
||||
ttPv = PvNode || (ttHit && tte->is_pv());
|
||||
formerPv = ttPv && !PvNode;
|
||||
|
||||
if (ttPv && depth > 12 && ss->ply - 1 < MAX_LPH && !pos.captured_piece() && is_ok((ss-1)->currentMove))
|
||||
thisThread->lowPlyHistory[ss->ply - 1][from_to((ss-1)->currentMove)] << stat_bonus(depth - 5);
|
||||
|
||||
// thisThread->ttHitAverage can be used to approximate the running average of ttHit
|
||||
thisThread->ttHitAverage = (ttHitAverageWindow - 1) * thisThread->ttHitAverage / ttHitAverageWindow
|
||||
+ ttHitAverageResolution * ttHit;
|
||||
thisThread->ttHitAverage = (TtHitAverageWindow - 1) * thisThread->ttHitAverage / TtHitAverageWindow
|
||||
+ TtHitAverageResolution * ttHit;
|
||||
|
||||
// At non-PV nodes we check for an early TT cutoff
|
||||
if ( !PvNode
|
||||
|
@ -713,7 +691,7 @@ namespace {
|
|||
if (ttValue >= beta)
|
||||
{
|
||||
if (!pos.capture_or_promotion(ttMove))
|
||||
update_quiet_stats(pos, ss, ttMove, stat_bonus(depth));
|
||||
update_quiet_stats(pos, ss, ttMove, stat_bonus(depth), depth);
|
||||
|
||||
// Extra penalty for early quiet moves of the previous ply
|
||||
if ((ss-1)->moveCount <= 2 && !priorCapture)
|
||||
|
@ -755,8 +733,9 @@ namespace {
|
|||
|
||||
int drawScore = TB::UseRule50 ? 1 : 0;
|
||||
|
||||
value = wdl < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply + 1
|
||||
: wdl > drawScore ? VALUE_MATE - MAX_PLY - ss->ply - 1
|
||||
// use the range VALUE_MATE_IN_MAX_PLY to VALUE_TB_WIN_IN_MAX_PLY to score
|
||||
value = wdl < -drawScore ? VALUE_MATED_IN_MAX_PLY + ss->ply + 1
|
||||
: wdl > drawScore ? VALUE_MATE_IN_MAX_PLY - ss->ply - 1
|
||||
: VALUE_DRAW + 2 * wdl * drawScore;
|
||||
|
||||
Bound b = wdl < -drawScore ? BOUND_UPPER
|
||||
|
@ -783,8 +762,10 @@ namespace {
|
|||
}
|
||||
}
|
||||
|
||||
CapturePieceToHistory& captureHistory = thisThread->captureHistory;
|
||||
|
||||
// Step 6. Static evaluation of the position
|
||||
if (inCheck)
|
||||
if (ss->inCheck)
|
||||
{
|
||||
ss->staticEval = eval = VALUE_NONE;
|
||||
improving = false;
|
||||
|
@ -814,19 +795,19 @@ namespace {
|
|||
ss->staticEval = eval = evaluate(pos) + bonus;
|
||||
}
|
||||
else
|
||||
ss->staticEval = eval = -(ss-1)->staticEval + 2 * Eval::Tempo;
|
||||
ss->staticEval = eval = -(ss-1)->staticEval + 2 * Tempo;
|
||||
|
||||
tte->save(posKey, VALUE_NONE, ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval);
|
||||
}
|
||||
|
||||
// Step 7. Razoring (~1 Elo)
|
||||
if ( !rootNode // The required rootNode PV handling is not available in qsearch
|
||||
&& depth < 2
|
||||
&& depth == 1
|
||||
&& eval <= alpha - RazorMargin)
|
||||
return qsearch<NT>(pos, ss, alpha, beta);
|
||||
|
||||
improving = (ss-2)->staticEval == VALUE_NONE ? (ss->staticEval >= (ss-4)->staticEval
|
||||
|| (ss-4)->staticEval == VALUE_NONE) : ss->staticEval >= (ss-2)->staticEval;
|
||||
improving = (ss-2)->staticEval == VALUE_NONE ? (ss->staticEval > (ss-4)->staticEval
|
||||
|| (ss-4)->staticEval == VALUE_NONE) : ss->staticEval > (ss-2)->staticEval;
|
||||
|
||||
// Step 8. Futility pruning: child node (~50 Elo)
|
||||
if ( !PvNode
|
||||
|
@ -838,10 +819,10 @@ namespace {
|
|||
// Step 9. Null move search with verification search (~40 Elo)
|
||||
if ( !PvNode
|
||||
&& (ss-1)->currentMove != MOVE_NULL
|
||||
&& (ss-1)->statScore < 23397
|
||||
&& (ss-1)->statScore < 23824
|
||||
&& eval >= beta
|
||||
&& eval >= ss->staticEval
|
||||
&& ss->staticEval >= beta - 32 * depth + 292 - improving * 30
|
||||
&& ss->staticEval >= beta - 33 * depth - 33 * improving + 112 * ttPv + 311
|
||||
&& !excludedMove
|
||||
&& pos.non_pawn_material(us)
|
||||
&& (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor))
|
||||
|
@ -849,7 +830,7 @@ namespace {
|
|||
assert(eval - beta >= 0);
|
||||
|
||||
// Null move dynamic reduction based on depth and value
|
||||
Depth R = (854 + 68 * depth) / 258 + std::min(int(eval - beta) / 192, 3);
|
||||
Depth R = (737 + 77 * depth) / 246 + std::min(int(eval - beta) / 192, 3);
|
||||
|
||||
ss->currentMove = MOVE_NULL;
|
||||
ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0];
|
||||
|
@ -862,8 +843,8 @@ namespace {
|
|||
|
||||
if (nullValue >= beta)
|
||||
{
|
||||
// Do not return unproven mate scores
|
||||
if (nullValue >= VALUE_MATE_IN_MAX_PLY)
|
||||
// Do not return unproven mate or TB scores
|
||||
if (nullValue >= VALUE_TB_WIN_IN_MAX_PLY)
|
||||
nullValue = beta;
|
||||
|
||||
if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 13))
|
||||
|
@ -889,15 +870,19 @@ namespace {
|
|||
// If we have a good enough capture and a reduced search returns a value
|
||||
// much above beta, we can (almost) safely prune the previous move.
|
||||
if ( !PvNode
|
||||
&& depth >= 5
|
||||
&& abs(beta) < VALUE_MATE_IN_MAX_PLY)
|
||||
&& depth > 4
|
||||
&& abs(beta) < VALUE_TB_WIN_IN_MAX_PLY)
|
||||
{
|
||||
Value raisedBeta = std::min(beta + 189 - 45 * improving, VALUE_INFINITE);
|
||||
MovePicker mp(pos, ttMove, raisedBeta - ss->staticEval, &thisThread->captureHistory);
|
||||
Value raisedBeta = beta + 176 - 49 * improving;
|
||||
assert(raisedBeta < VALUE_INFINITE);
|
||||
MovePicker mp(pos, ttMove, raisedBeta - ss->staticEval, &captureHistory);
|
||||
int probCutCount = 0;
|
||||
|
||||
while ( (move = mp.next_move()) != MOVE_NONE
|
||||
&& probCutCount < 2 + 2 * cutNode)
|
||||
&& probCutCount < 2 + 2 * cutNode
|
||||
&& !( move == ttMove
|
||||
&& tte->depth() >= depth - 4
|
||||
&& ttValue < raisedBeta))
|
||||
if (move != excludedMove && pos.legal(move))
|
||||
{
|
||||
assert(pos.capture_or_promotion(move));
|
||||
|
@ -907,7 +892,7 @@ namespace {
|
|||
probCutCount++;
|
||||
|
||||
ss->currentMove = move;
|
||||
ss->continuationHistory = &thisThread->continuationHistory[inCheck]
|
||||
ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
|
||||
[captureOrPromotion]
|
||||
[pos.moved_piece(move)]
|
||||
[to_sq(move)];
|
||||
|
@ -947,13 +932,15 @@ moves_loop: // When in check, search starts from here
|
|||
Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
|
||||
|
||||
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
|
||||
&thisThread->captureHistory,
|
||||
&thisThread->lowPlyHistory,
|
||||
&captureHistory,
|
||||
contHist,
|
||||
countermove,
|
||||
ss->killers);
|
||||
ss->killers,
|
||||
ss->ply);
|
||||
|
||||
value = bestValue;
|
||||
singularLMR = moveCountPruning = false;
|
||||
singularQuietLMR = moveCountPruning = false;
|
||||
ttCapture = ttMove && pos.capture_or_promotion(ttMove);
|
||||
|
||||
// Mark this node as being searched
|
||||
|
@ -996,17 +983,17 @@ moves_loop: // When in check, search starts from here
|
|||
// Step 13. Pruning at shallow depth (~200 Elo)
|
||||
if ( !rootNode
|
||||
&& pos.non_pawn_material(us)
|
||||
&& bestValue > VALUE_MATED_IN_MAX_PLY)
|
||||
&& bestValue > VALUE_TB_LOSS_IN_MAX_PLY)
|
||||
{
|
||||
// Skip quiet moves if movecount exceeds our FutilityMoveCount threshold
|
||||
moveCountPruning = moveCount >= futility_move_count(improving, depth);
|
||||
|
||||
if ( !captureOrPromotion
|
||||
&& !givesCheck)
|
||||
{
|
||||
// Reduced depth of the next LMR search
|
||||
int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount), 0);
|
||||
|
||||
if ( !captureOrPromotion
|
||||
&& !givesCheck)
|
||||
{
|
||||
// Countermoves based pruning (~20 Elo)
|
||||
if ( lmrDepth < 4 + ((ss-1)->statScore > 0 || (ss-1)->moveCount == 1)
|
||||
&& (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold
|
||||
|
@ -1015,20 +1002,38 @@ moves_loop: // When in check, search starts from here
|
|||
|
||||
// Futility pruning: parent node (~5 Elo)
|
||||
if ( lmrDepth < 6
|
||||
&& !inCheck
|
||||
&& ss->staticEval + 235 + 172 * lmrDepth <= alpha
|
||||
&& thisThread->mainHistory[us][from_to(move)]
|
||||
+ (*contHist[0])[movedPiece][to_sq(move)]
|
||||
&& !ss->inCheck
|
||||
&& ss->staticEval + 284 + 188 * lmrDepth <= alpha
|
||||
&& (*contHist[0])[movedPiece][to_sq(move)]
|
||||
+ (*contHist[1])[movedPiece][to_sq(move)]
|
||||
+ (*contHist[3])[movedPiece][to_sq(move)] < 25000)
|
||||
+ (*contHist[3])[movedPiece][to_sq(move)]
|
||||
+ (*contHist[5])[movedPiece][to_sq(move)] / 2 < 28388)
|
||||
continue;
|
||||
|
||||
// Prune moves with negative SEE (~20 Elo)
|
||||
if (!pos.see_ge(move, Value(-(32 - std::min(lmrDepth, 18)) * lmrDepth * lmrDepth)))
|
||||
if (!pos.see_ge(move, Value(-(29 - std::min(lmrDepth, 17)) * lmrDepth * lmrDepth)))
|
||||
continue;
|
||||
}
|
||||
else if (!pos.see_ge(move, Value(-194) * depth)) // (~25 Elo)
|
||||
else
|
||||
{
|
||||
// Capture history based pruning when the move doesn't give check
|
||||
if ( !givesCheck
|
||||
&& lmrDepth < 1
|
||||
&& captureHistory[movedPiece][to_sq(move)][type_of(pos.piece_on(to_sq(move)))] < 0)
|
||||
continue;
|
||||
|
||||
// Futility pruning for captures
|
||||
if ( !givesCheck
|
||||
&& lmrDepth < 6
|
||||
&& !(PvNode && abs(bestValue) < 2)
|
||||
&& !ss->inCheck
|
||||
&& ss->staticEval + 267 + 391 * lmrDepth + PieceValue[MG][type_of(pos.piece_on(to_sq(move)))] <= alpha)
|
||||
continue;
|
||||
|
||||
// See based pruning
|
||||
if (!pos.see_ge(move, Value(-202) * depth)) // (~25 Elo)
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Step 14. Extensions (~75 Elo)
|
||||
|
@ -1048,16 +1053,16 @@ moves_loop: // When in check, search starts from here
|
|||
&& tte->depth() >= depth - 3
|
||||
&& pos.legal(move))
|
||||
{
|
||||
Value singularBeta = ttValue - 2 * depth;
|
||||
Depth halfDepth = depth / 2;
|
||||
Value singularBeta = ttValue - ((formerPv + 4) * depth) / 2;
|
||||
Depth singularDepth = (depth - 1 + 3 * formerPv) / 2;
|
||||
ss->excludedMove = move;
|
||||
value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, halfDepth, cutNode);
|
||||
value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode);
|
||||
ss->excludedMove = MOVE_NONE;
|
||||
|
||||
if (value < singularBeta)
|
||||
{
|
||||
extension = 1;
|
||||
singularLMR = true;
|
||||
singularQuietLMR = !ttCapture;
|
||||
}
|
||||
|
||||
// Multi-cut pruning
|
||||
|
@ -1067,6 +1072,18 @@ moves_loop: // When in check, search starts from here
|
|||
// a soft bound.
|
||||
else if (singularBeta >= beta)
|
||||
return singularBeta;
|
||||
|
||||
// If the eval of ttMove is greater than beta we try also if there is an other move that
|
||||
// pushes it over beta, if so also produce a cutoff
|
||||
else if (ttValue >= beta)
|
||||
{
|
||||
ss->excludedMove = move;
|
||||
value = search<NonPV>(pos, ss, beta - 1, beta, (depth + 3) / 2, cutNode);
|
||||
ss->excludedMove = MOVE_NONE;
|
||||
|
||||
if (value >= beta)
|
||||
return beta;
|
||||
}
|
||||
}
|
||||
|
||||
// Check extension (~2 Elo)
|
||||
|
@ -1089,6 +1106,12 @@ moves_loop: // When in check, search starts from here
|
|||
if (type_of(move) == CASTLING)
|
||||
extension = 1;
|
||||
|
||||
// Late irreversible move extension
|
||||
if ( move == ttMove
|
||||
&& pos.rule50_count() > 80
|
||||
&& (captureOrPromotion || type_of(movedPiece) == PAWN))
|
||||
extension = 2;
|
||||
|
||||
// Add extension to new depth
|
||||
newDepth += extension;
|
||||
|
||||
|
@ -1104,7 +1127,7 @@ moves_loop: // When in check, search starts from here
|
|||
|
||||
// Update the current move (this must be done after singular extension search)
|
||||
ss->currentMove = move;
|
||||
ss->continuationHistory = &thisThread->continuationHistory[inCheck]
|
||||
ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
|
||||
[captureOrPromotion]
|
||||
[movedPiece]
|
||||
[to_sq(move)];
|
||||
|
@ -1115,18 +1138,18 @@ moves_loop: // When in check, search starts from here
|
|||
// Step 16. Reduced depth search (LMR, ~200 Elo). If the move fails high it will be
|
||||
// re-searched at full depth.
|
||||
if ( depth >= 3
|
||||
&& moveCount > 1 + rootNode + (rootNode && bestValue < alpha)
|
||||
&& moveCount > 1 + 2 * rootNode
|
||||
&& (!rootNode || thisThread->best_move_count(move) == 0)
|
||||
&& ( !captureOrPromotion
|
||||
|| moveCountPruning
|
||||
|| ss->staticEval + PieceValue[EG][pos.captured_piece()] <= alpha
|
||||
|| cutNode
|
||||
|| thisThread->ttHitAverage < 375 * ttHitAverageResolution * ttHitAverageWindow / 1024))
|
||||
|| thisThread->ttHitAverage < 415 * TtHitAverageResolution * TtHitAverageWindow / 1024))
|
||||
{
|
||||
Depth r = reduction(improving, depth, moveCount);
|
||||
|
||||
// Decrease reduction if the ttHit running average is large
|
||||
if (thisThread->ttHitAverage > 500 * ttHitAverageResolution * ttHitAverageWindow / 1024)
|
||||
if (thisThread->ttHitAverage > 473 * TtHitAverageResolution * TtHitAverageWindow / 1024)
|
||||
r--;
|
||||
|
||||
// Reduction if other threads are searching this position.
|
||||
|
@ -1137,13 +1160,16 @@ moves_loop: // When in check, search starts from here
|
|||
if (ttPv)
|
||||
r -= 2;
|
||||
|
||||
if (moveCountPruning && !formerPv)
|
||||
r++;
|
||||
|
||||
// Decrease reduction if opponent's move count is high (~5 Elo)
|
||||
if ((ss-1)->moveCount > 14)
|
||||
if ((ss-1)->moveCount > 13)
|
||||
r--;
|
||||
|
||||
// Decrease reduction if ttMove has been singularly extended (~3 Elo)
|
||||
if (singularLMR)
|
||||
r -= 2;
|
||||
if (singularQuietLMR)
|
||||
r -= 1 + formerPv;
|
||||
|
||||
if (!captureOrPromotion)
|
||||
{
|
||||
|
@ -1160,44 +1186,50 @@ moves_loop: // When in check, search starts from here
|
|||
// hence break make_move(). (~2 Elo)
|
||||
else if ( type_of(move) == NORMAL
|
||||
&& !pos.see_ge(reverse_move(move)))
|
||||
r -= 2;
|
||||
r -= 2 + ttPv - (type_of(movedPiece) == PAWN);
|
||||
|
||||
ss->statScore = thisThread->mainHistory[us][from_to(move)]
|
||||
+ (*contHist[0])[movedPiece][to_sq(move)]
|
||||
+ (*contHist[1])[movedPiece][to_sq(move)]
|
||||
+ (*contHist[3])[movedPiece][to_sq(move)]
|
||||
- 4926;
|
||||
|
||||
// Reset statScore to zero if negative and most stats shows >= 0
|
||||
if ( ss->statScore < 0
|
||||
&& (*contHist[0])[movedPiece][to_sq(move)] >= 0
|
||||
&& (*contHist[1])[movedPiece][to_sq(move)] >= 0
|
||||
&& thisThread->mainHistory[us][from_to(move)] >= 0)
|
||||
ss->statScore = 0;
|
||||
- 4826;
|
||||
|
||||
// Decrease/increase reduction by comparing opponent's stat score (~10 Elo)
|
||||
if (ss->statScore >= -102 && (ss-1)->statScore < -114)
|
||||
if (ss->statScore >= -100 && (ss-1)->statScore < -112)
|
||||
r--;
|
||||
|
||||
else if ((ss-1)->statScore >= -116 && ss->statScore < -154)
|
||||
else if ((ss-1)->statScore >= -125 && ss->statScore < -138)
|
||||
r++;
|
||||
|
||||
// Decrease/increase reduction for moves with a good/bad history (~30 Elo)
|
||||
r -= ss->statScore / 16384;
|
||||
r -= ss->statScore / 14615;
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
// Increase reduction for captures/promotions if late move and at low depth
|
||||
else if (depth < 8 && moveCount > 2)
|
||||
if (depth < 8 && moveCount > 2)
|
||||
r++;
|
||||
|
||||
Depth d = clamp(newDepth - r, 1, newDepth);
|
||||
// Unless giving check, this capture is likely bad
|
||||
if ( !givesCheck
|
||||
&& ss->staticEval + PieceValue[EG][pos.captured_piece()] + 211 * depth <= alpha)
|
||||
r++;
|
||||
}
|
||||
|
||||
Depth d = Utility::clamp(newDepth - r, 1, newDepth);
|
||||
|
||||
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
|
||||
|
||||
doFullDepthSearch = (value > alpha && d != newDepth), didLMR = true;
|
||||
doFullDepthSearch = value > alpha && d != newDepth;
|
||||
|
||||
didLMR = true;
|
||||
}
|
||||
else
|
||||
doFullDepthSearch = !PvNode || moveCount > 1, didLMR = false;
|
||||
{
|
||||
doFullDepthSearch = !PvNode || moveCount > 1;
|
||||
|
||||
didLMR = false;
|
||||
}
|
||||
|
||||
// Step 17. Full depth search when LMR is skipped or fails high
|
||||
if (doFullDepthSearch)
|
||||
|
@ -1314,11 +1346,11 @@ moves_loop: // When in check, search starts from here
|
|||
// must be a mate or a stalemate. If we are in a singular extension search then
|
||||
// return a fail low score.
|
||||
|
||||
assert(moveCount || !inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
|
||||
assert(moveCount || !ss->inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
|
||||
|
||||
if (!moveCount)
|
||||
bestValue = excludedMove ? alpha
|
||||
: inCheck ? mated_in(ss->ply) : VALUE_DRAW;
|
||||
: ss->inCheck ? mated_in(ss->ply) : VALUE_DRAW;
|
||||
|
||||
else if (bestMove)
|
||||
update_all_stats(pos, ss, bestMove, bestValue, beta, prevSq,
|
||||
|
@ -1332,7 +1364,7 @@ moves_loop: // When in check, search starts from here
|
|||
if (PvNode)
|
||||
bestValue = std::min(bestValue, maxValue);
|
||||
|
||||
if (!excludedMove)
|
||||
if (!excludedMove && !(rootNode && thisThread->pvIdx))
|
||||
tte->save(posKey, value_to_tt(bestValue, ss->ply), ttPv,
|
||||
bestValue >= beta ? BOUND_LOWER :
|
||||
PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
|
||||
|
@ -1362,7 +1394,7 @@ moves_loop: // When in check, search starts from here
|
|||
Move ttMove, move, bestMove;
|
||||
Depth ttDepth;
|
||||
Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
|
||||
bool ttHit, pvHit, inCheck, givesCheck, captureOrPromotion, evasionPrunable;
|
||||
bool ttHit, pvHit, givesCheck, captureOrPromotion;
|
||||
int moveCount;
|
||||
|
||||
if (PvNode)
|
||||
|
@ -1375,20 +1407,20 @@ moves_loop: // When in check, search starts from here
|
|||
Thread* thisThread = pos.this_thread();
|
||||
(ss+1)->ply = ss->ply + 1;
|
||||
bestMove = MOVE_NONE;
|
||||
inCheck = pos.checkers();
|
||||
ss->inCheck = pos.checkers();
|
||||
moveCount = 0;
|
||||
|
||||
// Check for an immediate draw or maximum ply reached
|
||||
if ( pos.is_draw(ss->ply)
|
||||
|| ss->ply >= MAX_PLY)
|
||||
return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos) : VALUE_DRAW;
|
||||
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos) : VALUE_DRAW;
|
||||
|
||||
assert(0 <= ss->ply && ss->ply < MAX_PLY);
|
||||
|
||||
// Decide whether or not to include checks: this fixes also the type of
|
||||
// TT entry depth that we are going to use. Note that in qsearch we use
|
||||
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
|
||||
ttDepth = inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
|
||||
ttDepth = ss->inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
|
||||
: DEPTH_QS_NO_CHECKS;
|
||||
// Transposition table lookup
|
||||
posKey = pos.key();
|
||||
|
@ -1406,7 +1438,7 @@ moves_loop: // When in check, search starts from here
|
|||
return ttValue;
|
||||
|
||||
// Evaluate the position statically
|
||||
if (inCheck)
|
||||
if (ss->inCheck)
|
||||
{
|
||||
ss->staticEval = VALUE_NONE;
|
||||
bestValue = futilityBase = -VALUE_INFINITE;
|
||||
|
@ -1427,13 +1459,13 @@ moves_loop: // When in check, search starts from here
|
|||
else
|
||||
ss->staticEval = bestValue =
|
||||
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
|
||||
: -(ss-1)->staticEval + 2 * Eval::Tempo;
|
||||
: -(ss-1)->staticEval + 2 * Tempo;
|
||||
|
||||
// Stand pat. Return immediately if static value is at least beta
|
||||
if (bestValue >= beta)
|
||||
{
|
||||
if (!ttHit)
|
||||
tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit, BOUND_LOWER,
|
||||
tte->save(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER,
|
||||
DEPTH_NONE, MOVE_NONE, ss->staticEval);
|
||||
|
||||
return bestValue;
|
||||
|
@ -1442,7 +1474,7 @@ moves_loop: // When in check, search starts from here
|
|||
if (PvNode && bestValue > alpha)
|
||||
alpha = bestValue;
|
||||
|
||||
futilityBase = bestValue + 154;
|
||||
futilityBase = bestValue + 141;
|
||||
}
|
||||
|
||||
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
|
||||
|
@ -1469,7 +1501,7 @@ moves_loop: // When in check, search starts from here
|
|||
moveCount++;
|
||||
|
||||
// Futility pruning
|
||||
if ( !inCheck
|
||||
if ( !ss->inCheck
|
||||
&& !givesCheck
|
||||
&& futilityBase > -VALUE_KNOWN_WIN
|
||||
&& !pos.advanced_pawn_push(move))
|
||||
|
@ -1491,14 +1523,8 @@ moves_loop: // When in check, search starts from here
|
|||
}
|
||||
}
|
||||
|
||||
// Detect non-capture evasions that are candidates to be pruned
|
||||
evasionPrunable = inCheck
|
||||
&& (depth != 0 || moveCount > 2)
|
||||
&& bestValue > VALUE_MATED_IN_MAX_PLY
|
||||
&& !pos.capture(move);
|
||||
|
||||
// Don't search moves with negative SEE values
|
||||
if ( (!inCheck || evasionPrunable) && !pos.see_ge(move))
|
||||
if ( !ss->inCheck && !pos.see_ge(move))
|
||||
continue;
|
||||
|
||||
// Speculative prefetch as early as possible
|
||||
|
@ -1512,7 +1538,7 @@ moves_loop: // When in check, search starts from here
|
|||
}
|
||||
|
||||
ss->currentMove = move;
|
||||
ss->continuationHistory = &thisThread->continuationHistory[inCheck]
|
||||
ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
|
||||
[captureOrPromotion]
|
||||
[pos.moved_piece(move)]
|
||||
[to_sq(move)];
|
||||
|
@ -1546,7 +1572,7 @@ moves_loop: // When in check, search starts from here
|
|||
|
||||
// All legal moves have been searched. A special case: If we're in check
|
||||
// and no legal moves were found, it is checkmate.
|
||||
if (inCheck && bestValue == -VALUE_INFINITE)
|
||||
if (ss->inCheck && bestValue == -VALUE_INFINITE)
|
||||
return mated_in(ss->ply); // Plies to mate from the root
|
||||
|
||||
tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit,
|
||||
|
@ -1560,28 +1586,47 @@ moves_loop: // When in check, search starts from here
|
|||
}
|
||||
|
||||
|
||||
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
|
||||
// "plies to mate from the current position". Non-mate scores are unchanged.
|
||||
// value_to_tt() adjusts a mate or TB score from "plies to mate from the root" to
|
||||
// "plies to mate from the current position". standard scores are unchanged.
|
||||
// The function is called before storing a value in the transposition table.
|
||||
|
||||
Value value_to_tt(Value v, int ply) {
|
||||
|
||||
assert(v != VALUE_NONE);
|
||||
|
||||
return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
|
||||
: v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
|
||||
return v >= VALUE_TB_WIN_IN_MAX_PLY ? v + ply
|
||||
: v <= VALUE_TB_LOSS_IN_MAX_PLY ? v - ply : v;
|
||||
}
|
||||
|
||||
|
||||
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
|
||||
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate or TB score
|
||||
// from the transposition table (which refers to the plies to mate/be mated
|
||||
// from current position) to "plies to mate/be mated from the root".
|
||||
// from current position) to "plies to mate/be mated (TB win/loss) from the root".
|
||||
// However, for mate scores, to avoid potentially false mate scores related to the 50 moves rule,
|
||||
// and the graph history interaction, return an optimal TB score instead.
|
||||
|
||||
Value value_from_tt(Value v, int ply, int r50c) {
|
||||
|
||||
return v == VALUE_NONE ? VALUE_NONE
|
||||
: v >= VALUE_MATE_IN_MAX_PLY ? VALUE_MATE - v > 99 - r50c ? VALUE_MATE_IN_MAX_PLY : v - ply
|
||||
: v <= VALUE_MATED_IN_MAX_PLY ? VALUE_MATE + v > 99 - r50c ? VALUE_MATED_IN_MAX_PLY : v + ply : v;
|
||||
if (v == VALUE_NONE)
|
||||
return VALUE_NONE;
|
||||
|
||||
if (v >= VALUE_TB_WIN_IN_MAX_PLY) // TB win or better
|
||||
{
|
||||
if (v >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - v > 99 - r50c)
|
||||
return VALUE_MATE_IN_MAX_PLY - 1; // do not return a potentially false mate score
|
||||
|
||||
return v - ply;
|
||||
}
|
||||
|
||||
if (v <= VALUE_TB_LOSS_IN_MAX_PLY) // TB loss or worse
|
||||
{
|
||||
if (v <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + v > 99 - r50c)
|
||||
return VALUE_MATED_IN_MAX_PLY + 1; // do not return a potentially false mate score
|
||||
|
||||
return v + ply;
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
|
||||
|
@ -1613,7 +1658,7 @@ moves_loop: // When in check, search starts from here
|
|||
|
||||
if (!pos.capture_or_promotion(bestMove))
|
||||
{
|
||||
update_quiet_stats(pos, ss, bestMove, bonus2);
|
||||
update_quiet_stats(pos, ss, bestMove, bonus2, depth);
|
||||
|
||||
// Decrease all the non-best quiet moves
|
||||
for (int i = 0; i < quietCount; ++i)
|
||||
|
@ -1641,19 +1686,23 @@ moves_loop: // When in check, search starts from here
|
|||
|
||||
|
||||
// update_continuation_histories() updates histories of the move pairs formed
|
||||
// by moves at ply -1, -2, and -4 with current move.
|
||||
// by moves at ply -1, -2, -4, and -6 with current move.
|
||||
|
||||
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) {
|
||||
|
||||
for (int i : {1, 2, 4, 6})
|
||||
{
|
||||
if (ss->inCheck && i > 2)
|
||||
break;
|
||||
if (is_ok((ss-i)->currentMove))
|
||||
(*(ss-i)->continuationHistory)[pc][to] << bonus;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// update_quiet_stats() updates move sorting heuristics
|
||||
|
||||
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus) {
|
||||
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth) {
|
||||
|
||||
if (ss->killers[0] != move)
|
||||
{
|
||||
|
@ -1674,6 +1723,9 @@ moves_loop: // When in check, search starts from here
|
|||
Square prevSq = to_sq((ss-1)->currentMove);
|
||||
thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move;
|
||||
}
|
||||
|
||||
if (depth > 11 && ss->ply < MAX_LPH)
|
||||
thisThread->lowPlyHistory[ss->ply][from_to(move)] << stat_bonus(depth - 6);
|
||||
}
|
||||
|
||||
// When playing with strength handicap, choose best move among a set of RootMoves
|
||||
|
@ -1767,7 +1819,7 @@ string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
|
|||
Depth d = updated ? depth : depth - 1;
|
||||
Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
|
||||
|
||||
bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY;
|
||||
bool tb = TB::RootInTB && abs(v) < VALUE_MATE_IN_MAX_PLY;
|
||||
v = tb ? rootMoves[i].tbScore : v;
|
||||
|
||||
if (ss.rdbuf()->in_avail()) // Not at first line
|
||||
|
|
|
@ -49,6 +49,7 @@ struct Stack {
|
|||
Value staticEval;
|
||||
int statScore;
|
||||
int moveCount;
|
||||
bool inCheck;
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -60,13 +60,12 @@ namespace {
|
|||
constexpr int TBPIECES = 7; // Max number of supported pieces
|
||||
|
||||
enum { BigEndian, LittleEndian };
|
||||
enum TBType { KEY, WDL, DTZ }; // Used as template parameter
|
||||
enum TBType { WDL, DTZ }; // Used as template parameter
|
||||
|
||||
// Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables
|
||||
enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, Wide = 16, SingleValue = 128 };
|
||||
|
||||
inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); }
|
||||
inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); }
|
||||
inline Square operator^(Square s, int i) { return Square(int(s) ^ i); }
|
||||
|
||||
const std::string PieceToChar = " PNBRQK pnbrqk";
|
||||
|
@ -404,7 +403,17 @@ TBTable<DTZ>::TBTable(const TBTable<WDL>& wdl) : TBTable() {
|
|||
// at init time, accessed at probe time.
|
||||
class TBTables {
|
||||
|
||||
typedef std::tuple<Key, TBTable<WDL>*, TBTable<DTZ>*> Entry;
|
||||
struct Entry
|
||||
{
|
||||
Key key;
|
||||
TBTable<WDL>* wdl;
|
||||
TBTable<DTZ>* dtz;
|
||||
|
||||
template <TBType Type>
|
||||
TBTable<Type>* get() const {
|
||||
return (TBTable<Type>*)(Type == WDL ? (void*)wdl : (void*)dtz);
|
||||
}
|
||||
};
|
||||
|
||||
static constexpr int Size = 1 << 12; // 4K table, indexed by key's 12 lsb
|
||||
static constexpr int Overflow = 1; // Number of elements allowed to map to the last bucket
|
||||
|
@ -416,12 +425,12 @@ class TBTables {
|
|||
|
||||
void insert(Key key, TBTable<WDL>* wdl, TBTable<DTZ>* dtz) {
|
||||
uint32_t homeBucket = (uint32_t)key & (Size - 1);
|
||||
Entry entry = std::make_tuple(key, wdl, dtz);
|
||||
Entry entry{ key, wdl, dtz };
|
||||
|
||||
// Ensure last element is empty to avoid overflow when looking up
|
||||
for (uint32_t bucket = homeBucket; bucket < Size + Overflow - 1; ++bucket) {
|
||||
Key otherKey = std::get<KEY>(hashTable[bucket]);
|
||||
if (otherKey == key || !std::get<WDL>(hashTable[bucket])) {
|
||||
Key otherKey = hashTable[bucket].key;
|
||||
if (otherKey == key || !hashTable[bucket].get<WDL>()) {
|
||||
hashTable[bucket] = entry;
|
||||
return;
|
||||
}
|
||||
|
@ -430,7 +439,7 @@ class TBTables {
|
|||
// insert here and search for a new spot for the other element instead.
|
||||
uint32_t otherHomeBucket = (uint32_t)otherKey & (Size - 1);
|
||||
if (otherHomeBucket > homeBucket) {
|
||||
swap(entry, hashTable[bucket]);
|
||||
std::swap(entry, hashTable[bucket]);
|
||||
key = otherKey;
|
||||
homeBucket = otherHomeBucket;
|
||||
}
|
||||
|
@ -443,8 +452,8 @@ public:
|
|||
template<TBType Type>
|
||||
TBTable<Type>* get(Key key) {
|
||||
for (const Entry* entry = &hashTable[(uint32_t)key & (Size - 1)]; ; ++entry) {
|
||||
if (std::get<KEY>(*entry) == key || !std::get<Type>(*entry))
|
||||
return std::get<Type>(*entry);
|
||||
if (entry->key == key || !entry->get<Type>())
|
||||
return entry->get<Type>();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -462,8 +471,6 @@ TBTables TBTables;
|
|||
// If the corresponding file exists two new objects TBTable<WDL> and TBTable<DTZ>
|
||||
// are created and added to the lists and hash table. Called at init time.
|
||||
void TBTables::add(const std::vector<PieceType>& pieces) {
|
||||
if (sizeof(char*) < 8 && pieces.size() >= 6)
|
||||
return; // Not enough address space to support 6-men TB on 32-bit OS
|
||||
|
||||
std::string code;
|
||||
|
||||
|
@ -523,7 +530,7 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
|
|||
// I(k) = k * d->span + d->span / 2 (1)
|
||||
|
||||
// First step is to get the 'k' of the I(k) nearest to our idx, using definition (1)
|
||||
uint32_t k = idx / d->span;
|
||||
uint32_t k = uint32_t(idx / d->span);
|
||||
|
||||
// Then we read the corresponding SparseIndex[] entry
|
||||
uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block);
|
||||
|
@ -569,7 +576,7 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
|
|||
// All the symbols of a given length are consecutive integers (numerical
|
||||
// sequence property), so we can compute the offset of our symbol of
|
||||
// length len, stored at the beginning of buf64.
|
||||
sym = (buf64 - d->base64[len]) >> (64 - len - d->minSymLen);
|
||||
sym = Sym((buf64 - d->base64[len]) >> (64 - len - d->minSymLen));
|
||||
|
||||
// Now add the value of the lowest symbol of length len to get our symbol
|
||||
sym += number<Sym, LittleEndian>(&d->lowestSym[len]);
|
||||
|
@ -708,7 +715,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
|
|||
|
||||
std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp));
|
||||
|
||||
tbFile = map_to_queenside(file_of(squares[0]));
|
||||
tbFile = File(edge_distance(file_of(squares[0])));
|
||||
}
|
||||
|
||||
// DTZ tables are one-sided, i.e. they store positions only for white to
|
||||
|
@ -745,7 +752,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
|
|||
// the triangle A1-D1-D4.
|
||||
if (file_of(squares[0]) > FILE_D)
|
||||
for (int i = 0; i < size; ++i)
|
||||
squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1
|
||||
squares[i] = flip_file(squares[i]);
|
||||
|
||||
// Encode leading pawns starting with the one with minimum MapPawns[] and
|
||||
// proceeding in ascending order.
|
||||
|
@ -764,7 +771,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
|
|||
// piece is below RANK_5.
|
||||
if (rank_of(squares[0]) > RANK_4)
|
||||
for (int i = 0; i < size; ++i)
|
||||
squares[i] ^= SQ_A8; // Vertical flip: SQ_A8 -> SQ_A1
|
||||
squares[i] = flip_rank(squares[i]);
|
||||
|
||||
// Look for the first piece of the leading group not on the A1-D4 diagonal
|
||||
// and ensure it is mapped below the diagonal.
|
||||
|
@ -772,7 +779,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
|
|||
if (!off_A1H8(squares[i]))
|
||||
continue;
|
||||
|
||||
if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3
|
||||
if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C1
|
||||
for (int j = i; j < size; ++j)
|
||||
squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63);
|
||||
break;
|
||||
|
@ -977,7 +984,7 @@ uint8_t* set_sizes(PairsData* d, uint8_t* data) {
|
|||
|
||||
d->sizeofBlock = 1ULL << *data++;
|
||||
d->span = 1ULL << *data++;
|
||||
d->sparseIndexSize = (tbSize + d->span - 1) / d->span; // Round up
|
||||
d->sparseIndexSize = size_t((tbSize + d->span - 1) / d->span); // Round up
|
||||
auto padding = number<uint8_t, LittleEndian>(data++);
|
||||
d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t);
|
||||
d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[]
|
||||
|
@ -1346,7 +1353,7 @@ void Tablebases::init(const std::string& paths) {
|
|||
if (leadPawnsCnt == 1)
|
||||
{
|
||||
MapPawns[sq] = availableSquares--;
|
||||
MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip
|
||||
MapPawns[flip_file(sq)] = availableSquares--;
|
||||
}
|
||||
LeadPawnIdx[leadPawnsCnt][sq] = idx;
|
||||
idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]];
|
||||
|
|
|
@ -54,7 +54,7 @@ Thread::~Thread() {
|
|||
|
||||
/// Thread::bestMoveCount(Move move) return best move counter for the given root move
|
||||
|
||||
int Thread::best_move_count(Move move) {
|
||||
int Thread::best_move_count(Move move) const {
|
||||
|
||||
auto rm = std::find(rootMoves.begin() + pvIdx,
|
||||
rootMoves.begin() + pvLast, move);
|
||||
|
@ -68,17 +68,17 @@ void Thread::clear() {
|
|||
|
||||
counterMoves.fill(MOVE_NONE);
|
||||
mainHistory.fill(0);
|
||||
lowPlyHistory.fill(0);
|
||||
captureHistory.fill(0);
|
||||
|
||||
for (bool inCheck : { false, true })
|
||||
for (StatsType c : { NoCaptures, Captures })
|
||||
{
|
||||
for (auto& to : continuationHistory[inCheck][c])
|
||||
for (auto& h : to)
|
||||
h->fill(0);
|
||||
|
||||
for (bool inCheck : { false, true })
|
||||
for (StatsType c : { NoCaptures, Captures })
|
||||
continuationHistory[inCheck][c][NO_PIECE][0]->fill(Search::CounterMovePruneThreshold - 1);
|
||||
}
|
||||
}
|
||||
|
||||
/// Thread::start_searching() wakes up the thread that will start the search
|
||||
|
@ -151,7 +151,7 @@ void ThreadPool::set(size_t requested) {
|
|||
clear();
|
||||
|
||||
// Reallocate the hash with the new threadpool size
|
||||
TT.resize(Options["Hash"]);
|
||||
TT.resize(size_t(Options["Hash"]));
|
||||
|
||||
// Init thread number dependent search params.
|
||||
Search::init();
|
||||
|
@ -166,7 +166,7 @@ void ThreadPool::clear() {
|
|||
th->clear();
|
||||
|
||||
main()->callsCnt = 0;
|
||||
main()->previousScore = VALUE_INFINITE;
|
||||
main()->bestPreviousScore = VALUE_INFINITE;
|
||||
main()->previousTimeReduction = 1.0;
|
||||
}
|
||||
|
||||
|
@ -208,7 +208,7 @@ void ThreadPool::start_thinking(Position& pos, StateListPtr& states,
|
|||
|
||||
for (Thread* th : *this)
|
||||
{
|
||||
th->nodes = th->tbHits = th->nmpMinPly = 0;
|
||||
th->nodes = th->tbHits = th->nmpMinPly = th->bestMoveChanges = 0;
|
||||
th->rootDepth = th->completedDepth = 0;
|
||||
th->rootMoves = rootMoves;
|
||||
th->rootPos.set(pos.fen(), pos.is_chess960(), &setupStates->back(), th);
|
||||
|
@ -218,3 +218,52 @@ void ThreadPool::start_thinking(Position& pos, StateListPtr& states,
|
|||
|
||||
main()->start_searching();
|
||||
}
|
||||
|
||||
Thread* ThreadPool::get_best_thread() const {
|
||||
|
||||
Thread* bestThread = front();
|
||||
std::map<Move, int64_t> votes;
|
||||
Value minScore = VALUE_NONE;
|
||||
|
||||
// Find minimum score of all threads
|
||||
for (Thread* th: *this)
|
||||
minScore = std::min(minScore, th->rootMoves[0].score);
|
||||
|
||||
// Vote according to score and depth, and select the best thread
|
||||
for (Thread* th : *this)
|
||||
{
|
||||
votes[th->rootMoves[0].pv[0]] +=
|
||||
(th->rootMoves[0].score - minScore + 14) * int(th->completedDepth);
|
||||
|
||||
if (abs(bestThread->rootMoves[0].score) >= VALUE_TB_WIN_IN_MAX_PLY)
|
||||
{
|
||||
// Make sure we pick the shortest mate / TB conversion or stave off mate the longest
|
||||
if (th->rootMoves[0].score > bestThread->rootMoves[0].score)
|
||||
bestThread = th;
|
||||
}
|
||||
else if ( th->rootMoves[0].score >= VALUE_TB_WIN_IN_MAX_PLY
|
||||
|| ( th->rootMoves[0].score > VALUE_TB_LOSS_IN_MAX_PLY
|
||||
&& votes[th->rootMoves[0].pv[0]] > votes[bestThread->rootMoves[0].pv[0]]))
|
||||
bestThread = th;
|
||||
}
|
||||
|
||||
return bestThread;
|
||||
}
|
||||
|
||||
/// Start non-main threads.
|
||||
|
||||
void ThreadPool::start_searching() {
|
||||
|
||||
for (Thread* th : *this)
|
||||
if (th != front())
|
||||
th->start_searching();
|
||||
}
|
||||
|
||||
/// Wait for non-main threads.
|
||||
|
||||
void ThreadPool::wait_for_search_finished() const {
|
||||
|
||||
for (Thread* th : *this)
|
||||
if (th != front())
|
||||
th->wait_for_search_finished();
|
||||
}
|
||||
|
|
|
@ -56,7 +56,7 @@ public:
|
|||
void idle_loop();
|
||||
void start_searching();
|
||||
void wait_for_search_finished();
|
||||
int best_move_count(Move move);
|
||||
int best_move_count(Move move) const;
|
||||
|
||||
Pawns::Table pawnsTable;
|
||||
Material::Table materialTable;
|
||||
|
@ -71,6 +71,7 @@ public:
|
|||
Depth rootDepth, completedDepth;
|
||||
CounterMoveHistory counterMoves;
|
||||
ButterflyHistory mainHistory;
|
||||
LowPlyHistory lowPlyHistory;
|
||||
CapturePieceToHistory captureHistory;
|
||||
ContinuationHistory continuationHistory[2][2];
|
||||
Score contempt;
|
||||
|
@ -87,7 +88,7 @@ struct MainThread : public Thread {
|
|||
void check_time();
|
||||
|
||||
double previousTimeReduction;
|
||||
Value previousScore;
|
||||
Value bestPreviousScore;
|
||||
Value iterValue[4];
|
||||
int callsCnt;
|
||||
bool stopOnPonderhit;
|
||||
|
@ -108,6 +109,9 @@ struct ThreadPool : public std::vector<Thread*> {
|
|||
MainThread* main() const { return static_cast<MainThread*>(front()); }
|
||||
uint64_t nodes_searched() const { return accumulate(&Thread::nodes); }
|
||||
uint64_t tb_hits() const { return accumulate(&Thread::tbHits); }
|
||||
Thread* get_best_thread() const;
|
||||
void start_searching();
|
||||
void wait_for_search_finished() const;
|
||||
|
||||
std::atomic_bool stop, increaseDepth;
|
||||
|
||||
|
|
|
@ -28,66 +28,21 @@
|
|||
|
||||
TimeManagement Time; // Our global time management object
|
||||
|
||||
namespace {
|
||||
|
||||
enum TimeType { OptimumTime, MaxTime };
|
||||
|
||||
constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead
|
||||
constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio
|
||||
constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio
|
||||
|
||||
|
||||
// move_importance() is a skew-logistic function based on naive statistical
|
||||
// analysis of "how many games are still undecided after n half-moves". Game
|
||||
// is considered "undecided" as long as neither side has >275cp advantage.
|
||||
// Data was extracted from the CCRL game database with some simple filtering criteria.
|
||||
|
||||
double move_importance(int ply) {
|
||||
|
||||
constexpr double XScale = 6.85;
|
||||
constexpr double XShift = 64.5;
|
||||
constexpr double Skew = 0.171;
|
||||
|
||||
return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero
|
||||
}
|
||||
|
||||
template<TimeType T>
|
||||
TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) {
|
||||
|
||||
constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio);
|
||||
constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio);
|
||||
|
||||
double moveImportance = (move_importance(ply) * slowMover) / 100.0;
|
||||
double otherMovesImportance = 0.0;
|
||||
|
||||
for (int i = 1; i < movesToGo; ++i)
|
||||
otherMovesImportance += move_importance(ply + 2 * i);
|
||||
|
||||
double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance);
|
||||
double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance);
|
||||
|
||||
return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
/// init() is called at the beginning of the search and calculates the allowed
|
||||
/// thinking time out of the time control and current game ply. We support four
|
||||
/// different kinds of time controls, passed in 'limits':
|
||||
///
|
||||
/// inc == 0 && movestogo == 0 means: x basetime [sudden death!]
|
||||
/// inc == 0 && movestogo != 0 means: x moves in y minutes
|
||||
/// inc > 0 && movestogo == 0 means: x basetime + z increment
|
||||
/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment
|
||||
/// init() is called at the beginning of the search and calculates the bounds
|
||||
/// of time allowed for the current game ply. We currently support:
|
||||
// 1) x basetime (+z increment)
|
||||
// 2) x moves in y seconds (+z increment)
|
||||
|
||||
void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
|
||||
|
||||
TimePoint minThinkingTime = Options["Minimum Thinking Time"];
|
||||
TimePoint moveOverhead = Options["Move Overhead"];
|
||||
TimePoint slowMover = Options["Slow Mover"];
|
||||
TimePoint npmsec = Options["nodestime"];
|
||||
TimePoint hypMyTime;
|
||||
TimePoint minThinkingTime = TimePoint(Options["Minimum Thinking Time"]);
|
||||
TimePoint moveOverhead = TimePoint(Options["Move Overhead"]);
|
||||
TimePoint slowMover = TimePoint(Options["Slow Mover"]);
|
||||
TimePoint npmsec = TimePoint(Options["nodestime"]);
|
||||
|
||||
// opt_scale is a percentage of available time to use for the current move.
|
||||
// max_scale is a multiplier applied to optimumTime.
|
||||
double opt_scale, max_scale;
|
||||
|
||||
// If we have to play in 'nodes as time' mode, then convert from time
|
||||
// to nodes, and use resulting values in time management formulas.
|
||||
|
@ -105,29 +60,40 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
|
|||
}
|
||||
|
||||
startTime = limits.startTime;
|
||||
optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime);
|
||||
|
||||
const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon;
|
||||
//Maximum move horizon of 50 moves
|
||||
int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50;
|
||||
|
||||
// We calculate optimum time usage for different hypothetical "moves to go" values
|
||||
// and choose the minimum of calculated search time values. Usually the greatest
|
||||
// hypMTG gives the minimum values.
|
||||
for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG)
|
||||
// Make sure timeLeft is > 0 since we may use it as a divisor
|
||||
TimePoint timeLeft = std::max(TimePoint(1),
|
||||
limits.time[us] + limits.inc[us] * (mtg - 1) - moveOverhead * (2 + mtg));
|
||||
|
||||
// A user may scale time usage by setting UCI option "Slow Mover"
|
||||
// Default is 100 and changing this value will probably lose elo.
|
||||
timeLeft = slowMover * timeLeft / 100;
|
||||
|
||||
// x basetime (+ z increment)
|
||||
// If there is a healthy increment, timeLeft can exceed actual available
|
||||
// game time for the current move, so also cap to 20% of available game time.
|
||||
if (limits.movestogo == 0)
|
||||
{
|
||||
// Calculate thinking time for hypothetical "moves to go"-value
|
||||
hypMyTime = limits.time[us]
|
||||
+ limits.inc[us] * (hypMTG - 1)
|
||||
- moveOverhead * (2 + std::min(hypMTG, 40));
|
||||
|
||||
hypMyTime = std::max(hypMyTime, TimePoint(0));
|
||||
|
||||
TimePoint t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover);
|
||||
TimePoint t2 = minThinkingTime + remaining<MaxTime >(hypMyTime, hypMTG, ply, slowMover);
|
||||
|
||||
optimumTime = std::min(t1, optimumTime);
|
||||
maximumTime = std::min(t2, maximumTime);
|
||||
opt_scale = std::min(0.008 + std::pow(ply + 3.0, 0.5) / 250.0,
|
||||
0.2 * limits.time[us] / double(timeLeft));
|
||||
max_scale = 4 + std::min(36, ply) / 12.0;
|
||||
}
|
||||
|
||||
// x moves in y seconds (+ z increment)
|
||||
else
|
||||
{
|
||||
opt_scale = std::min((0.8 + ply / 128.0) / mtg,
|
||||
0.8 * limits.time[us] / double(timeLeft));
|
||||
max_scale = std::min(6.3, 1.5 + 0.11 * mtg);
|
||||
}
|
||||
|
||||
// Never use more than 80% of the available time for this move
|
||||
optimumTime = std::max(minThinkingTime, TimePoint(opt_scale * timeLeft));
|
||||
maximumTime = TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, max_scale * optimumTime));
|
||||
|
||||
if (Options["Ponder"])
|
||||
optimumTime += optimumTime / 4;
|
||||
}
|
||||
|
|
|
@ -36,17 +36,17 @@ TranspositionTable TT; // Our global transposition table
|
|||
void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev) {
|
||||
|
||||
// Preserve any existing move for the same position
|
||||
if (m || (k >> 48) != key16)
|
||||
if (m || (uint16_t)k != key16)
|
||||
move16 = (uint16_t)m;
|
||||
|
||||
// Overwrite less valuable entries
|
||||
if ( (k >> 48) != key16
|
||||
if ((uint16_t)k != key16
|
||||
|| d - DEPTH_OFFSET > depth8 - 4
|
||||
|| b == BOUND_EXACT)
|
||||
{
|
||||
assert(d >= DEPTH_OFFSET);
|
||||
|
||||
key16 = (uint16_t)(k >> 48);
|
||||
key16 = (uint16_t)k;
|
||||
value16 = (int16_t)v;
|
||||
eval16 = (int16_t)ev;
|
||||
genBound8 = (uint8_t)(TT.generation8 | uint8_t(pv) << 2 | b);
|
||||
|
@ -63,11 +63,10 @@ void TranspositionTable::resize(size_t mbSize) {
|
|||
|
||||
Threads.main()->wait_for_search_finished();
|
||||
|
||||
aligned_ttmem_free(mem);
|
||||
|
||||
clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster);
|
||||
|
||||
free(mem);
|
||||
mem = malloc(clusterCount * sizeof(Cluster) + CacheLineSize - 1);
|
||||
|
||||
table = static_cast<Cluster*>(aligned_ttmem_alloc(clusterCount * sizeof(Cluster), mem));
|
||||
if (!mem)
|
||||
{
|
||||
std::cerr << "Failed to allocate " << mbSize
|
||||
|
@ -75,7 +74,6 @@ void TranspositionTable::resize(size_t mbSize) {
|
|||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
table = (Cluster*)((uintptr_t(mem) + CacheLineSize - 1) & ~(CacheLineSize - 1));
|
||||
clear();
|
||||
}
|
||||
|
||||
|
@ -96,8 +94,8 @@ void TranspositionTable::clear() {
|
|||
WinProcGroup::bindThisThread(idx);
|
||||
|
||||
// Each thread will zero its part of the hash table
|
||||
const size_t stride = clusterCount / Options["Threads"],
|
||||
start = stride * idx,
|
||||
const size_t stride = size_t(clusterCount / Options["Threads"]),
|
||||
start = size_t(stride * idx),
|
||||
len = idx != Options["Threads"] - 1 ?
|
||||
stride : clusterCount - start;
|
||||
|
||||
|
@ -105,7 +103,7 @@ void TranspositionTable::clear() {
|
|||
});
|
||||
}
|
||||
|
||||
for (std::thread& th: threads)
|
||||
for (std::thread& th : threads)
|
||||
th.join();
|
||||
}
|
||||
|
||||
|
@ -119,7 +117,7 @@ void TranspositionTable::clear() {
|
|||
TTEntry* TranspositionTable::probe(const Key key, bool& found) const {
|
||||
|
||||
TTEntry* const tte = first_entry(key);
|
||||
const uint16_t key16 = key >> 48; // Use the high 16 bits as key inside the cluster
|
||||
const uint16_t key16 = (uint16_t)key; // Use the low 16 bits as key inside the cluster
|
||||
|
||||
for (int i = 0; i < ClusterSize; ++i)
|
||||
if (!tte[i].key16 || tte[i].key16 == key16)
|
||||
|
@ -150,9 +148,9 @@ TTEntry* TranspositionTable::probe(const Key key, bool& found) const {
|
|||
int TranspositionTable::hashfull() const {
|
||||
|
||||
int cnt = 0;
|
||||
for (int i = 0; i < 1000 / ClusterSize; ++i)
|
||||
for (int i = 0; i < 1000; ++i)
|
||||
for (int j = 0; j < ClusterSize; ++j)
|
||||
cnt += (table[i].entry[j].genBound8 & 0xF8) == generation8;
|
||||
|
||||
return cnt * 1000 / (ClusterSize * (1000 / ClusterSize));
|
||||
return cnt / ClusterSize;
|
||||
}
|
||||
|
|
|
@ -57,36 +57,33 @@ private:
|
|||
};
|
||||
|
||||
|
||||
/// A TranspositionTable consists of a power of 2 number of clusters and each
|
||||
/// cluster consists of ClusterSize number of TTEntry. Each non-empty entry
|
||||
/// contains information of exactly one position. The size of a cluster should
|
||||
/// divide the size of a cache line size, to ensure that clusters never cross
|
||||
/// cache lines. This ensures best cache performance, as the cacheline is
|
||||
/// prefetched, as soon as possible.
|
||||
/// A TranspositionTable is an array of Cluster, of size clusterCount. Each
|
||||
/// cluster consists of ClusterSize number of TTEntry. Each non-empty TTEntry
|
||||
/// contains information on exactly one position. The size of a Cluster should
|
||||
/// divide the size of a cache line for best performance,
|
||||
/// as the cacheline is prefetched when possible.
|
||||
|
||||
class TranspositionTable {
|
||||
|
||||
static constexpr int CacheLineSize = 64;
|
||||
static constexpr int ClusterSize = 3;
|
||||
|
||||
struct Cluster {
|
||||
TTEntry entry[ClusterSize];
|
||||
char padding[2]; // Align to a divisor of the cache line size
|
||||
char padding[2]; // Pad to 32 bytes
|
||||
};
|
||||
|
||||
static_assert(CacheLineSize % sizeof(Cluster) == 0, "Cluster size incorrect");
|
||||
static_assert(sizeof(Cluster) == 32, "Unexpected Cluster size");
|
||||
|
||||
public:
|
||||
~TranspositionTable() { free(mem); }
|
||||
~TranspositionTable() { aligned_ttmem_free(mem); }
|
||||
void new_search() { generation8 += 8; } // Lower 3 bits are used by PV flag and Bound
|
||||
TTEntry* probe(const Key key, bool& found) const;
|
||||
int hashfull() const;
|
||||
void resize(size_t mbSize);
|
||||
void clear();
|
||||
|
||||
// The 32 lowest order bits of the key are used to get the index of the cluster
|
||||
TTEntry* first_entry(const Key key) const {
|
||||
return &table[(uint32_t(key) * uint64_t(clusterCount)) >> 32].entry[0];
|
||||
return &table[mul_hi64(key, clusterCount)].entry[0];
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
146
DroidFishApp/src/main/cpp/stockfish/tune.cpp
Normal file
146
DroidFishApp/src/main/cpp/stockfish/tune.cpp
Normal file
|
@ -0,0 +1,146 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Stockfish is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include "types.h"
|
||||
#include "misc.h"
|
||||
#include "uci.h"
|
||||
|
||||
using std::string;
|
||||
|
||||
bool Tune::update_on_last;
|
||||
const UCI::Option* LastOption = nullptr;
|
||||
BoolConditions Conditions;
|
||||
static std::map<std::string, int> TuneResults;
|
||||
|
||||
string Tune::next(string& names, bool pop) {
|
||||
|
||||
string name;
|
||||
|
||||
do {
|
||||
string token = names.substr(0, names.find(','));
|
||||
|
||||
if (pop)
|
||||
names.erase(0, token.size() + 1);
|
||||
|
||||
std::stringstream ws(token);
|
||||
name += (ws >> token, token); // Remove trailing whitespace
|
||||
|
||||
} while ( std::count(name.begin(), name.end(), '(')
|
||||
- std::count(name.begin(), name.end(), ')'));
|
||||
|
||||
return name;
|
||||
}
|
||||
|
||||
static void on_tune(const UCI::Option& o) {
|
||||
|
||||
if (!Tune::update_on_last || LastOption == &o)
|
||||
Tune::read_options();
|
||||
}
|
||||
|
||||
static void make_option(const string& n, int v, const SetRange& r) {
|
||||
|
||||
// Do not generate option when there is nothing to tune (ie. min = max)
|
||||
if (r(v).first == r(v).second)
|
||||
return;
|
||||
|
||||
if (TuneResults.count(n))
|
||||
v = TuneResults[n];
|
||||
|
||||
Options[n] << UCI::Option(v, r(v).first, r(v).second, on_tune);
|
||||
LastOption = &Options[n];
|
||||
|
||||
// Print formatted parameters, ready to be copy-pasted in fishtest
|
||||
std::cout << n << ","
|
||||
<< v << ","
|
||||
<< r(v).first << "," << r(v).second << ","
|
||||
<< (r(v).second - r(v).first) / 20.0 << ","
|
||||
<< "0.0020"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
template<> void Tune::Entry<int>::init_option() { make_option(name, value, range); }
|
||||
|
||||
template<> void Tune::Entry<int>::read_option() {
|
||||
if (Options.count(name))
|
||||
value = int(Options[name]);
|
||||
}
|
||||
|
||||
template<> void Tune::Entry<Value>::init_option() { make_option(name, value, range); }
|
||||
|
||||
template<> void Tune::Entry<Value>::read_option() {
|
||||
if (Options.count(name))
|
||||
value = Value(int(Options[name]));
|
||||
}
|
||||
|
||||
template<> void Tune::Entry<Score>::init_option() {
|
||||
make_option("m" + name, mg_value(value), range);
|
||||
make_option("e" + name, eg_value(value), range);
|
||||
}
|
||||
|
||||
template<> void Tune::Entry<Score>::read_option() {
|
||||
if (Options.count("m" + name))
|
||||
value = make_score(int(Options["m" + name]), eg_value(value));
|
||||
|
||||
if (Options.count("e" + name))
|
||||
value = make_score(mg_value(value), int(Options["e" + name]));
|
||||
}
|
||||
|
||||
// Instead of a variable here we have a PostUpdate function: just call it
|
||||
template<> void Tune::Entry<Tune::PostUpdate>::init_option() {}
|
||||
template<> void Tune::Entry<Tune::PostUpdate>::read_option() { value(); }
|
||||
|
||||
|
||||
// Set binary conditions according to a probability that depends
|
||||
// on the corresponding parameter value.
|
||||
|
||||
void BoolConditions::set() {
|
||||
|
||||
static PRNG rng(now());
|
||||
static bool startup = true; // To workaround fishtest bench
|
||||
|
||||
for (size_t i = 0; i < binary.size(); i++)
|
||||
binary[i] = !startup && (values[i] + int(rng.rand<unsigned>() % variance) > threshold);
|
||||
|
||||
startup = false;
|
||||
|
||||
for (size_t i = 0; i < binary.size(); i++)
|
||||
sync_cout << binary[i] << sync_endl;
|
||||
}
|
||||
|
||||
|
||||
// Init options with tuning session results instead of default values. Useful to
|
||||
// get correct bench signature after a tuning session or to test tuned values.
|
||||
// Just copy fishtest tuning results in a result.txt file and extract the
|
||||
// values with:
|
||||
//
|
||||
// cat results.txt | sed 's/^param: \([^,]*\), best: \([^,]*\).*/ TuneResults["\1"] = int(round(\2));/'
|
||||
//
|
||||
// Then paste the output below, as the function body
|
||||
|
||||
#include <cmath>
|
||||
|
||||
void Tune::read_results() {
|
||||
|
||||
/* ...insert your values here... */
|
||||
}
|
195
DroidFishApp/src/main/cpp/stockfish/tune.h
Normal file
195
DroidFishApp/src/main/cpp/stockfish/tune.h
Normal file
|
@ -0,0 +1,195 @@
|
|||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2017 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Stockfish is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef TUNE_H_INCLUDED
|
||||
#define TUNE_H_INCLUDED
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
typedef std::pair<int, int> Range; // Option's min-max values
|
||||
typedef Range (RangeFun) (int);
|
||||
|
||||
// Default Range function, to calculate Option's min-max values
|
||||
inline Range default_range(int v) {
|
||||
return v > 0 ? Range(0, 2 * v) : Range(2 * v, 0);
|
||||
}
|
||||
|
||||
struct SetRange {
|
||||
explicit SetRange(RangeFun f) : fun(f) {}
|
||||
SetRange(int min, int max) : fun(nullptr), range(min, max) {}
|
||||
Range operator()(int v) const { return fun ? fun(v) : range; }
|
||||
|
||||
RangeFun* fun;
|
||||
Range range;
|
||||
};
|
||||
|
||||
#define SetDefaultRange SetRange(default_range)
|
||||
|
||||
|
||||
/// BoolConditions struct is used to tune boolean conditions in the
|
||||
/// code by toggling them on/off according to a probability that
|
||||
/// depends on the value of a tuned integer parameter: for high
|
||||
/// values of the parameter condition is always disabled, for low
|
||||
/// values is always enabled, otherwise it is enabled with a given
|
||||
/// probability that depnends on the parameter under tuning.
|
||||
|
||||
struct BoolConditions {
|
||||
void init(size_t size) { values.resize(size, defaultValue), binary.resize(size, 0); }
|
||||
void set();
|
||||
|
||||
std::vector<int> binary, values;
|
||||
int defaultValue = 465, variance = 40, threshold = 500;
|
||||
SetRange range = SetRange(0, 1000);
|
||||
};
|
||||
|
||||
extern BoolConditions Conditions;
|
||||
|
||||
inline void set_conditions() { Conditions.set(); }
|
||||
|
||||
|
||||
/// Tune class implements the 'magic' code that makes the setup of a fishtest
|
||||
/// tuning session as easy as it can be. Mainly you have just to remove const
|
||||
/// qualifiers from the variables you want to tune and flag them for tuning, so
|
||||
/// if you have:
|
||||
///
|
||||
/// const Score myScore = S(10, 15);
|
||||
/// const Value myValue[][2] = { { V(100), V(20) }, { V(7), V(78) } };
|
||||
///
|
||||
/// If you have a my_post_update() function to run after values have been updated,
|
||||
/// and a my_range() function to set custom Option's min-max values, then you just
|
||||
/// remove the 'const' qualifiers and write somewhere below in the file:
|
||||
///
|
||||
/// TUNE(SetRange(my_range), myScore, myValue, my_post_update);
|
||||
///
|
||||
/// You can also set the range directly, and restore the default at the end
|
||||
///
|
||||
/// TUNE(SetRange(-100, 100), myScore, SetDefaultRange);
|
||||
///
|
||||
/// In case update function is slow and you have many parameters, you can add:
|
||||
///
|
||||
/// UPDATE_ON_LAST();
|
||||
///
|
||||
/// And the values update, including post update function call, will be done only
|
||||
/// once, after the engine receives the last UCI option, that is the one defined
|
||||
/// and created as the last one, so the GUI should send the options in the same
|
||||
/// order in which have been defined.
|
||||
|
||||
class Tune {
|
||||
|
||||
typedef void (PostUpdate) (); // Post-update function
|
||||
|
||||
Tune() { read_results(); }
|
||||
Tune(const Tune&) = delete;
|
||||
void operator=(const Tune&) = delete;
|
||||
void read_results();
|
||||
|
||||
static Tune& instance() { static Tune t; return t; } // Singleton
|
||||
|
||||
// Use polymorphism to accomodate Entry of different types in the same vector
|
||||
struct EntryBase {
|
||||
virtual ~EntryBase() = default;
|
||||
virtual void init_option() = 0;
|
||||
virtual void read_option() = 0;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct Entry : public EntryBase {
|
||||
|
||||
static_assert(!std::is_const<T>::value, "Parameter cannot be const!");
|
||||
|
||||
static_assert( std::is_same<T, int>::value
|
||||
|| std::is_same<T, Value>::value
|
||||
|| std::is_same<T, Score>::value
|
||||
|| std::is_same<T, PostUpdate>::value, "Parameter type not supported!");
|
||||
|
||||
Entry(const std::string& n, T& v, const SetRange& r) : name(n), value(v), range(r) {}
|
||||
void operator=(const Entry&) = delete; // Because 'value' is a reference
|
||||
void init_option() override;
|
||||
void read_option() override;
|
||||
|
||||
std::string name;
|
||||
T& value;
|
||||
SetRange range;
|
||||
};
|
||||
|
||||
// Our facilty to fill the container, each Entry corresponds to a parameter to tune.
|
||||
// We use variadic templates to deal with an unspecified number of entries, each one
|
||||
// of a possible different type.
|
||||
static std::string next(std::string& names, bool pop = true);
|
||||
|
||||
int add(const SetRange&, std::string&&) { return 0; }
|
||||
|
||||
template<typename T, typename... Args>
|
||||
int add(const SetRange& range, std::string&& names, T& value, Args&&... args) {
|
||||
list.push_back(std::unique_ptr<EntryBase>(new Entry<T>(next(names), value, range)));
|
||||
return add(range, std::move(names), args...);
|
||||
}
|
||||
|
||||
// Template specialization for arrays: recursively handle multi-dimensional arrays
|
||||
template<typename T, size_t N, typename... Args>
|
||||
int add(const SetRange& range, std::string&& names, T (&value)[N], Args&&... args) {
|
||||
for (size_t i = 0; i < N; i++)
|
||||
add(range, next(names, i == N - 1) + "[" + std::to_string(i) + "]", value[i]);
|
||||
return add(range, std::move(names), args...);
|
||||
}
|
||||
|
||||
// Template specialization for SetRange
|
||||
template<typename... Args>
|
||||
int add(const SetRange&, std::string&& names, SetRange& value, Args&&... args) {
|
||||
return add(value, (next(names), std::move(names)), args...);
|
||||
}
|
||||
|
||||
// Template specialization for BoolConditions
|
||||
template<typename... Args>
|
||||
int add(const SetRange& range, std::string&& names, BoolConditions& cond, Args&&... args) {
|
||||
for (size_t size = cond.values.size(), i = 0; i < size; i++)
|
||||
add(cond.range, next(names, i == size - 1) + "_" + std::to_string(i), cond.values[i]);
|
||||
return add(range, std::move(names), args...);
|
||||
}
|
||||
|
||||
std::vector<std::unique_ptr<EntryBase>> list;
|
||||
|
||||
public:
|
||||
template<typename... Args>
|
||||
static int add(const std::string& names, Args&&... args) {
|
||||
return instance().add(SetDefaultRange, names.substr(1, names.size() - 2), args...); // Remove trailing parenthesis
|
||||
}
|
||||
static void init() { for (auto& e : instance().list) e->init_option(); read_options(); } // Deferred, due to UCI::Options access
|
||||
static void read_options() { for (auto& e : instance().list) e->read_option(); }
|
||||
static bool update_on_last;
|
||||
};
|
||||
|
||||
// Some macro magic :-) we define a dummy int variable that compiler initializes calling Tune::add()
|
||||
#define STRINGIFY(x) #x
|
||||
#define UNIQUE2(x, y) x ## y
|
||||
#define UNIQUE(x, y) UNIQUE2(x, y) // Two indirection levels to expand __LINE__
|
||||
#define TUNE(...) int UNIQUE(p, __LINE__) = Tune::add(STRINGIFY((__VA_ARGS__)), __VA_ARGS__)
|
||||
|
||||
#define UPDATE_ON_LAST() bool UNIQUE(p, __LINE__) = Tune::update_on_last = true
|
||||
|
||||
// Some macro to tune toggling of boolean conditions
|
||||
#define CONDITION(x) (Conditions.binary[__COUNTER__] || (x))
|
||||
#define TUNE_CONDITIONS() int UNIQUE(c, __LINE__) = (Conditions.init(__COUNTER__), 0); \
|
||||
TUNE(Conditions, set_conditions)
|
||||
|
||||
#endif // #ifndef TUNE_H_INCLUDED
|
|
@ -176,14 +176,17 @@ enum Value : int {
|
|||
VALUE_INFINITE = 32001,
|
||||
VALUE_NONE = 32002,
|
||||
|
||||
VALUE_MATE_IN_MAX_PLY = VALUE_MATE - 2 * MAX_PLY,
|
||||
VALUE_MATED_IN_MAX_PLY = -VALUE_MATE + 2 * MAX_PLY,
|
||||
VALUE_TB_WIN_IN_MAX_PLY = VALUE_MATE - 2 * MAX_PLY,
|
||||
VALUE_TB_LOSS_IN_MAX_PLY = -VALUE_TB_WIN_IN_MAX_PLY,
|
||||
VALUE_MATE_IN_MAX_PLY = VALUE_MATE - MAX_PLY,
|
||||
VALUE_MATED_IN_MAX_PLY = -VALUE_MATE_IN_MAX_PLY,
|
||||
|
||||
PawnValueMg = 128, PawnValueEg = 213,
|
||||
PawnValueMg = 124, PawnValueEg = 206,
|
||||
KnightValueMg = 781, KnightValueEg = 854,
|
||||
BishopValueMg = 825, BishopValueEg = 915,
|
||||
RookValueMg = 1276, RookValueEg = 1380,
|
||||
QueenValueMg = 2538, QueenValueEg = 2682,
|
||||
Tempo = 28,
|
||||
|
||||
MidgameLimit = 15258, EndgameLimit = 3915
|
||||
};
|
||||
|
@ -201,7 +204,12 @@ enum Piece {
|
|||
PIECE_NB = 16
|
||||
};
|
||||
|
||||
extern Value PieceValue[PHASE_NB][PIECE_NB];
|
||||
constexpr Value PieceValue[PHASE_NB][PIECE_NB] = {
|
||||
{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg, VALUE_ZERO, VALUE_ZERO,
|
||||
VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg, VALUE_ZERO, VALUE_ZERO },
|
||||
{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg, VALUE_ZERO, VALUE_ZERO,
|
||||
VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg, VALUE_ZERO, VALUE_ZERO }
|
||||
};
|
||||
|
||||
typedef int Depth;
|
||||
|
||||
|
@ -212,7 +220,7 @@ enum : int {
|
|||
DEPTH_QS_RECAPTURES = -5,
|
||||
|
||||
DEPTH_NONE = -6,
|
||||
DEPTH_OFFSET = DEPTH_NONE,
|
||||
DEPTH_OFFSET = DEPTH_NONE
|
||||
};
|
||||
|
||||
enum Square : int {
|
||||
|
@ -343,25 +351,25 @@ inline Score operator*(Score s, int i) {
|
|||
|
||||
/// Multiplication of a Score by a boolean
|
||||
inline Score operator*(Score s, bool b) {
|
||||
return Score(int(s) * int(b));
|
||||
return b ? s : SCORE_ZERO;
|
||||
}
|
||||
|
||||
constexpr Color operator~(Color c) {
|
||||
return Color(c ^ BLACK); // Toggle color
|
||||
}
|
||||
|
||||
constexpr Square operator~(Square s) {
|
||||
return Square(s ^ SQ_A8); // Vertical flip SQ_A1 -> SQ_A8
|
||||
constexpr Square flip_rank(Square s) {
|
||||
return Square(s ^ SQ_A8);
|
||||
}
|
||||
|
||||
constexpr Square flip_file(Square s) {
|
||||
return Square(s ^ SQ_H1);
|
||||
}
|
||||
|
||||
constexpr Piece operator~(Piece pc) {
|
||||
return Piece(pc ^ 8); // Swap color of piece B_KNIGHT -> W_KNIGHT
|
||||
}
|
||||
|
||||
inline File map_to_queenside(File f) {
|
||||
return std::min(f, File(FILE_H - f)); // Map files ABCDEFGH to files ABCDDCBA
|
||||
}
|
||||
|
||||
constexpr CastlingRights operator&(Color c, CastlingRights cr) {
|
||||
return CastlingRights((c == WHITE ? WHITE_CASTLING : BLACK_CASTLING) & cr);
|
||||
}
|
||||
|
@ -457,3 +465,5 @@ constexpr bool is_ok(Move m) {
|
|||
}
|
||||
|
||||
#endif // #ifndef TYPES_H_INCLUDED
|
||||
|
||||
#include "tune.h" // Global visibility to tuning setup
|
||||
|
|
|
@ -115,7 +115,7 @@ namespace {
|
|||
limits.startTime = now(); // As early as possible!
|
||||
|
||||
while (is >> token)
|
||||
if (token == "searchmoves")
|
||||
if (token == "searchmoves") // Needs to be the last command on the line
|
||||
while (is >> token)
|
||||
limits.searchmoves.push_back(UCI::to_move(pos, token));
|
||||
|
||||
|
@ -260,7 +260,7 @@ string UCI::value(Value v) {
|
|||
|
||||
stringstream ss;
|
||||
|
||||
if (abs(v) < VALUE_MATE - MAX_PLY)
|
||||
if (abs(v) < VALUE_MATE_IN_MAX_PLY)
|
||||
ss << "cp " << v * 100 / PawnValueEg;
|
||||
else
|
||||
ss << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2;
|
||||
|
|
|
@ -38,9 +38,9 @@ namespace UCI {
|
|||
|
||||
/// 'On change' actions, triggered by an option's value change
|
||||
void on_clear_hash(const Option&) { Search::clear(); }
|
||||
void on_hash_size(const Option& o) { TT.resize(o); }
|
||||
void on_hash_size(const Option& o) { TT.resize(size_t(o)); }
|
||||
void on_logger(const Option& o) { start_logger(o); }
|
||||
void on_threads(const Option& o) { Threads.set(o); }
|
||||
void on_threads(const Option& o) { Threads.set(size_t(o)); }
|
||||
void on_tb_path(const Option& o) { Tablebases::init(o); }
|
||||
|
||||
|
||||
|
@ -56,8 +56,7 @@ bool CaseInsensitiveLess::operator() (const string& s1, const string& s2) const
|
|||
|
||||
void init(OptionsMap& o) {
|
||||
|
||||
// at most 2^32 clusters.
|
||||
constexpr int MaxHashMB = Is64Bit ? 131072 : 2048;
|
||||
constexpr int MaxHashMB = Is64Bit ? 33554432 : 2048;
|
||||
|
||||
o["Debug Log File"] << Option("", on_logger);
|
||||
o["Contempt"] << Option(24, -100, 100);
|
||||
|
@ -68,9 +67,9 @@ void init(OptionsMap& o) {
|
|||
o["Ponder"] << Option(false);
|
||||
o["MultiPV"] << Option(1, 1, 500);
|
||||
o["Skill Level"] << Option(20, 0, 20);
|
||||
o["Move Overhead"] << Option(30, 0, 5000);
|
||||
o["Minimum Thinking Time"] << Option(20, 0, 5000);
|
||||
o["Slow Mover"] << Option(84, 10, 1000);
|
||||
o["Move Overhead"] << Option(10, 0, 5000);
|
||||
o["Minimum Thinking Time"] << Option( 0, 0, 5000);
|
||||
o["Slow Mover"] << Option(100, 10, 1000);
|
||||
o["nodestime"] << Option(0, 0, 10000);
|
||||
o["UCI_Chess960"] << Option(false);
|
||||
o["UCI_AnalyseMode"] << Option(false);
|
||||
|
|
Loading…
Reference in New Issue
Block a user