Update to Stockfish 14

This commit is contained in:
Peter Osterlund 2021-07-02 20:50:36 +02:00
parent fe7a8fac11
commit 4f7930acf0
61 changed files with 2020 additions and 1568 deletions

Binary file not shown.

View File

@ -5,7 +5,7 @@ SF_SRC_FILES := \
bitbase.cpp endgame.cpp material.cpp movepick.cpp position.cpp timeman.cpp \
tune.cpp ucioption.cpp \
bitboard.cpp evaluate.cpp misc.cpp search.cpp tt.cpp syzygy/tbprobe.cpp \
nnue/evaluate_nnue.cpp nnue/features/half_kp.cpp
nnue/evaluate_nnue.cpp nnue/features/half_ka_v2.cpp
MY_ARCH_DEF :=
ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)

View File

@ -92,6 +92,8 @@ const vector<string> Defaults = {
} // namespace
namespace Stockfish {
/// setup_bench() builds a list of UCI commands to be run by bench. There
/// are five parameters: TT size in MB, number of search threads that
/// should be used, the limit value spent for each position, a file name
@ -168,3 +170,5 @@ vector<string> setup_bench(const Position& current, istream& is) {
return list;
}
} // namespace Stockfish

View File

@ -23,6 +23,8 @@
#include "bitboard.h"
#include "types.h"
namespace Stockfish {
namespace {
// There are 24 possible pawn squares: files A to D and ranks from 2 to 7.
@ -66,7 +68,6 @@ namespace {
} // namespace
bool Bitbases::probe(Square wksq, Square wpsq, Square bksq, Color stm) {
assert(file_of(wpsq) <= FILE_D);
@ -96,7 +97,6 @@ void Bitbases::init() {
KPKBitbase.set(idx);
}
namespace {
KPKPosition::KPKPosition(unsigned idx) {
@ -150,8 +150,8 @@ namespace {
Bitboard b = attacks_bb<KING>(ksq[stm]);
while (b)
r |= stm == WHITE ? db[index(BLACK, ksq[BLACK] , pop_lsb(&b), psq)]
: db[index(WHITE, pop_lsb(&b), ksq[WHITE], psq)];
r |= stm == WHITE ? db[index(BLACK, ksq[BLACK], pop_lsb(b), psq)]
: db[index(WHITE, pop_lsb(b), ksq[WHITE], psq)];
if (stm == WHITE)
{
@ -168,3 +168,5 @@ namespace {
}
} // namespace
} // namespace Stockfish

View File

@ -22,11 +22,14 @@
#include "bitboard.h"
#include "misc.h"
namespace Stockfish {
uint8_t PopCnt16[1 << 16];
uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
Bitboard SquareBB[SQUARE_NB];
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
@ -42,7 +45,6 @@ namespace {
}
/// safe_destination() returns the bitboard of target square for the given step
/// from the given square. If the step is off the board, returns empty bitboard.
@ -55,7 +57,7 @@ inline Bitboard safe_destination(Square s, int step) {
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
/// to be printed to standard output. Useful for debugging.
const std::string Bitboards::pretty(Bitboard b) {
std::string Bitboards::pretty(Bitboard b) {
std::string s = "+---+---+---+---+---+---+---+---+\n";
@ -106,12 +108,17 @@ void Bitboards::init() {
for (PieceType pt : { BISHOP, ROOK })
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
if (PseudoAttacks[pt][s1] & s2)
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
{
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] = (attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1)));
}
BetweenBB[s1][s2] |= s2;
}
}
}
namespace {
Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
@ -123,7 +130,7 @@ namespace {
for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
{
Square s = sq;
while(safe_destination(s, d) && !(occupied & s))
while (safe_destination(s, d) && !(occupied & s))
attacks |= (s += d);
}
@ -211,3 +218,5 @@ namespace {
}
}
}
} // namespace Stockfish

View File

@ -23,19 +23,21 @@
#include "types.h"
namespace Stockfish {
namespace Bitbases {
void init();
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
}
} // namespace Stockfish::Bitbases
namespace Bitboards {
void init();
const std::string pretty(Bitboard b);
std::string pretty(Bitboard b);
}
} // namespace Stockfish::Bitboards
constexpr Bitboard AllSquares = ~Bitboard(0);
constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
@ -73,6 +75,7 @@ extern uint8_t PopCnt16[1 << 16];
extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard SquareBB[SQUARE_NB];
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
@ -209,23 +212,29 @@ constexpr Bitboard adjacent_files_bb(Square s) {
inline Bitboard line_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return LineBB[s1][s2];
}
/// between_bb() returns a bitboard representing squares that are linearly
/// between the two given squares (excluding the given squares). If the given
/// squares are not on a same file/rank/diagonal, we return 0. For instance,
/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5 and E6.
/// between_bb(s1, s2) returns a bitboard representing the squares in the semi-open
/// segment between the squares s1 and s2 (excluding s1 but including s2). If the
/// given squares are not on a same file/rank/diagonal, it returns s2. For instance,
/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but
/// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick
/// allows to generate non-king evasion moves faster: the defending piece must either
/// interpose itself to cover the check or capture the checking piece.
inline Bitboard between_bb(Square s1, Square s2) {
Bitboard b = line_bb(s1, s2) & ((AllSquares << s1) ^ (AllSquares << s2));
return b & (b - 1); //exclude lsb
assert(is_ok(s1) && is_ok(s2));
return BetweenBB[s1][s2];
}
/// forward_ranks_bb() returns a bitboard representing the squares on the ranks
/// in front of the given one, from the point of view of the given color. For instance,
/// forward_ranks_bb() returns a bitboard representing the squares on the ranks in
/// front of the given one, from the point of view of the given color. For instance,
/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
constexpr Bitboard forward_ranks_bb(Color c, Square s) {
@ -412,13 +421,20 @@ inline Square msb(Bitboard b) {
#endif
/// least_significant_square_bb() returns the bitboard of the least significant
/// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)).
inline Bitboard least_significant_square_bb(Bitboard b) {
assert(b);
return b & -b;
}
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
inline Square pop_lsb(Bitboard* b) {
assert(*b);
const Square s = lsb(*b);
*b &= *b - 1;
inline Square pop_lsb(Bitboard& b) {
assert(b);
const Square s = lsb(b);
b &= b - 1;
return s;
}
@ -430,4 +446,6 @@ inline Square frontmost_sq(Color c, Bitboard b) {
return c == WHITE ? msb(b) : lsb(b);
}
} // namespace Stockfish
#endif // #ifndef BITBOARD_H_INCLUDED

View File

@ -22,6 +22,8 @@
#include "endgame.h"
#include "movegen.h"
namespace Stockfish {
namespace {
// Used to drive the king towards the edge of the board
@ -741,3 +743,5 @@ ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const {
// it's probably at least a draw even with the pawn.
return Bitbases::probe(strongKing, strongPawn, weakKing, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW;
}
} // namespace Stockfish

View File

@ -28,6 +28,7 @@
#include "position.h"
#include "types.h"
namespace Stockfish {
/// EndgameCode lists all supported endgame functions by corresponding codes
@ -120,4 +121,6 @@ namespace Endgames {
}
}
} // namespace Stockfish
#endif // #ifndef ENDGAME_H_INCLUDED

View File

@ -33,6 +33,7 @@
#include "misc.h"
#include "pawns.h"
#include "thread.h"
#include "timeman.h"
#include "uci.h"
#include "incbin/incbin.h"
@ -54,7 +55,8 @@
using namespace std;
using namespace Eval::NNUE;
namespace Stockfish {
namespace Eval {
@ -110,8 +112,6 @@ namespace Eval {
eval_file_loaded = eval_file;
}
}
if (eval_file_loaded != eval_file)
eval_file_loaded = "";
}
/// NNUE::verify() verifies that the last net used was loaded successfully
@ -180,7 +180,7 @@ namespace Trace {
else
os << scores[t][WHITE] << " | " << scores[t][BLACK];
os << " | " << scores[t][WHITE] - scores[t][BLACK] << "\n";
os << " | " << scores[t][WHITE] - scores[t][BLACK] << " |\n";
return os;
}
}
@ -190,11 +190,9 @@ using namespace Trace;
namespace {
// Threshold for lazy and space evaluation
constexpr Value LazyThreshold1 = Value(1565);
constexpr Value LazyThreshold2 = Value(1102);
constexpr Value SpaceThreshold = Value(11551);
constexpr Value NNUEThreshold1 = Value(682);
constexpr Value NNUEThreshold2 = Value(176);
constexpr Value LazyThreshold1 = Value(1565);
constexpr Value LazyThreshold2 = Value(1102);
constexpr Value SpaceThreshold = Value(11551);
// KingAttackWeights[PieceType] contains king attack weights by piece type
constexpr int KingAttackWeights[PIECE_TYPE_NB] = { 0, 0, 81, 52, 44, 10 };
@ -257,11 +255,12 @@ namespace {
S(0, 0), S(3, 44), S(37, 68), S(42, 60), S(0, 39), S(58, 43)
};
constexpr Value CorneredBishop = Value(50);
// Assorted bonuses and penalties
constexpr Score UncontestedOutpost = S( 1, 10);
constexpr Score BishopOnKingRing = S( 24, 0);
constexpr Score BishopXRayPawns = S( 4, 5);
constexpr Score CorneredBishop = S( 50, 50);
constexpr Score FlankAttacks = S( 8, 0);
constexpr Score Hanging = S( 69, 36);
constexpr Score KnightOnQueen = S( 16, 11);
@ -396,8 +395,9 @@ namespace {
attackedBy[Us][Pt] = 0;
while (b1) {
Square s = pop_lsb(&b1);
while (b1)
{
Square s = pop_lsb(b1);
// Find attacked squares, including x-ray attacks for bishops and rooks
b = Pt == BISHOP ? attacks_bb<BISHOP>(s, pos.pieces() ^ pos.pieces(QUEEN))
@ -477,9 +477,8 @@ namespace {
{
Direction d = pawn_push(Us) + (file_of(s) == FILE_A ? EAST : WEST);
if (pos.piece_on(s + d) == make_piece(Us, PAWN))
score -= !pos.empty(s + d + pawn_push(Us)) ? CorneredBishop * 4
: pos.piece_on(s + d + d) == make_piece(Us, PAWN) ? CorneredBishop * 2
: CorneredBishop;
score -= !pos.empty(s + d + pawn_push(Us)) ? 4 * make_score(CorneredBishop, CorneredBishop)
: 3 * make_score(CorneredBishop, CorneredBishop);
}
}
}
@ -658,11 +657,11 @@ namespace {
{
b = (defended | weak) & (attackedBy[Us][KNIGHT] | attackedBy[Us][BISHOP]);
while (b)
score += ThreatByMinor[type_of(pos.piece_on(pop_lsb(&b)))];
score += ThreatByMinor[type_of(pos.piece_on(pop_lsb(b)))];
b = weak & attackedBy[Us][ROOK];
while (b)
score += ThreatByRook[type_of(pos.piece_on(pop_lsb(&b)))];
score += ThreatByRook[type_of(pos.piece_on(pop_lsb(b)))];
if (weak & attackedBy[Us][KING])
score += ThreatByKing;
@ -760,7 +759,7 @@ namespace {
while (b)
{
Square s = pop_lsb(&b);
Square s = pop_lsb(b);
assert(!(pos.pieces(Them, PAWN) & forward_file_bb(Us, s + Up)));
@ -906,7 +905,7 @@ namespace {
Color strongSide = eg > VALUE_DRAW ? WHITE : BLACK;
int sf = me->scale_factor(pos, strongSide);
// If scale factor is not already specific, scale down via general heuristics
// If scale factor is not already specific, scale up/down via general heuristics
if (sf == SCALE_FACTOR_NORMAL)
{
if (pos.opposite_bishops())
@ -979,7 +978,7 @@ namespace {
// Initialize score by reading the incrementally updated scores included in
// the position object (material + piece square tables) and the material
// imbalance. Score is computed internally from the white point of view.
Score score = pos.psq_score() + me->imbalance() + pos.this_thread()->contempt;
Score score = pos.psq_score() + me->imbalance() + pos.this_thread()->trend;
// Probe the pawn hash table
pe = Pawns::probe(pos);
@ -1033,12 +1032,48 @@ make_v:
v = (v / 16) * 16;
// Side to move point of view
v = (pos.side_to_move() == WHITE ? v : -v) + Tempo;
v = (pos.side_to_move() == WHITE ? v : -v);
return v;
}
} // namespace
/// Fisher Random Chess: correction for cornered bishops, to fix chess960 play with NNUE
Value fix_FRC(const Position& pos) {
constexpr Bitboard Corners = 1ULL << SQ_A1 | 1ULL << SQ_H1 | 1ULL << SQ_A8 | 1ULL << SQ_H8;
if (!(pos.pieces(BISHOP) & Corners))
return VALUE_ZERO;
int correction = 0;
if ( pos.piece_on(SQ_A1) == W_BISHOP
&& pos.piece_on(SQ_B2) == W_PAWN)
correction += !pos.empty(SQ_B3) ? -CorneredBishop * 4
: -CorneredBishop * 3;
if ( pos.piece_on(SQ_H1) == W_BISHOP
&& pos.piece_on(SQ_G2) == W_PAWN)
correction += !pos.empty(SQ_G3) ? -CorneredBishop * 4
: -CorneredBishop * 3;
if ( pos.piece_on(SQ_A8) == B_BISHOP
&& pos.piece_on(SQ_B7) == B_PAWN)
correction += !pos.empty(SQ_B6) ? CorneredBishop * 4
: CorneredBishop * 3;
if ( pos.piece_on(SQ_H8) == B_BISHOP
&& pos.piece_on(SQ_G7) == B_PAWN)
correction += !pos.empty(SQ_G6) ? CorneredBishop * 4
: CorneredBishop * 3;
return pos.side_to_move() == WHITE ? Value(correction)
: -Value(correction);
}
} // namespace Eval
/// evaluate() is the evaluator for the outer world. It returns a static
@ -1053,32 +1088,28 @@ Value Eval::evaluate(const Position& pos) {
else
{
// Scale and shift NNUE for compatibility with search and classical evaluation
auto adjusted_NNUE = [&](){
int mat = pos.non_pawn_material() + 2 * PawnValueMg * pos.count<PAWN>();
return NNUE::evaluate(pos) * (641 + mat / 32 - 4 * pos.rule50_count()) / 1024 + Tempo;
auto adjusted_NNUE = [&]()
{
int scale = 903
+ 32 * pos.count<PAWN>()
+ 32 * pos.non_pawn_material() / 1024;
Value nnue = NNUE::evaluate(pos, true) * scale / 1024;
if (pos.is_chess960())
nnue += fix_FRC(pos);
return nnue;
};
// If there is PSQ imbalance use classical eval, with small probability if it is small
// If there is PSQ imbalance we use the classical eval, but we switch to
// NNUE eval faster when shuffling or if the material on the board is high.
int r50 = pos.rule50_count();
Value psq = Value(abs(eg_value(pos.psq_score())));
int r50 = 16 + pos.rule50_count();
bool largePsq = psq * 16 > (NNUEThreshold1 + pos.non_pawn_material() / 64) * r50;
bool classical = largePsq || (psq > PawnValueMg / 4 && !(pos.this_thread()->nodes & 0xB));
bool classical = psq * 5 > (750 + pos.non_pawn_material() / 64) * (5 + r50);
// Use classical evaluation for really low piece endgames.
// The most critical case is a bishop + A/H file pawn vs naked king draw.
bool strongClassical = pos.non_pawn_material() < 2 * RookValueMg && pos.count<PAWN>() < 2;
v = classical || strongClassical ? Evaluation<NO_TRACE>(pos).value() : adjusted_NNUE();
// If the classical eval is small and imbalance large, use NNUE nevertheless.
// For the case of opposite colored bishops, switch to NNUE eval with
// small probability if the classical eval is less than the threshold.
if ( largePsq && !strongClassical
&& ( abs(v) * 16 < NNUEThreshold2 * r50
|| ( pos.opposite_bishops()
&& abs(v) * 16 < (NNUEThreshold1 + pos.non_pawn_material() / 64) * r50
&& !(pos.this_thread()->nodes & 0xB))))
v = adjusted_NNUE();
v = classical ? Evaluation<NO_TRACE>(pos).value() // classical
: adjusted_NNUE(); // NNUE
}
// Damp down the evaluation linearly when shuffling
@ -1095,7 +1126,7 @@ Value Eval::evaluate(const Position& pos) {
/// descriptions and values of each evaluation term. Useful for debugging.
/// Trace scores are from white's point of view
std::string Eval::trace(const Position& pos) {
std::string Eval::trace(Position& pos) {
if (pos.checkers())
return "Final evaluation: none (in check)";
@ -1107,44 +1138,55 @@ std::string Eval::trace(const Position& pos) {
std::memset(scores, 0, sizeof(scores));
pos.this_thread()->contempt = SCORE_ZERO; // Reset any dynamic contempt
pos.this_thread()->trend = SCORE_ZERO; // Reset any dynamic contempt
v = Evaluation<TRACE>(pos).value();
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2)
<< " Term | White | Black | Total \n"
<< " | MG EG | MG EG | MG EG \n"
<< " ------------+-------------+-------------+------------\n"
<< " Material | " << Term(MATERIAL)
<< " Imbalance | " << Term(IMBALANCE)
<< " Pawns | " << Term(PAWN)
<< " Knights | " << Term(KNIGHT)
<< " Bishops | " << Term(BISHOP)
<< " Rooks | " << Term(ROOK)
<< " Queens | " << Term(QUEEN)
<< " Mobility | " << Term(MOBILITY)
<< " King safety | " << Term(KING)
<< " Threats | " << Term(THREAT)
<< " Passed | " << Term(PASSED)
<< " Space | " << Term(SPACE)
<< " Winnable | " << Term(WINNABLE)
<< " ------------+-------------+-------------+------------\n"
<< " Total | " << Term(TOTAL);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "\nClassical evaluation: " << to_cp(v) << " (white side)\n";
<< " Contributing terms for the classical eval:\n"
<< "+------------+-------------+-------------+-------------+\n"
<< "| Term | White | Black | Total |\n"
<< "| | MG EG | MG EG | MG EG |\n"
<< "+------------+-------------+-------------+-------------+\n"
<< "| Material | " << Term(MATERIAL)
<< "| Imbalance | " << Term(IMBALANCE)
<< "| Pawns | " << Term(PAWN)
<< "| Knights | " << Term(KNIGHT)
<< "| Bishops | " << Term(BISHOP)
<< "| Rooks | " << Term(ROOK)
<< "| Queens | " << Term(QUEEN)
<< "| Mobility | " << Term(MOBILITY)
<< "|King safety | " << Term(KING)
<< "| Threats | " << Term(THREAT)
<< "| Passed | " << Term(PASSED)
<< "| Space | " << Term(SPACE)
<< "| Winnable | " << Term(WINNABLE)
<< "+------------+-------------+-------------+-------------+\n"
<< "| Total | " << Term(TOTAL)
<< "+------------+-------------+-------------+-------------+\n";
if (Eval::useNNUE)
ss << '\n' << NNUE::trace(pos) << '\n';
ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "\nClassical evaluation " << to_cp(v) << " (white side)\n";
if (Eval::useNNUE)
{
v = NNUE::evaluate(pos);
v = NNUE::evaluate(pos, false);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "\nNNUE evaluation: " << to_cp(v) << " (white side)\n";
ss << "NNUE evaluation " << to_cp(v) << " (white side)\n";
}
v = evaluate(pos);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "\nFinal evaluation: " << to_cp(v) << " (white side)\n";
ss << "Final evaluation " << to_cp(v) << " (white side)";
if (Eval::useNNUE)
ss << " [with scaled NNUE, hybrid, ...]";
ss << "\n";
return ss.str();
}
} // namespace Stockfish

View File

@ -20,14 +20,17 @@
#define EVALUATE_H_INCLUDED
#include <string>
#include <optional>
#include "types.h"
namespace Stockfish {
class Position;
namespace Eval {
std::string trace(const Position& pos);
std::string trace(Position& pos);
Value evaluate(const Position& pos);
extern bool useNNUE;
@ -36,17 +39,24 @@ namespace Eval {
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
#define EvalFileDefaultName "nn-62ef826d1a6d.nnue"
#define EvalFileDefaultName "nn-3475407dc199.nnue"
namespace NNUE {
Value evaluate(const Position& pos);
bool load_eval(std::string name, std::istream& stream);
std::string trace(Position& pos);
Value evaluate(const Position& pos, bool adjusted = false);
void init();
void verify();
bool load_eval(std::string name, std::istream& stream);
bool save_eval(std::ostream& stream);
bool save_eval(const std::optional<std::string>& filename);
} // namespace NNUE
} // namespace Eval
} // namespace Stockfish
#endif // #ifndef EVALUATE_H_INCLUDED

View File

@ -28,6 +28,8 @@
#include "tt.h"
#include "uci.h"
using namespace Stockfish;
int main(int argc, char* argv[]) {
std::cout << engine_info() << std::endl;

View File

@ -24,6 +24,8 @@
using namespace std;
namespace Stockfish {
namespace {
#define S(mg, eg) make_score(mg, eg)
@ -72,7 +74,7 @@ namespace {
bool is_KBPsK(const Position& pos, Color us) {
return pos.non_pawn_material(us) == BishopValueMg
&& pos.count<PAWN >(us) >= 1;
&& pos.count<PAWN>(us) >= 1;
}
bool is_KQKRPs(const Position& pos, Color us) {
@ -223,3 +225,5 @@ Entry* probe(const Position& pos) {
}
} // namespace Material
} // namespace Stockfish

View File

@ -24,7 +24,7 @@
#include "position.h"
#include "types.h"
namespace Material {
namespace Stockfish::Material {
/// Material::Entry contains various information about a material configuration.
/// It contains a material imbalance evaluation, a function pointer to a special
@ -66,6 +66,6 @@ typedef HashTable<Entry, 8192> Table;
Entry* probe(const Position& pos);
} // namespace Material
} // namespace Stockfish::Material
#endif // #ifndef MATERIAL_H_INCLUDED

View File

@ -51,7 +51,7 @@ typedef bool(*fun3_t)(HANDLE, CONST GROUP_AFFINITY*, PGROUP_AFFINITY);
#include <sys/mman.h>
#endif
#if defined(__APPLE__) || defined(__ANDROID__) || defined(__OpenBSD__) || (defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC) && !defined(_WIN32))
#if defined(__APPLE__) || defined(__ANDROID__) || defined(__OpenBSD__) || (defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC) && !defined(_WIN32)) || defined(__e2k__)
#define POSIXALIGNEDALLOC
#include <stdlib.h>
#endif
@ -61,11 +61,13 @@ typedef bool(*fun3_t)(HANDLE, CONST GROUP_AFFINITY*, PGROUP_AFFINITY);
using namespace std;
namespace Stockfish {
namespace {
/// Version number. If Version is left empty, then compile date in the format
/// DD-MM-YY and show in engine_info.
const string Version = "13";
const string Version = "14";
/// Our fancy logging facility. The trick here is to replace cin.rdbuf() and
/// cout.rdbuf() with two Tie objects that tie cin and cout to a file stream. We
@ -138,7 +140,7 @@ public:
/// the program was compiled) or "Stockfish <Version>", depending on whether
/// Version is empty.
const string engine_info(bool to_uci) {
string engine_info(bool to_uci) {
const string months("Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec");
string month, day, year;
@ -161,7 +163,7 @@ const string engine_info(bool to_uci) {
/// compiler_info() returns a string trying to describe the compiler we use
const std::string compiler_info() {
std::string compiler_info() {
#define stringify2(x) #x
#define stringify(x) stringify2(x)
@ -190,6 +192,18 @@ const std::string compiler_info() {
compiler += "(version ";
compiler += stringify(_MSC_FULL_VER) "." stringify(_MSC_BUILD);
compiler += ")";
#elif defined(__e2k__) && defined(__LCC__)
#define dot_ver2(n) \
compiler += (char)'.'; \
compiler += (char)('0' + (n) / 10); \
compiler += (char)('0' + (n) % 10);
compiler += "MCST LCC ";
compiler += "(version ";
compiler += std::to_string(__LCC__ / 100);
dot_ver2(__LCC__ % 100)
dot_ver2(__LCC_MINOR__)
compiler += ")";
#elif __GNUC__
compiler += "g++ (GNUC) ";
compiler += make_version_string(__GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);
@ -361,7 +375,11 @@ void std_aligned_free(void* ptr) {
#if defined(_WIN32)
static void* aligned_large_pages_alloc_win(size_t allocSize) {
static void* aligned_large_pages_alloc_windows(size_t allocSize) {
#if !defined(_WIN64)
return nullptr;
#else
HANDLE hProcessToken { };
LUID luid { };
@ -404,12 +422,14 @@ static void* aligned_large_pages_alloc_win(size_t allocSize) {
CloseHandle(hProcessToken);
return mem;
#endif
}
void* aligned_large_pages_alloc(size_t allocSize) {
// Try to allocate large pages
void* mem = aligned_large_pages_alloc_win(allocSize);
void* mem = aligned_large_pages_alloc_windows(allocSize);
// Fall back to regular, page aligned, allocation if necessary
if (!mem)
@ -449,8 +469,9 @@ void aligned_large_pages_free(void* mem) {
if (mem && !VirtualFree(mem, 0, MEM_RELEASE))
{
DWORD err = GetLastError();
std::cerr << "Failed to free transposition table. Error code: 0x" <<
std::hex << err << std::dec << std::endl;
std::cerr << "Failed to free large page memory. Error code: 0x"
<< std::hex << err
<< std::dec << std::endl;
exit(EXIT_FAILURE);
}
}
@ -626,3 +647,5 @@ void init(int argc, char* argv[]) {
} // namespace CommandLine
} // namespace Stockfish

View File

@ -28,8 +28,10 @@
#include "types.h"
const std::string engine_info(bool to_uci = false);
const std::string compiler_info();
namespace Stockfish {
std::string engine_info(bool to_uci = false);
std::string compiler_info();
void prefetch(void* addr);
void start_logger(const std::string& fname);
void* std_aligned_alloc(size_t alignment, size_t size);
@ -64,9 +66,10 @@ std::ostream& operator<<(std::ostream&, SyncCout);
#define sync_cout std::cout << IO_LOCK
#define sync_endl std::endl << IO_UNLOCK
// `ptr` must point to an array of size at least
// `sizeof(T) * N + alignment` bytes, where `N` is the
// number of elements in the array.
// align_ptr_up() : get the first aligned element of an array.
// ptr must point to an array of size at least `sizeof(T) * N + alignment` bytes,
// where N is the number of elements in the array.
template <uintptr_t Alignment, typename T>
T* align_ptr_up(T* ptr)
{
@ -76,6 +79,55 @@ T* align_ptr_up(T* ptr)
return reinterpret_cast<T*>(reinterpret_cast<char*>((ptrint + (Alignment - 1)) / Alignment * Alignment));
}
// IsLittleEndian : true if and only if the binary is compiled on a little endian machine
static inline const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
static inline const bool IsLittleEndian = (Le.c[0] == 4);
template <typename T>
class ValueListInserter {
public:
ValueListInserter(T* v, std::size_t& s) :
values(v),
size(&s)
{
}
void push_back(const T& value) { values[(*size)++] = value; }
private:
T* values;
std::size_t* size;
};
template <typename T, std::size_t MaxSize>
class ValueList {
public:
std::size_t size() const { return size_; }
void resize(std::size_t newSize) { size_ = newSize; }
void push_back(const T& value) { values_[size_++] = value; }
T& operator[](std::size_t index) { return values_[index]; }
T* begin() { return values_; }
T* end() { return values_ + size_; }
const T& operator[](std::size_t index) const { return values_[index]; }
const T* begin() const { return values_; }
const T* end() const { return values_ + size_; }
operator ValueListInserter<T>() { return ValueListInserter(values_, size_); }
void swap(ValueList& other) {
const std::size_t maxSize = std::max(size_, other.size_);
for (std::size_t i = 0; i < maxSize; ++i) {
std::swap(values_[i], other.values_[i]);
}
std::swap(size_, other.size_);
}
private:
T values_[MaxSize];
std::size_t size_ = 0;
};
/// xorshift64star Pseudo-Random Number Generator
/// This class is based on original code written and dedicated
/// to the public domain by Sebastiano Vigna (2014).
@ -143,4 +195,6 @@ namespace CommandLine {
extern std::string workingDirectory; // path of the working directory
}
} // namespace Stockfish
#endif // #ifndef MISC_H_INCLUDED

View File

@ -21,24 +21,21 @@
#include "movegen.h"
#include "position.h"
namespace Stockfish {
namespace {
template<GenType Type, Direction D>
ExtMove* make_promotions(ExtMove* moveList, Square to, Square ksq) {
ExtMove* make_promotions(ExtMove* moveList, Square to) {
if (Type == CAPTURES || Type == EVASIONS || Type == NON_EVASIONS)
{
*moveList++ = make<PROMOTION>(to - D, to, QUEEN);
if (attacks_bb<KNIGHT>(to) & ksq)
*moveList++ = make<PROMOTION>(to - D, to, KNIGHT);
}
if (Type == QUIETS || Type == EVASIONS || Type == NON_EVASIONS)
{
*moveList++ = make<PROMOTION>(to - D, to, ROOK);
*moveList++ = make<PROMOTION>(to - D, to, BISHOP);
if (!(attacks_bb<KNIGHT>(to) & ksq))
*moveList++ = make<PROMOTION>(to - D, to, KNIGHT);
*moveList++ = make<PROMOTION>(to - D, to, KNIGHT);
}
return moveList;
@ -55,20 +52,16 @@ namespace {
constexpr Direction UpRight = (Us == WHITE ? NORTH_EAST : SOUTH_WEST);
constexpr Direction UpLeft = (Us == WHITE ? NORTH_WEST : SOUTH_EAST);
const Square ksq = pos.square<KING>(Them);
Bitboard emptySquares;
const Bitboard emptySquares = Type == QUIETS || Type == QUIET_CHECKS ? target : ~pos.pieces();
const Bitboard enemies = Type == EVASIONS ? pos.checkers()
: Type == CAPTURES ? target : pos.pieces(Them);
Bitboard pawnsOn7 = pos.pieces(Us, PAWN) & TRank7BB;
Bitboard pawnsNotOn7 = pos.pieces(Us, PAWN) & ~TRank7BB;
Bitboard enemies = (Type == EVASIONS ? pos.pieces(Them) & target:
Type == CAPTURES ? target : pos.pieces(Them));
// Single and double pawn pushes, no promotions
if (Type != CAPTURES)
{
emptySquares = (Type == QUIETS || Type == QUIET_CHECKS ? target : ~pos.pieces());
Bitboard b1 = shift<Up>(pawnsNotOn7) & emptySquares;
Bitboard b2 = shift<Up>(b1 & TRank3BB) & emptySquares;
@ -80,33 +73,24 @@ namespace {
if (Type == QUIET_CHECKS)
{
b1 &= pawn_attacks_bb(Them, ksq);
b2 &= pawn_attacks_bb(Them, ksq);
// Add pawn pushes which give discovered check. This is possible only
// if the pawn is not on the same file as the enemy king, because we
// don't generate captures. Note that a possible discovered check
// promotion has been already generated amongst the captures.
Bitboard dcCandidateQuiets = pos.blockers_for_king(Them) & pawnsNotOn7;
if (dcCandidateQuiets)
{
Bitboard dc1 = shift<Up>(dcCandidateQuiets) & emptySquares & ~file_bb(ksq);
Bitboard dc2 = shift<Up>(dc1 & TRank3BB) & emptySquares;
b1 |= dc1;
b2 |= dc2;
}
// To make a quiet check, you either make a direct check by pushing a pawn
// or push a blocker pawn that is not on the same file as the enemy king.
// Discovered check promotion has been already generated amongst the captures.
Square ksq = pos.square<KING>(Them);
Bitboard dcCandidatePawns = pos.blockers_for_king(Them) & ~file_bb(ksq);
b1 &= pawn_attacks_bb(Them, ksq) | shift< Up>(dcCandidatePawns);
b2 &= pawn_attacks_bb(Them, ksq) | shift<Up+Up>(dcCandidatePawns);
}
while (b1)
{
Square to = pop_lsb(&b1);
Square to = pop_lsb(b1);
*moveList++ = make_move(to - Up, to);
}
while (b2)
{
Square to = pop_lsb(&b2);
Square to = pop_lsb(b2);
*moveList++ = make_move(to - Up - Up, to);
}
}
@ -114,24 +98,21 @@ namespace {
// Promotions and underpromotions
if (pawnsOn7)
{
if (Type == CAPTURES)
emptySquares = ~pos.pieces();
if (Type == EVASIONS)
emptySquares &= target;
Bitboard b1 = shift<UpRight>(pawnsOn7) & enemies;
Bitboard b2 = shift<UpLeft >(pawnsOn7) & enemies;
Bitboard b3 = shift<Up >(pawnsOn7) & emptySquares;
if (Type == EVASIONS)
b3 &= target;
while (b1)
moveList = make_promotions<Type, UpRight>(moveList, pop_lsb(&b1), ksq);
moveList = make_promotions<Type, UpRight>(moveList, pop_lsb(b1));
while (b2)
moveList = make_promotions<Type, UpLeft >(moveList, pop_lsb(&b2), ksq);
moveList = make_promotions<Type, UpLeft >(moveList, pop_lsb(b2));
while (b3)
moveList = make_promotions<Type, Up >(moveList, pop_lsb(&b3), ksq);
moveList = make_promotions<Type, Up >(moveList, pop_lsb(b3));
}
// Standard and en passant captures
@ -142,13 +123,13 @@ namespace {
while (b1)
{
Square to = pop_lsb(&b1);
Square to = pop_lsb(b1);
*moveList++ = make_move(to - UpRight, to);
}
while (b2)
{
Square to = pop_lsb(&b2);
Square to = pop_lsb(b2);
*moveList++ = make_move(to - UpLeft, to);
}
@ -156,7 +137,7 @@ namespace {
{
assert(rank_of(pos.ep_square()) == relative_rank(Us, RANK_6));
// An en passant capture cannot resolve a discovered check.
// An en passant capture cannot resolve a discovered check
if (Type == EVASIONS && (target & (pos.ep_square() + Up)))
return moveList;
@ -165,7 +146,7 @@ namespace {
assert(b1);
while (b1)
*moveList++ = make<EN_PASSANT>(pop_lsb(&b1), pos.ep_square());
*moveList++ = make<EN_PASSANT>(pop_lsb(b1), pos.ep_square());
}
}
@ -173,27 +154,24 @@ namespace {
}
template<PieceType Pt, bool Checks>
ExtMove* generate_moves(const Position& pos, ExtMove* moveList, Bitboard piecesToMove, Bitboard target) {
template<Color Us, PieceType Pt, bool Checks>
ExtMove* generate_moves(const Position& pos, ExtMove* moveList, Bitboard target) {
static_assert(Pt != KING && Pt != PAWN, "Unsupported piece type in generate_moves()");
Bitboard bb = piecesToMove & pos.pieces(Pt);
if (!bb)
return moveList;
[[maybe_unused]] const Bitboard checkSquares = pos.check_squares(Pt);
while (bb) {
Square from = pop_lsb(&bb);
Bitboard bb = pos.pieces(Us, Pt);
while (bb)
{
Square from = pop_lsb(bb);
Bitboard b = attacks_bb<Pt>(from, pos.pieces()) & target;
if constexpr (Checks)
b &= checkSquares;
// To check, you either move freely a blocker or make a direct check.
if (Checks && (Pt == QUEEN || !(pos.blockers_for_king(~Us) & from)))
b &= pos.check_squares(Pt);
while (b)
*moveList++ = make_move(from, pop_lsb(&b));
*moveList++ = make_move(from, pop_lsb(b));
}
return moveList;
@ -206,45 +184,34 @@ namespace {
static_assert(Type != LEGAL, "Unsupported type in generate_all()");
constexpr bool Checks = Type == QUIET_CHECKS; // Reduce template instantiations
Bitboard target, piecesToMove = pos.pieces(Us);
const Square ksq = pos.square<KING>(Us);
Bitboard target;
if(Type == QUIET_CHECKS)
piecesToMove &= ~pos.blockers_for_king(~Us);
switch (Type)
// Skip generating non-king moves when in double check
if (Type != EVASIONS || !more_than_one(pos.checkers()))
{
case CAPTURES:
target = pos.pieces(~Us);
break;
case QUIETS:
case QUIET_CHECKS:
target = ~pos.pieces();
break;
case EVASIONS:
{
Square checksq = lsb(pos.checkers());
target = between_bb(pos.square<KING>(Us), checksq) | checksq;
break;
}
case NON_EVASIONS:
target = ~pos.pieces(Us);
break;
target = Type == EVASIONS ? between_bb(ksq, lsb(pos.checkers()))
: Type == NON_EVASIONS ? ~pos.pieces( Us)
: Type == CAPTURES ? pos.pieces(~Us)
: ~pos.pieces( ); // QUIETS || QUIET_CHECKS
moveList = generate_pawn_moves<Us, Type>(pos, moveList, target);
moveList = generate_moves<Us, KNIGHT, Checks>(pos, moveList, target);
moveList = generate_moves<Us, BISHOP, Checks>(pos, moveList, target);
moveList = generate_moves<Us, ROOK, Checks>(pos, moveList, target);
moveList = generate_moves<Us, QUEEN, Checks>(pos, moveList, target);
}
moveList = generate_pawn_moves<Us, Type>(pos, moveList, target);
moveList = generate_moves<KNIGHT, Checks>(pos, moveList, piecesToMove, target);
moveList = generate_moves<BISHOP, Checks>(pos, moveList, piecesToMove, target);
moveList = generate_moves< ROOK, Checks>(pos, moveList, piecesToMove, target);
moveList = generate_moves< QUEEN, Checks>(pos, moveList, piecesToMove, target);
if (Type != QUIET_CHECKS && Type != EVASIONS)
if (!Checks || pos.blockers_for_king(~Us) & ksq)
{
Square ksq = pos.square<KING>(Us);
Bitboard b = attacks_bb<KING>(ksq) & target;
while (b)
*moveList++ = make_move(ksq, pop_lsb(&b));
Bitboard b = attacks_bb<KING>(ksq) & (Type == EVASIONS ? ~pos.pieces(Us) : target);
if (Checks)
b &= ~attacks_bb<QUEEN>(pos.square<KING>(~Us));
if ((Type != CAPTURES) && pos.can_castle(Us & ANY_CASTLING))
while (b)
*moveList++ = make_move(ksq, pop_lsb(b));
if ((Type == QUIETS || Type == NON_EVASIONS) && pos.can_castle(Us & ANY_CASTLING))
for (CastlingRights cr : { Us & KING_SIDE, Us & QUEEN_SIDE } )
if (!pos.castling_impeded(cr) && pos.can_castle(cr))
*moveList++ = make<CASTLING>(ksq, pos.castling_rook_square(cr));
@ -256,8 +223,10 @@ namespace {
} // namespace
/// <CAPTURES> Generates all pseudo-legal captures plus queen and checking knight promotions
/// <QUIETS> Generates all pseudo-legal non-captures and underpromotions (except checking knight)
/// <CAPTURES> Generates all pseudo-legal captures plus queen promotions
/// <QUIETS> Generates all pseudo-legal non-captures and underpromotions
/// <EVASIONS> Generates all pseudo-legal check evasions when the side to move is in check
/// <QUIET_CHECKS> Generates all pseudo-legal non-captures giving check, except castling and promotions
/// <NON_EVASIONS> Generates all pseudo-legal captures and non-captures
///
/// Returns a pointer to the end of the move list.
@ -265,8 +234,8 @@ namespace {
template<GenType Type>
ExtMove* generate(const Position& pos, ExtMove* moveList) {
static_assert(Type == CAPTURES || Type == QUIETS || Type == NON_EVASIONS, "Unsupported type in generate()");
assert(!pos.checkers());
static_assert(Type != LEGAL, "Unsupported type in generate()");
assert((Type == EVASIONS) == (bool)pos.checkers());
Color us = pos.side_to_move();
@ -277,70 +246,11 @@ ExtMove* generate(const Position& pos, ExtMove* moveList) {
// Explicit template instantiations
template ExtMove* generate<CAPTURES>(const Position&, ExtMove*);
template ExtMove* generate<QUIETS>(const Position&, ExtMove*);
template ExtMove* generate<EVASIONS>(const Position&, ExtMove*);
template ExtMove* generate<QUIET_CHECKS>(const Position&, ExtMove*);
template ExtMove* generate<NON_EVASIONS>(const Position&, ExtMove*);
/// generate<QUIET_CHECKS> generates all pseudo-legal non-captures giving check,
/// except castling. Returns a pointer to the end of the move list.
template<>
ExtMove* generate<QUIET_CHECKS>(const Position& pos, ExtMove* moveList) {
assert(!pos.checkers());
Color us = pos.side_to_move();
Bitboard dc = pos.blockers_for_king(~us) & pos.pieces(us) & ~pos.pieces(PAWN);
while (dc)
{
Square from = pop_lsb(&dc);
PieceType pt = type_of(pos.piece_on(from));
Bitboard b = attacks_bb(pt, from, pos.pieces()) & ~pos.pieces();
if (pt == KING)
b &= ~attacks_bb<QUEEN>(pos.square<KING>(~us));
while (b)
*moveList++ = make_move(from, pop_lsb(&b));
}
return us == WHITE ? generate_all<WHITE, QUIET_CHECKS>(pos, moveList)
: generate_all<BLACK, QUIET_CHECKS>(pos, moveList);
}
/// generate<EVASIONS> generates all pseudo-legal check evasions when the side
/// to move is in check. Returns a pointer to the end of the move list.
template<>
ExtMove* generate<EVASIONS>(const Position& pos, ExtMove* moveList) {
assert(pos.checkers());
Color us = pos.side_to_move();
Square ksq = pos.square<KING>(us);
Bitboard sliderAttacks = 0;
Bitboard sliders = pos.checkers() & ~pos.pieces(KNIGHT, PAWN);
// Find all the squares attacked by slider checkers. We will remove them from
// the king evasions in order to skip known illegal moves, which avoids any
// useless legality checks later on.
while (sliders)
sliderAttacks |= line_bb(ksq, pop_lsb(&sliders)) & ~pos.checkers();
// Generate evasions for king, capture and non capture moves
Bitboard b = attacks_bb<KING>(ksq) & ~pos.pieces(us) & ~sliderAttacks;
while (b)
*moveList++ = make_move(ksq, pop_lsb(&b));
if (more_than_one(pos.checkers()))
return moveList; // Double check, only a king move can save the day
// Generate blocking evasions or captures of the checking piece
return us == WHITE ? generate_all<WHITE, EVASIONS>(pos, moveList)
: generate_all<BLACK, EVASIONS>(pos, moveList);
}
/// generate<LEGAL> generates all the legal moves in the given position
template<>
@ -362,3 +272,5 @@ ExtMove* generate<LEGAL>(const Position& pos, ExtMove* moveList) {
return moveList;
}
} // namespace Stockfish

View File

@ -23,6 +23,8 @@
#include "types.h"
namespace Stockfish {
class Position;
enum GenType {
@ -70,4 +72,6 @@ private:
ExtMove moveList[MAX_MOVES], *last;
};
} // namespace Stockfish
#endif // #ifndef MOVEGEN_H_INCLUDED

View File

@ -20,6 +20,8 @@
#include "movepick.h"
namespace Stockfish {
namespace {
enum Stages {
@ -263,3 +265,5 @@ top:
assert(false);
return MOVE_NONE; // Silence warning
}
} // namespace Stockfish

View File

@ -27,6 +27,8 @@
#include "position.h"
#include "types.h"
namespace Stockfish {
/// StatsEntry stores the stat table value. It is usually a number but could
/// be a move or even a nested history. We use a class instead of naked value
/// to directly call history update operator<<() on the entry so to use stats
@ -156,4 +158,6 @@ private:
ExtMove moves[MAX_MOVES];
};
} // namespace Stockfish
#endif // #ifndef MOVEPICK_H_INCLUDED

View File

@ -1,54 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of input features and network structure used in NNUE evaluation function
#ifndef NNUE_HALFKP_256X2_32_32_H_INCLUDED
#define NNUE_HALFKP_256X2_32_32_H_INCLUDED
#include "../features/feature_set.h"
#include "../features/half_kp.h"
#include "../layers/input_slice.h"
#include "../layers/affine_transform.h"
#include "../layers/clipped_relu.h"
namespace Eval::NNUE {
// Input features used in evaluation function
using RawFeatures = Features::FeatureSet<
Features::HalfKP<Features::Side::kFriend>>;
// Number of input feature dimensions after conversion
constexpr IndexType kTransformedFeatureDimensions = 256;
namespace Layers {
// Define network structure
using InputLayer = InputSlice<kTransformedFeatureDimensions * 2>;
using HiddenLayer1 = ClippedReLU<AffineTransform<InputLayer, 32>>;
using HiddenLayer2 = ClippedReLU<AffineTransform<HiddenLayer1, 32>>;
using OutputLayer = AffineTransform<HiddenLayer2, 1>;
} // namespace Layers
using Network = Layers::OutputLayer;
} // namespace Eval::NNUE
#endif // #ifndef NNUE_HALFKP_256X2_32_32_H_INCLUDED

View File

@ -20,6 +20,9 @@
#include <iostream>
#include <set>
#include <sstream>
#include <iomanip>
#include <fstream>
#include "../evaluate.h"
#include "../position.h"
@ -29,29 +32,30 @@
#include "evaluate_nnue.h"
namespace Eval::NNUE {
namespace Stockfish::Eval::NNUE {
// Input feature converter
LargePagePtr<FeatureTransformer> feature_transformer;
LargePagePtr<FeatureTransformer> featureTransformer;
// Evaluation function
AlignedPtr<Network> network;
AlignedPtr<Network> network[LayerStacks];
// Evaluation function file name
std::string fileName;
std::string netDescription;
namespace Detail {
// Initialize the evaluation function parameters
template <typename T>
void Initialize(AlignedPtr<T>& pointer) {
void initialize(AlignedPtr<T>& pointer) {
pointer.reset(reinterpret_cast<T*>(std_aligned_alloc(alignof(T), sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
template <typename T>
void Initialize(LargePagePtr<T>& pointer) {
void initialize(LargePagePtr<T>& pointer) {
static_assert(alignof(T) <= 4096, "aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
pointer.reset(reinterpret_cast<T*>(aligned_large_pages_alloc(sizeof(T))));
@ -60,85 +64,380 @@ namespace Eval::NNUE {
// Read evaluation function parameters
template <typename T>
bool ReadParameters(std::istream& stream, T& reference) {
bool read_parameters(std::istream& stream, T& reference) {
std::uint32_t header;
header = read_little_endian<std::uint32_t>(stream);
if (!stream || header != T::GetHashValue()) return false;
return reference.ReadParameters(stream);
if (!stream || header != T::get_hash_value()) return false;
return reference.read_parameters(stream);
}
// Write evaluation function parameters
template <typename T>
bool write_parameters(std::ostream& stream, const T& reference) {
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
return reference.write_parameters(stream);
}
} // namespace Detail
// Initialize the evaluation function parameters
void Initialize() {
void initialize() {
Detail::Initialize(feature_transformer);
Detail::Initialize(network);
Detail::initialize(featureTransformer);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(network[i]);
}
// Read network header
bool ReadHeader(std::istream& stream, std::uint32_t* hash_value, std::string* architecture)
bool read_header(std::istream& stream, std::uint32_t* hashValue, std::string* desc)
{
std::uint32_t version, size;
version = read_little_endian<std::uint32_t>(stream);
*hash_value = read_little_endian<std::uint32_t>(stream);
*hashValue = read_little_endian<std::uint32_t>(stream);
size = read_little_endian<std::uint32_t>(stream);
if (!stream || version != kVersion) return false;
architecture->resize(size);
stream.read(&(*architecture)[0], size);
if (!stream || version != Version) return false;
desc->resize(size);
stream.read(&(*desc)[0], size);
return !stream.fail();
}
// Write network header
bool write_header(std::ostream& stream, std::uint32_t hashValue, const std::string& desc)
{
write_little_endian<std::uint32_t>(stream, Version);
write_little_endian<std::uint32_t>(stream, hashValue);
write_little_endian<std::uint32_t>(stream, desc.size());
stream.write(&desc[0], desc.size());
return !stream.fail();
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
bool read_parameters(std::istream& stream) {
std::uint32_t hash_value;
std::string architecture;
if (!ReadHeader(stream, &hash_value, &architecture)) return false;
if (hash_value != kHashValue) return false;
if (!Detail::ReadParameters(stream, *feature_transformer)) return false;
if (!Detail::ReadParameters(stream, *network)) return false;
std::uint32_t hashValue;
if (!read_header(stream, &hashValue, &netDescription)) return false;
if (hashValue != HashValue) return false;
if (!Detail::read_parameters(stream, *featureTransformer)) return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::read_parameters(stream, *(network[i]))) return false;
return stream && stream.peek() == std::ios::traits_type::eof();
}
// Write network parameters
bool write_parameters(std::ostream& stream) {
if (!write_header(stream, HashValue, netDescription)) return false;
if (!Detail::write_parameters(stream, *featureTransformer)) return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
if (!Detail::write_parameters(stream, *(network[i]))) return false;
return (bool)stream;
}
// Evaluation function. Perform differential calculation.
Value evaluate(const Position& pos) {
Value evaluate(const Position& pos, bool adjusted) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = kCacheLineSize;
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformed_features_unaligned[
FeatureTransformer::kBufferSize + alignment / sizeof(TransformedFeatureType)];
char buffer_unaligned[Network::kBufferSize + alignment];
TransformedFeatureType transformedFeaturesUnaligned[
FeatureTransformer::BufferSize + alignment / sizeof(TransformedFeatureType)];
char bufferUnaligned[Network::BufferSize + alignment];
auto* transformed_features = align_ptr_up<alignment>(&transformed_features_unaligned[0]);
auto* buffer = align_ptr_up<alignment>(&buffer_unaligned[0]);
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
auto* buffer = align_ptr_up<alignment>(&bufferUnaligned[0]);
#else
alignas(alignment)
TransformedFeatureType transformed_features[FeatureTransformer::kBufferSize];
alignas(alignment) char buffer[Network::kBufferSize];
TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
alignas(alignment) char buffer[Network::BufferSize];
#endif
ASSERT_ALIGNED(transformed_features, alignment);
ASSERT_ALIGNED(transformedFeatures, alignment);
ASSERT_ALIGNED(buffer, alignment);
feature_transformer->Transform(pos, transformed_features);
const auto output = network->Propagate(transformed_features, buffer);
const std::size_t bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto output = network[bucket]->propagate(transformedFeatures, buffer);
return static_cast<Value>(output[0] / FV_SCALE);
int materialist = psqt;
int positional = output[0];
int delta_npm = abs(pos.non_pawn_material(WHITE) - pos.non_pawn_material(BLACK));
int entertainment = (adjusted && delta_npm <= BishopValueMg - KnightValueMg ? 7 : 0);
int A = 128 - entertainment;
int B = 128 + entertainment;
int sum = (A * materialist + B * positional) / 128;
return static_cast<Value>( sum / OutputScale );
}
struct NnueEvalTrace {
static_assert(LayerStacks == PSQTBuckets);
Value psqt[LayerStacks];
Value positional[LayerStacks];
std::size_t correctBucket;
};
static NnueEvalTrace trace_evaluate(const Position& pos) {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned[
FeatureTransformer::BufferSize + alignment / sizeof(TransformedFeatureType)];
char bufferUnaligned[Network::BufferSize + alignment];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
auto* buffer = align_ptr_up<alignment>(&bufferUnaligned[0]);
#else
alignas(alignment)
TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
alignas(alignment) char buffer[Network::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
ASSERT_ALIGNED(buffer, alignment);
NnueEvalTrace t{};
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket) {
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto output = network[bucket]->propagate(transformedFeatures, buffer);
int materialist = psqt;
int positional = output[0];
t.psqt[bucket] = static_cast<Value>( materialist / OutputScale );
t.positional[bucket] = static_cast<Value>( positional / OutputScale );
}
return t;
}
static const std::string PieceToChar(" PNBRQK pnbrqk");
// Requires the buffer to have capacity for at least 5 values
static void format_cp_compact(Value v, char* buffer) {
buffer[0] = (v < 0 ? '-' : v > 0 ? '+' : ' ');
int cp = std::abs(100 * v / PawnValueEg);
if (cp >= 10000)
{
buffer[1] = '0' + cp / 10000; cp %= 10000;
buffer[2] = '0' + cp / 1000; cp %= 1000;
buffer[3] = '0' + cp / 100; cp %= 100;
buffer[4] = ' ';
}
else if (cp >= 1000)
{
buffer[1] = '0' + cp / 1000; cp %= 1000;
buffer[2] = '0' + cp / 100; cp %= 100;
buffer[3] = '.';
buffer[4] = '0' + cp / 10;
}
else
{
buffer[1] = '0' + cp / 100; cp %= 100;
buffer[2] = '.';
buffer[3] = '0' + cp / 10; cp %= 10;
buffer[4] = '0' + cp / 1;
}
}
// Requires the buffer to have capacity for at least 7 values
static void format_cp_aligned_dot(Value v, char* buffer) {
buffer[0] = (v < 0 ? '-' : v > 0 ? '+' : ' ');
int cp = std::abs(100 * v / PawnValueEg);
if (cp >= 10000)
{
buffer[1] = '0' + cp / 10000; cp %= 10000;
buffer[2] = '0' + cp / 1000; cp %= 1000;
buffer[3] = '0' + cp / 100; cp %= 100;
buffer[4] = '.';
buffer[5] = '0' + cp / 10; cp %= 10;
buffer[6] = '0' + cp;
}
else if (cp >= 1000)
{
buffer[1] = ' ';
buffer[2] = '0' + cp / 1000; cp %= 1000;
buffer[3] = '0' + cp / 100; cp %= 100;
buffer[4] = '.';
buffer[5] = '0' + cp / 10; cp %= 10;
buffer[6] = '0' + cp;
}
else
{
buffer[1] = ' ';
buffer[2] = ' ';
buffer[3] = '0' + cp / 100; cp %= 100;
buffer[4] = '.';
buffer[5] = '0' + cp / 10; cp %= 10;
buffer[6] = '0' + cp / 1;
}
}
// trace() returns a string with the value of each piece on a board,
// and a table for (PSQT, Layers) values bucket by bucket.
std::string trace(Position& pos) {
std::stringstream ss;
char board[3*8+1][8*8+2];
std::memset(board, ' ', sizeof(board));
for (int row = 0; row < 3*8+1; ++row)
board[row][8*8+1] = '\0';
// A lambda to output one box of the board
auto writeSquare = [&board](File file, Rank rank, Piece pc, Value value) {
const int x = ((int)file) * 8;
const int y = (7 - (int)rank) * 3;
for (int i = 1; i < 8; ++i)
board[y][x+i] = board[y+3][x+i] = '-';
for (int i = 1; i < 3; ++i)
board[y+i][x] = board[y+i][x+8] = '|';
board[y][x] = board[y][x+8] = board[y+3][x+8] = board[y+3][x] = '+';
if (pc != NO_PIECE)
board[y+1][x+4] = PieceToChar[pc];
if (value != VALUE_NONE)
format_cp_compact(value, &board[y+2][x+2]);
};
// We estimate the value of each piece by doing a differential evaluation from
// the current base eval, simulating the removal of the piece from its square.
Value base = evaluate(pos);
base = pos.side_to_move() == WHITE ? base : -base;
for (File f = FILE_A; f <= FILE_H; ++f)
for (Rank r = RANK_1; r <= RANK_8; ++r)
{
Square sq = make_square(f, r);
Piece pc = pos.piece_on(sq);
Value v = VALUE_NONE;
if (pc != NO_PIECE && type_of(pc) != KING)
{
auto st = pos.state();
pos.remove_piece(sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
Value eval = evaluate(pos);
eval = pos.side_to_move() == WHITE ? eval : -eval;
v = base - eval;
pos.put_piece(pc, sq);
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
}
writeSquare(f, r, pc, v);
}
ss << " NNUE derived piece values:\n";
for (int row = 0; row < 3*8+1; ++row)
ss << board[row] << '\n';
ss << '\n';
auto t = trace_evaluate(pos);
ss << " NNUE network contributions "
<< (pos.side_to_move() == WHITE ? "(White to move)" : "(Black to move)") << std::endl
<< "+------------+------------+------------+------------+\n"
<< "| Bucket | Material | Positional | Total |\n"
<< "| | (PSQT) | (Layers) | |\n"
<< "+------------+------------+------------+------------+\n";
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket)
{
char buffer[3][8];
std::memset(buffer, '\0', sizeof(buffer));
format_cp_aligned_dot(t.psqt[bucket], buffer[0]);
format_cp_aligned_dot(t.positional[bucket], buffer[1]);
format_cp_aligned_dot(t.psqt[bucket] + t.positional[bucket], buffer[2]);
ss << "| " << bucket << " "
<< " | " << buffer[0] << " "
<< " | " << buffer[1] << " "
<< " | " << buffer[2] << " "
<< " |";
if (bucket == t.correctBucket)
ss << " <-- this bucket is used";
ss << '\n';
}
ss << "+------------+------------+------------+------------+\n";
return ss.str();
}
// Load eval, from a file stream or a memory stream
bool load_eval(std::string name, std::istream& stream) {
Initialize();
initialize();
fileName = name;
return ReadParameters(stream);
return read_parameters(stream);
}
} // namespace Eval::NNUE
// Save eval, to a file stream or a memory stream
bool save_eval(std::ostream& stream) {
if (fileName.empty())
return false;
return write_parameters(stream);
}
/// Save eval, to a file given by its name
bool save_eval(const std::optional<std::string>& filename) {
std::string actualFilename;
std::string msg;
if (filename.has_value())
actualFilename = filename.value();
else
{
if (eval_file_loaded != EvalFileDefaultName)
{
msg = "Failed to export a net. A non-embedded net can only be saved if the filename is specified";
sync_cout << msg << sync_endl;
return false;
}
actualFilename = EvalFileDefaultName;
}
std::ofstream stream(actualFilename, std::ios_base::binary);
bool saved = save_eval(stream);
msg = saved ? "Network saved successfully to " + actualFilename
: "Failed to export a net";
sync_cout << msg << sync_endl;
return saved;
}
} // namespace Stockfish::Eval::NNUE

View File

@ -25,11 +25,11 @@
#include <memory>
namespace Eval::NNUE {
namespace Stockfish::Eval::NNUE {
// Hash value of evaluation function structure
constexpr std::uint32_t kHashValue =
FeatureTransformer::GetHashValue() ^ Network::GetHashValue();
constexpr std::uint32_t HashValue =
FeatureTransformer::get_hash_value() ^ Network::get_hash_value();
// Deleter for automating release of memory area
template <typename T>
@ -54,6 +54,6 @@ namespace Eval::NNUE {
template <typename T>
using LargePagePtr = std::unique_ptr<T, LargePageDeleter<T>>;
} // namespace Eval::NNUE
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_EVALUATE_NNUE_H_INCLUDED

View File

@ -1,69 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// A class template that represents the input feature set of the NNUE evaluation function
#ifndef NNUE_FEATURE_SET_H_INCLUDED
#define NNUE_FEATURE_SET_H_INCLUDED
#include "features_common.h"
#include <array>
namespace Eval::NNUE::Features {
// Class template that represents a list of values
template <typename T, T... Values>
struct CompileTimeList;
template <typename T, T First, T... Remaining>
struct CompileTimeList<T, First, Remaining...> {
static constexpr bool Contains(T value) {
return value == First || CompileTimeList<T, Remaining...>::Contains(value);
}
static constexpr std::array<T, sizeof...(Remaining) + 1>
kValues = {{First, Remaining...}};
};
// Base class of feature set
template <typename Derived>
class FeatureSetBase {
};
// Class template that represents the feature set
template <typename FeatureType>
class FeatureSet<FeatureType> : public FeatureSetBase<FeatureSet<FeatureType>> {
public:
// Hash value embedded in the evaluation file
static constexpr std::uint32_t kHashValue = FeatureType::kHashValue;
// Number of feature dimensions
static constexpr IndexType kDimensions = FeatureType::kDimensions;
// Maximum number of simultaneously active features
static constexpr IndexType kMaxActiveDimensions =
FeatureType::kMaxActiveDimensions;
// Trigger for full calculation instead of difference calculation
using SortedTriggerSet =
CompileTimeList<TriggerEvent, FeatureType::kRefreshTrigger>;
static constexpr auto kRefreshTriggers = SortedTriggerSet::kValues;
};
} // namespace Eval::NNUE::Features
#endif // #ifndef NNUE_FEATURE_SET_H_INCLUDED

View File

@ -1,45 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Common header of input features of NNUE evaluation function
#ifndef NNUE_FEATURES_COMMON_H_INCLUDED
#define NNUE_FEATURES_COMMON_H_INCLUDED
#include "../../evaluate.h"
#include "../nnue_common.h"
namespace Eval::NNUE::Features {
class IndexList;
template <typename... FeatureTypes>
class FeatureSet;
// Trigger to perform full calculations instead of difference only
enum class TriggerEvent {
kFriendKingMoved // calculate full evaluation when own king moves
};
enum class Side {
kFriend // side to move
};
} // namespace Eval::NNUE::Features
#endif // #ifndef NNUE_FEATURES_COMMON_H_INCLUDED

View File

@ -0,0 +1,85 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Definition of input features HalfKAv2 of NNUE evaluation function
#include "half_ka_v2.h"
#include "../../position.h"
namespace Stockfish::Eval::NNUE::Features {
// Orient a square according to perspective (rotates by 180 for black)
inline Square HalfKAv2::orient(Color perspective, Square s) {
return Square(int(s) ^ (bool(perspective) * 56));
}
// Index of a feature for a given king position and another piece on some square
inline IndexType HalfKAv2::make_index(Color perspective, Square s, Piece pc, Square ksq) {
return IndexType(orient(perspective, s) + PieceSquareIndex[perspective][pc] + PS_NB * ksq);
}
// Get a list of indices for active features
void HalfKAv2::append_active_indices(
const Position& pos,
Color perspective,
ValueListInserter<IndexType> active
) {
Square ksq = orient(perspective, pos.square<KING>(perspective));
Bitboard bb = pos.pieces();
while (bb)
{
Square s = pop_lsb(bb);
active.push_back(make_index(perspective, s, pos.piece_on(s), ksq));
}
}
// append_changed_indices() : get a list of indices for recently changed features
void HalfKAv2::append_changed_indices(
Square ksq,
StateInfo* st,
Color perspective,
ValueListInserter<IndexType> removed,
ValueListInserter<IndexType> added
) {
const auto& dp = st->dirtyPiece;
Square oriented_ksq = orient(perspective, ksq);
for (int i = 0; i < dp.dirty_num; ++i) {
Piece pc = dp.piece[i];
if (dp.from[i] != SQ_NONE)
removed.push_back(make_index(perspective, dp.from[i], pc, oriented_ksq));
if (dp.to[i] != SQ_NONE)
added.push_back(make_index(perspective, dp.to[i], pc, oriented_ksq));
}
}
int HalfKAv2::update_cost(StateInfo* st) {
return st->dirtyPiece.dirty_num;
}
int HalfKAv2::refresh_cost(const Position& pos) {
return pos.count<ALL_PIECES>();
}
bool HalfKAv2::requires_refresh(StateInfo* st, Color perspective) {
return st->dirtyPiece.piece[0] == make_piece(perspective, KING);
}
} // namespace Stockfish::Eval::NNUE::Features

View File

@ -0,0 +1,111 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Definition of input features HalfKP of NNUE evaluation function
#ifndef NNUE_FEATURES_HALF_KA_V2_H_INCLUDED
#define NNUE_FEATURES_HALF_KA_V2_H_INCLUDED
#include "../nnue_common.h"
#include "../../evaluate.h"
#include "../../misc.h"
namespace Stockfish {
struct StateInfo;
}
namespace Stockfish::Eval::NNUE::Features {
// Feature HalfKAv2: Combination of the position of own king
// and the position of pieces
class HalfKAv2 {
// unique number for each piece type on each square
enum {
PS_NONE = 0,
PS_W_PAWN = 0,
PS_B_PAWN = 1 * SQUARE_NB,
PS_W_KNIGHT = 2 * SQUARE_NB,
PS_B_KNIGHT = 3 * SQUARE_NB,
PS_W_BISHOP = 4 * SQUARE_NB,
PS_B_BISHOP = 5 * SQUARE_NB,
PS_W_ROOK = 6 * SQUARE_NB,
PS_B_ROOK = 7 * SQUARE_NB,
PS_W_QUEEN = 8 * SQUARE_NB,
PS_B_QUEEN = 9 * SQUARE_NB,
PS_KING = 10 * SQUARE_NB,
PS_NB = 11 * SQUARE_NB
};
static constexpr IndexType PieceSquareIndex[COLOR_NB][PIECE_NB] = {
// convention: W - us, B - them
// viewed from other side, W and B are reversed
{ PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_KING, PS_NONE,
PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_KING, PS_NONE },
{ PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_KING, PS_NONE,
PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_KING, PS_NONE }
};
// Orient a square according to perspective (rotates by 180 for black)
static Square orient(Color perspective, Square s);
// Index of a feature for a given king position and another piece on some square
static IndexType make_index(Color perspective, Square s, Piece pc, Square ksq);
public:
// Feature name
static constexpr const char* Name = "HalfKAv2(Friend)";
// Hash value embedded in the evaluation file
static constexpr std::uint32_t HashValue = 0x5f234cb8u;
// Number of feature dimensions
static constexpr IndexType Dimensions =
static_cast<IndexType>(SQUARE_NB) * static_cast<IndexType>(PS_NB);
// Maximum number of simultaneously active features.
static constexpr IndexType MaxActiveDimensions = 32;
// Get a list of indices for active features
static void append_active_indices(
const Position& pos,
Color perspective,
ValueListInserter<IndexType> active);
// Get a list of indices for recently changed features
static void append_changed_indices(
Square ksq,
StateInfo* st,
Color perspective,
ValueListInserter<IndexType> removed,
ValueListInserter<IndexType> added);
// Returns the cost of updating one perspective, the most costly one.
// Assumes no refresh needed.
static int update_cost(StateInfo* st);
static int refresh_cost(const Position& pos);
// Returns whether the change stored in this StateInfo means that
// a full accumulator refresh is required.
static bool requires_refresh(StateInfo* st, Color perspective);
};
} // namespace Stockfish::Eval::NNUE::Features
#endif // #ifndef NNUE_FEATURES_HALF_KA_V2_H_INCLUDED

View File

@ -1,68 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Definition of input features HalfKP of NNUE evaluation function
#include "half_kp.h"
#include "index_list.h"
namespace Eval::NNUE::Features {
// Orient a square according to perspective (rotates by 180 for black)
inline Square orient(Color perspective, Square s) {
return Square(int(s) ^ (bool(perspective) * 63));
}
// Index of a feature for a given king position and another piece on some square
inline IndexType make_index(Color perspective, Square s, Piece pc, Square ksq) {
return IndexType(orient(perspective, s) + kpp_board_index[perspective][pc] + PS_END * ksq);
}
// Get a list of indices for active features
template <Side AssociatedKing>
void HalfKP<AssociatedKing>::AppendActiveIndices(
const Position& pos, Color perspective, IndexList* active) {
Square ksq = orient(perspective, pos.square<KING>(perspective));
Bitboard bb = pos.pieces() & ~pos.pieces(KING);
while (bb) {
Square s = pop_lsb(&bb);
active->push_back(make_index(perspective, s, pos.piece_on(s), ksq));
}
}
// Get a list of indices for recently changed features
template <Side AssociatedKing>
void HalfKP<AssociatedKing>::AppendChangedIndices(
const Position& pos, const DirtyPiece& dp, Color perspective,
IndexList* removed, IndexList* added) {
Square ksq = orient(perspective, pos.square<KING>(perspective));
for (int i = 0; i < dp.dirty_num; ++i) {
Piece pc = dp.piece[i];
if (type_of(pc) == KING) continue;
if (dp.from[i] != SQ_NONE)
removed->push_back(make_index(perspective, dp.from[i], pc, ksq));
if (dp.to[i] != SQ_NONE)
added->push_back(make_index(perspective, dp.to[i], pc, ksq));
}
}
template class HalfKP<Side::kFriend>;
} // namespace Eval::NNUE::Features

View File

@ -1,59 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//Definition of input features HalfKP of NNUE evaluation function
#ifndef NNUE_FEATURES_HALF_KP_H_INCLUDED
#define NNUE_FEATURES_HALF_KP_H_INCLUDED
#include "../../evaluate.h"
#include "features_common.h"
namespace Eval::NNUE::Features {
// Feature HalfKP: Combination of the position of own king
// and the position of pieces other than kings
template <Side AssociatedKing>
class HalfKP {
public:
// Feature name
static constexpr const char* kName = "HalfKP(Friend)";
// Hash value embedded in the evaluation file
static constexpr std::uint32_t kHashValue =
0x5D69D5B9u ^ (AssociatedKing == Side::kFriend);
// Number of feature dimensions
static constexpr IndexType kDimensions =
static_cast<IndexType>(SQUARE_NB) * static_cast<IndexType>(PS_END);
// Maximum number of simultaneously active features
static constexpr IndexType kMaxActiveDimensions = 30; // Kings don't count
// Trigger for full calculation instead of difference calculation
static constexpr TriggerEvent kRefreshTrigger = TriggerEvent::kFriendKingMoved;
// Get a list of indices for active features
static void AppendActiveIndices(const Position& pos, Color perspective,
IndexList* active);
// Get a list of indices for recently changed features
static void AppendChangedIndices(const Position& pos, const DirtyPiece& dp, Color perspective,
IndexList* removed, IndexList* added);
};
} // namespace Eval::NNUE::Features
#endif // #ifndef NNUE_FEATURES_HALF_KP_H_INCLUDED

View File

@ -1,64 +0,0 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of index list of input features
#ifndef NNUE_FEATURES_INDEX_LIST_H_INCLUDED
#define NNUE_FEATURES_INDEX_LIST_H_INCLUDED
#include "../../position.h"
#include "../nnue_architecture.h"
namespace Eval::NNUE::Features {
// Class template used for feature index list
template <typename T, std::size_t MaxSize>
class ValueList {
public:
std::size_t size() const { return size_; }
void resize(std::size_t size) { size_ = size; }
void push_back(const T& value) { values_[size_++] = value; }
T& operator[](std::size_t index) { return values_[index]; }
T* begin() { return values_; }
T* end() { return values_ + size_; }
const T& operator[](std::size_t index) const { return values_[index]; }
const T* begin() const { return values_; }
const T* end() const { return values_ + size_; }
void swap(ValueList& other) {
const std::size_t max_size = std::max(size_, other.size_);
for (std::size_t i = 0; i < max_size; ++i) {
std::swap(values_[i], other.values_[i]);
}
std::swap(size_, other.size_);
}
private:
T values_[MaxSize];
std::size_t size_ = 0;
};
//Type of feature index list
class IndexList
: public ValueList<IndexType, RawFeatures::kMaxActiveDimensions> {
};
} // namespace Eval::NNUE::Features
#endif // NNUE_FEATURES_INDEX_LIST_H_INCLUDED

View File

@ -24,10 +24,10 @@
#include <iostream>
#include "../nnue_common.h"
namespace Eval::NNUE::Layers {
namespace Stockfish::Eval::NNUE::Layers {
// Affine transformation layer
template <typename PreviousLayer, IndexType OutputDimensions>
template <typename PreviousLayer, IndexType OutDims>
class AffineTransform {
public:
// Input/output type
@ -36,104 +36,88 @@ namespace Eval::NNUE::Layers {
static_assert(std::is_same<InputType, std::uint8_t>::value, "");
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = OutputDimensions;
static constexpr IndexType kPaddedInputDimensions =
CeilToMultiple<IndexType>(kInputDimensions, kMaxSimdWidth);
static constexpr IndexType InputDimensions =
PreviousLayer::OutputDimensions;
static constexpr IndexType OutputDimensions = OutDims;
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
#if defined (USE_AVX512)
static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 2;
static constexpr const IndexType OutputSimdWidth = SimdWidth / 2;
#elif defined (USE_SSSE3)
static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 4;
static constexpr const IndexType OutputSimdWidth = SimdWidth / 4;
#endif
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
static constexpr std::size_t SelfBufferSize =
ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
static constexpr std::size_t BufferSize =
PreviousLayer::BufferSize + SelfBufferSize;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xCC03DAE4u;
hash_value += kOutputDimensions;
hash_value ^= PreviousLayer::GetHashValue() >> 1;
hash_value ^= PreviousLayer::GetHashValue() << 31;
return hash_value;
static constexpr std::uint32_t get_hash_value() {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= PreviousLayer::get_hash_value() >> 1;
hashValue ^= PreviousLayer::get_hash_value() << 31;
return hashValue;
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
if (!previous_layer_.ReadParameters(stream)) return false;
for (std::size_t i = 0; i < kOutputDimensions; ++i)
biases_[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < kOutputDimensions * kPaddedInputDimensions; ++i)
// Read network parameters
bool read_parameters(std::istream& stream) {
if (!previousLayer.read_parameters(stream)) return false;
for (std::size_t i = 0; i < OutputDimensions; ++i)
biases[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
#if !defined (USE_SSSE3)
weights_[i] = read_little_endian<WeightType>(stream);
weights[i] = read_little_endian<WeightType>(stream);
#else
weights_[
(i / 4) % (kPaddedInputDimensions / 4) * kOutputDimensions * 4 +
i / kPaddedInputDimensions * 4 +
weights[
(i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 +
i / PaddedInputDimensions * 4 +
i % 4
] = read_little_endian<WeightType>(stream);
// Determine if eights of weight and input products can be summed using 16bits
// without saturation. We assume worst case combinations of 0 and 127 for all inputs.
if (kOutputDimensions > 1 && !stream.fail())
{
canSaturate16.count = 0;
#if !defined(USE_VNNI)
for (IndexType i = 0; i < kPaddedInputDimensions; i += 16)
for (IndexType j = 0; j < kOutputDimensions; ++j)
for (int x = 0; x < 2; ++x)
{
WeightType* w = &weights_[i * kOutputDimensions + j * 4 + x * 2];
int sum[2] = {0, 0};
for (int k = 0; k < 8; ++k)
{
IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
sum[w[idx] < 0] += w[idx];
}
for (int sign : {-1, 1})
while (sign * sum[sign == -1] > 258)
{
int maxK = 0, maxW = 0;
for (int k = 0; k < 8; ++k)
{
IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
if (maxW < sign * w[idx])
maxK = k, maxW = sign * w[idx];
}
IndexType idx = maxK / 2 * kOutputDimensions * 4 + maxK % 2;
sum[sign == -1] -= w[idx];
canSaturate16.add(j, i + maxK / 2 * 4 + maxK % 2 + x * 2, w[idx]);
w[idx] = 0;
}
}
// Non functional optimization for faster more linear access
std::sort(canSaturate16.ids, canSaturate16.ids + canSaturate16.count,
[](const typename CanSaturate::Entry& e1, const typename CanSaturate::Entry& e2)
{ return e1.in == e2.in ? e1.out < e2.out : e1.in < e2.in; });
#endif
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
if (!previousLayer.write_parameters(stream)) return false;
for (std::size_t i = 0; i < OutputDimensions; ++i)
write_little_endian<BiasType>(stream, biases[i]);
#if !defined (USE_SSSE3)
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[i]);
#else
std::unique_ptr<WeightType[]> unscrambledWeights = std::make_unique<WeightType[]>(OutputDimensions * PaddedInputDimensions);
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) {
unscrambledWeights[i] =
weights[
(i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 +
i / PaddedInputDimensions * 4 +
i % 4
];
}
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, unscrambledWeights[i]);
#endif
return !stream.fail();
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures, char* buffer) const {
const auto input = previousLayer.propagate(
transformedFeatures, buffer + SelfBufferSize);
#if defined (USE_AVX512)
[[maybe_unused]] const __m512i kOnes512 = _mm512_set1_epi16(1);
[[maybe_unused]] const __m512i Ones512 = _mm512_set1_epi16(1);
[[maybe_unused]] auto m512_hadd = [](__m512i sum, int bias) -> int {
return _mm512_reduce_add_epi32(sum) + bias;
@ -144,7 +128,7 @@ namespace Eval::NNUE::Layers {
acc = _mm512_dpbusd_epi32(acc, a, b);
#else
__m512i product0 = _mm512_maddubs_epi16(a, b);
product0 = _mm512_madd_epi16(product0, kOnes512);
product0 = _mm512_madd_epi16(product0, Ones512);
acc = _mm512_add_epi32(acc, product0);
#endif
};
@ -161,18 +145,18 @@ namespace Eval::NNUE::Layers {
__m512i product1 = _mm512_maddubs_epi16(a1, b1);
__m512i product2 = _mm512_maddubs_epi16(a2, b2);
__m512i product3 = _mm512_maddubs_epi16(a3, b3);
product0 = _mm512_add_epi16(product0, product1);
product2 = _mm512_add_epi16(product2, product3);
product0 = _mm512_add_epi16(product0, product2);
product0 = _mm512_madd_epi16(product0, kOnes512);
acc = _mm512_add_epi32(acc, product0);
product0 = _mm512_adds_epi16(product0, product1);
product0 = _mm512_madd_epi16(product0, Ones512);
product2 = _mm512_adds_epi16(product2, product3);
product2 = _mm512_madd_epi16(product2, Ones512);
acc = _mm512_add_epi32(acc, _mm512_add_epi32(product0, product2));
#endif
};
#endif
#if defined (USE_AVX2)
[[maybe_unused]] const __m256i kOnes256 = _mm256_set1_epi16(1);
[[maybe_unused]] const __m256i Ones256 = _mm256_set1_epi16(1);
[[maybe_unused]] auto m256_hadd = [](__m256i sum, int bias) -> int {
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
@ -186,7 +170,7 @@ namespace Eval::NNUE::Layers {
acc = _mm256_dpbusd_epi32(acc, a, b);
#else
__m256i product0 = _mm256_maddubs_epi16(a, b);
product0 = _mm256_madd_epi16(product0, kOnes256);
product0 = _mm256_madd_epi16(product0, Ones256);
acc = _mm256_add_epi32(acc, product0);
#endif
};
@ -203,18 +187,18 @@ namespace Eval::NNUE::Layers {
__m256i product1 = _mm256_maddubs_epi16(a1, b1);
__m256i product2 = _mm256_maddubs_epi16(a2, b2);
__m256i product3 = _mm256_maddubs_epi16(a3, b3);
product0 = _mm256_add_epi16(product0, product1);
product2 = _mm256_add_epi16(product2, product3);
product0 = _mm256_add_epi16(product0, product2);
product0 = _mm256_madd_epi16(product0, kOnes256);
acc = _mm256_add_epi32(acc, product0);
product0 = _mm256_adds_epi16(product0, product1);
product0 = _mm256_madd_epi16(product0, Ones256);
product2 = _mm256_adds_epi16(product2, product3);
product2 = _mm256_madd_epi16(product2, Ones256);
acc = _mm256_add_epi32(acc, _mm256_add_epi32(product0, product2));
#endif
};
#endif
#if defined (USE_SSSE3)
[[maybe_unused]] const __m128i kOnes128 = _mm_set1_epi16(1);
[[maybe_unused]] const __m128i Ones128 = _mm_set1_epi16(1);
[[maybe_unused]] auto m128_hadd = [](__m128i sum, int bias) -> int {
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
@ -224,7 +208,7 @@ namespace Eval::NNUE::Layers {
[[maybe_unused]] auto m128_add_dpbusd_epi32 = [=](__m128i& acc, __m128i a, __m128i b) {
__m128i product0 = _mm_maddubs_epi16(a, b);
product0 = _mm_madd_epi16(product0, kOnes128);
product0 = _mm_madd_epi16(product0, Ones128);
acc = _mm_add_epi32(acc, product0);
};
@ -235,10 +219,10 @@ namespace Eval::NNUE::Layers {
__m128i product2 = _mm_maddubs_epi16(a2, b2);
__m128i product3 = _mm_maddubs_epi16(a3, b3);
product0 = _mm_adds_epi16(product0, product1);
product0 = _mm_madd_epi16(product0, Ones128);
product2 = _mm_adds_epi16(product2, product3);
product0 = _mm_adds_epi16(product0, product2);
product0 = _mm_madd_epi16(product0, kOnes128);
acc = _mm_add_epi32(acc, product0);
product2 = _mm_madd_epi16(product2, Ones128);
acc = _mm_add_epi32(acc, _mm_add_epi32(product0, product2));
};
#endif
@ -267,73 +251,73 @@ namespace Eval::NNUE::Layers {
#endif
#if defined (USE_SSSE3)
// Different layout, we process 4 inputs at a time, always.
static_assert(InputDimensions % 4 == 0);
const auto output = reinterpret_cast<OutputType*>(buffer);
const auto input_vector = reinterpret_cast<const vec_t*>(input);
const auto inputVector = reinterpret_cast<const vec_t*>(input);
static_assert(kOutputDimensions % kOutputSimdWidth == 0 || kOutputDimensions == 1);
static_assert(OutputDimensions % OutputSimdWidth == 0 || OutputDimensions == 1);
// kOutputDimensions is either 1 or a multiple of kSimdWidth
// OutputDimensions is either 1 or a multiple of SimdWidth
// because then it is also an input dimension.
if constexpr (kOutputDimensions % kOutputSimdWidth == 0)
if constexpr (OutputDimensions % OutputSimdWidth == 0)
{
constexpr IndexType kNumChunks = kPaddedInputDimensions / 4;
constexpr IndexType NumChunks = InputDimensions / 4;
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
vec_t* outptr = reinterpret_cast<vec_t*>(output);
std::memcpy(output, biases_, kOutputDimensions * sizeof(OutputType));
std::memcpy(output, biases, OutputDimensions * sizeof(OutputType));
for (int i = 0; i < (int)kNumChunks - 3; i += 4)
for (int i = 0; i < (int)NumChunks - 3; i += 4)
{
const vec_t in0 = vec_set_32(input32[i + 0]);
const vec_t in1 = vec_set_32(input32[i + 1]);
const vec_t in2 = vec_set_32(input32[i + 2]);
const vec_t in3 = vec_set_32(input32[i + 3]);
const auto col0 = reinterpret_cast<const vec_t*>(&weights_[(i + 0) * kOutputDimensions * 4]);
const auto col1 = reinterpret_cast<const vec_t*>(&weights_[(i + 1) * kOutputDimensions * 4]);
const auto col2 = reinterpret_cast<const vec_t*>(&weights_[(i + 2) * kOutputDimensions * 4]);
const auto col3 = reinterpret_cast<const vec_t*>(&weights_[(i + 3) * kOutputDimensions * 4]);
for (int j = 0; j * kOutputSimdWidth < kOutputDimensions; ++j)
const auto col0 = reinterpret_cast<const vec_t*>(&weights[(i + 0) * OutputDimensions * 4]);
const auto col1 = reinterpret_cast<const vec_t*>(&weights[(i + 1) * OutputDimensions * 4]);
const auto col2 = reinterpret_cast<const vec_t*>(&weights[(i + 2) * OutputDimensions * 4]);
const auto col3 = reinterpret_cast<const vec_t*>(&weights[(i + 3) * OutputDimensions * 4]);
for (int j = 0; j * OutputSimdWidth < OutputDimensions; ++j)
vec_add_dpbusd_32x4(outptr[j], in0, col0[j], in1, col1[j], in2, col2[j], in3, col3[j]);
}
for (int i = 0; i < canSaturate16.count; ++i)
output[canSaturate16.ids[i].out] += input[canSaturate16.ids[i].in] * canSaturate16.ids[i].w;
}
else if constexpr (kOutputDimensions == 1)
else if constexpr (OutputDimensions == 1)
{
#if defined (USE_AVX512)
if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) != 0)
if constexpr (PaddedInputDimensions % (SimdWidth * 2) != 0)
{
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector256 = reinterpret_cast<const __m256i*>(input);
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
const auto inputVector256 = reinterpret_cast<const __m256i*>(input);
__m256i sum0 = _mm256_setzero_si256();
const auto row0 = reinterpret_cast<const __m256i*>(&weights_[0]);
const auto row0 = reinterpret_cast<const __m256i*>(&weights[0]);
for (int j = 0; j < (int)kNumChunks; ++j)
for (int j = 0; j < (int)NumChunks; ++j)
{
const __m256i in = input_vector256[j];
const __m256i in = inputVector256[j];
m256_add_dpbusd_epi32(sum0, in, row0[j]);
}
output[0] = m256_hadd(sum0, biases_[0]);
output[0] = m256_hadd(sum0, biases[0]);
}
else
#endif
{
#if defined (USE_AVX512)
constexpr IndexType kNumChunks = kPaddedInputDimensions / (kSimdWidth * 2);
constexpr IndexType NumChunks = PaddedInputDimensions / (SimdWidth * 2);
#else
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
#endif
vec_t sum0 = vec_setzero();
const auto row0 = reinterpret_cast<const vec_t*>(&weights_[0]);
const auto row0 = reinterpret_cast<const vec_t*>(&weights[0]);
for (int j = 0; j < (int)kNumChunks; ++j)
for (int j = 0; j < (int)NumChunks; ++j)
{
const vec_t in = input_vector[j];
const vec_t in = inputVector[j];
vec_add_dpbusd_32(sum0, in, row0[j]);
}
output[0] = vec_hadd(sum0, biases_[0]);
output[0] = vec_hadd(sum0, biases[0]);
}
}
@ -344,80 +328,84 @@ namespace Eval::NNUE::Layers {
auto output = reinterpret_cast<OutputType*>(buffer);
#if defined(USE_SSE2)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const __m128i kZeros = _mm_setzero_si128();
const auto input_vector = reinterpret_cast<const __m128i*>(input);
// At least a multiple of 16, with SSE2.
static_assert(InputDimensions % SimdWidth == 0);
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m128i Zeros = _mm_setzero_si128();
const auto inputVector = reinterpret_cast<const __m128i*>(input);
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const __m64 kZeros = _mm_setzero_si64();
const auto input_vector = reinterpret_cast<const __m64*>(input);
static_assert(InputDimensions % SimdWidth == 0);
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m64 Zeros = _mm_setzero_si64();
const auto inputVector = reinterpret_cast<const __m64*>(input);
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector = reinterpret_cast<const int8x8_t*>(input);
static_assert(InputDimensions % SimdWidth == 0);
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const auto inputVector = reinterpret_cast<const int8x8_t*>(input);
#endif
for (IndexType i = 0; i < kOutputDimensions; ++i) {
const IndexType offset = i * kPaddedInputDimensions;
for (IndexType i = 0; i < OutputDimensions; ++i) {
const IndexType offset = i * PaddedInputDimensions;
#if defined(USE_SSE2)
__m128i sum_lo = _mm_cvtsi32_si128(biases_[i]);
__m128i sum_hi = kZeros;
const auto row = reinterpret_cast<const __m128i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m128i sumLo = _mm_cvtsi32_si128(biases[i]);
__m128i sumHi = Zeros;
const auto row = reinterpret_cast<const __m128i*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&input_vector[j]);
__m128i extended_row_lo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extended_row_hi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extended_input_lo = _mm_unpacklo_epi8(input_j, kZeros);
__m128i extended_input_hi = _mm_unpackhi_epi8(input_j, kZeros);
__m128i product_lo = _mm_madd_epi16(extended_row_lo, extended_input_lo);
__m128i product_hi = _mm_madd_epi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_epi32(sum_lo, product_lo);
sum_hi = _mm_add_epi32(sum_hi, product_hi);
__m128i input_j = _mm_load_si128(&inputVector[j]);
__m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros);
__m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros);
__m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo);
__m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_epi32(sumLo, productLo);
sumHi = _mm_add_epi32(sumHi, productHi);
}
__m128i sum = _mm_add_epi32(sum_lo, sum_hi);
__m128i sum_high_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_high_64);
__m128i sum = _mm_add_epi32(sumLo, sumHi);
__m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sumHigh_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
#elif defined(USE_MMX)
__m64 sum_lo = _mm_cvtsi32_si64(biases_[i]);
__m64 sum_hi = kZeros;
const auto row = reinterpret_cast<const __m64*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m64 sumLo = _mm_cvtsi32_si64(biases[i]);
__m64 sumHi = Zeros;
const auto row = reinterpret_cast<const __m64*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
__m64 row_j = row[j];
__m64 input_j = input_vector[j];
__m64 extended_row_lo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
__m64 extended_row_hi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
__m64 extended_input_lo = _mm_unpacklo_pi8(input_j, kZeros);
__m64 extended_input_hi = _mm_unpackhi_pi8(input_j, kZeros);
__m64 product_lo = _mm_madd_pi16(extended_row_lo, extended_input_lo);
__m64 product_hi = _mm_madd_pi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_pi32(sum_lo, product_lo);
sum_hi = _mm_add_pi32(sum_hi, product_hi);
__m64 input_j = inputVector[j];
__m64 extendedRowLo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
__m64 extendedRowHi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
__m64 extendedInputLo = _mm_unpacklo_pi8(input_j, Zeros);
__m64 extendedInputHi = _mm_unpackhi_pi8(input_j, Zeros);
__m64 productLo = _mm_madd_pi16(extendedRowLo, extendedInputLo);
__m64 productHi = _mm_madd_pi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_pi32(sumLo, productLo);
sumHi = _mm_add_pi32(sumHi, productHi);
}
__m64 sum = _mm_add_pi32(sum_lo, sum_hi);
__m64 sum = _mm_add_pi32(sumLo, sumHi);
sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum));
output[i] = _mm_cvtsi64_si32(sum);
#elif defined(USE_NEON)
int32x4_t sum = {biases_[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
int16x8_t product = vmull_s8(input_vector[j * 2], row[j * 2]);
product = vmlal_s8(product, input_vector[j * 2 + 1], row[j * 2 + 1]);
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]);
product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
#else
OutputType sum = biases_[i];
for (IndexType j = 0; j < kInputDimensions; ++j) {
sum += weights_[offset + j] * input[j];
OutputType sum = biases[i];
for (IndexType j = 0; j < InputDimensions; ++j) {
sum += weights[offset + j] * input[j];
}
output[i] = sum;
#endif
@ -436,29 +424,12 @@ namespace Eval::NNUE::Layers {
using BiasType = OutputType;
using WeightType = std::int8_t;
PreviousLayer previous_layer_;
PreviousLayer previousLayer;
alignas(kCacheLineSize) BiasType biases_[kOutputDimensions];
alignas(kCacheLineSize) WeightType weights_[kOutputDimensions * kPaddedInputDimensions];
#if defined (USE_SSSE3)
struct CanSaturate {
int count;
struct Entry {
uint16_t out;
uint16_t in;
int8_t w;
} ids[kPaddedInputDimensions * kOutputDimensions * 3 / 4];
void add(int i, int j, int8_t w) {
ids[count].out = i;
ids[count].in = j;
ids[count].w = w;
++count;
}
} canSaturate16;
#endif
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
} // namespace Eval::NNUE::Layers
} // namespace Stockfish::Eval::NNUE::Layers
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED

View File

@ -23,7 +23,7 @@
#include "../nnue_common.h"
namespace Eval::NNUE::Layers {
namespace Stockfish::Eval::NNUE::Layers {
// Clipped ReLU
template <typename PreviousLayer>
@ -35,132 +35,157 @@ namespace Eval::NNUE::Layers {
static_assert(std::is_same<InputType, std::int32_t>::value, "");
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = kInputDimensions;
static constexpr IndexType InputDimensions =
PreviousLayer::OutputDimensions;
static constexpr IndexType OutputDimensions = InputDimensions;
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
static constexpr std::size_t SelfBufferSize =
ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
static constexpr std::size_t BufferSize =
PreviousLayer::BufferSize + SelfBufferSize;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0x538D24C7u;
hash_value += PreviousLayer::GetHashValue();
return hash_value;
static constexpr std::uint32_t get_hash_value() {
std::uint32_t hashValue = 0x538D24C7u;
hashValue += PreviousLayer::get_hash_value();
return hashValue;
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
return previous_layer_.ReadParameters(stream);
bool read_parameters(std::istream& stream) {
return previousLayer.read_parameters(stream);
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
return previousLayer.write_parameters(stream);
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures, char* buffer) const {
const auto input = previousLayer.propagate(
transformedFeatures, buffer + SelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
#if defined(USE_AVX2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
const __m256i kZero = _mm256_setzero_si256();
const __m256i kOffsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 0]),
_mm256_load_si256(&in[i * 4 + 1])), kWeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 2]),
_mm256_load_si256(&in[i * 4 + 3])), kWeightScaleBits);
_mm256_store_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), kZero), kOffsets));
if constexpr (InputDimensions % SimdWidth == 0) {
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m256i Zero = _mm256_setzero_si256();
const __m256i Offsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 0]),
_mm256_load_si256(&in[i * 4 + 1])), WeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 2]),
_mm256_load_si256(&in[i * 4 + 3])), WeightScaleBits);
_mm256_store_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), Zero), Offsets));
}
} else {
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const __m128i Zero = _mm_setzero_si128();
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i], _mm_max_epi8(packedbytes, Zero));
}
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType Start =
InputDimensions % SimdWidth == 0
? InputDimensions / SimdWidth * SimdWidth
: InputDimensions / (SimdWidth / 2) * (SimdWidth / 2);
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
#ifdef USE_SSE41
const __m128i kZero = _mm_setzero_si128();
const __m128i Zero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), kWeightScaleBits);
_mm_load_si128(&in[i * 4 + 1])), WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), kWeightScaleBits);
_mm_load_si128(&in[i * 4 + 3])), WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, kZero)
_mm_max_epi8(packedbytes, Zero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
);
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
const auto in = reinterpret_cast<const __m64*>(input);
const auto out = reinterpret_cast<__m64*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
const __m64 words0 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 0], in[i * 4 + 1]),
kWeightScaleBits);
WeightScaleBits);
const __m64 words1 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 2], in[i * 4 + 3]),
kWeightScaleBits);
WeightScaleBits);
const __m64 packedbytes = _mm_packs_pi16(words0, words1);
out[i] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
_mm_empty();
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kInputDimensions / (kSimdWidth / 2);
const int8x8_t kZero = {0};
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const int8x8_t Zero = {0};
const auto in = reinterpret_cast<const int32x4_t*>(input);
const auto out = reinterpret_cast<int8x8_t*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
int16x8_t shifted;
const auto pack = reinterpret_cast<int16x4_t*>(&shifted);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], kWeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], kWeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), kZero);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], WeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], WeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), Zero);
}
constexpr IndexType kStart = kNumChunks * (kSimdWidth / 2);
constexpr IndexType Start = NumChunks * (SimdWidth / 2);
#else
constexpr IndexType kStart = 0;
constexpr IndexType Start = 0;
#endif
for (IndexType i = kStart; i < kInputDimensions; ++i) {
for (IndexType i = Start; i < InputDimensions; ++i) {
output[i] = static_cast<OutputType>(
std::max(0, std::min(127, input[i] >> kWeightScaleBits)));
std::max(0, std::min(127, input[i] >> WeightScaleBits)));
}
return output;
}
private:
PreviousLayer previous_layer_;
PreviousLayer previousLayer;
};
} // namespace Eval::NNUE::Layers
} // namespace Stockfish::Eval::NNUE::Layers
#endif // NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED

View File

@ -23,46 +23,51 @@
#include "../nnue_common.h"
namespace Eval::NNUE::Layers {
namespace Stockfish::Eval::NNUE::Layers {
// Input layer
template <IndexType OutputDimensions, IndexType Offset = 0>
template <IndexType OutDims, IndexType Offset = 0>
class InputSlice {
public:
// Need to maintain alignment
static_assert(Offset % kMaxSimdWidth == 0, "");
static_assert(Offset % MaxSimdWidth == 0, "");
// Output type
using OutputType = TransformedFeatureType;
// Output dimensionality
static constexpr IndexType kOutputDimensions = OutputDimensions;
static constexpr IndexType OutputDimensions = OutDims;
// Size of forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize = 0;
static constexpr std::size_t BufferSize = 0;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xEC42E90Du;
hash_value ^= kOutputDimensions ^ (Offset << 10);
return hash_value;
static constexpr std::uint32_t get_hash_value() {
std::uint32_t hashValue = 0xEC42E90Du;
hashValue ^= OutputDimensions ^ (Offset << 10);
return hashValue;
}
// Read network parameters
bool ReadParameters(std::istream& /*stream*/) {
bool read_parameters(std::istream& /*stream*/) {
return true;
}
// Write network parameters
bool write_parameters(std::ostream& /*stream*/) const {
return true;
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features,
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures,
char* /*buffer*/) const {
return transformed_features + Offset;
return transformedFeatures + Offset;
}
private:
};
} // namespace Layers
} // namespace Stockfish::Eval::NNUE::Layers
#endif // #ifndef NNUE_LAYERS_INPUT_SLICE_H_INCLUDED

View File

@ -23,18 +23,15 @@
#include "nnue_architecture.h"
namespace Eval::NNUE {
// The accumulator of a StateInfo without parent is set to the INIT state
enum AccumulatorState { EMPTY, COMPUTED, INIT };
namespace Stockfish::Eval::NNUE {
// Class that holds the result of affine transformation of input features
struct alignas(kCacheLineSize) Accumulator {
std::int16_t
accumulation[2][kRefreshTriggers.size()][kTransformedFeatureDimensions];
AccumulatorState state[2];
struct alignas(CacheLineSize) Accumulator {
std::int16_t accumulation[2][TransformedFeatureDimensions];
std::int32_t psqtAccumulation[2][PSQTBuckets];
bool computed[2];
};
} // namespace Eval::NNUE
} // namespace Stockfish::Eval::NNUE
#endif // NNUE_ACCUMULATOR_H_INCLUDED

View File

@ -21,18 +21,40 @@
#ifndef NNUE_ARCHITECTURE_H_INCLUDED
#define NNUE_ARCHITECTURE_H_INCLUDED
// Defines the network structure
#include "architectures/halfkp_256x2-32-32.h"
#include "nnue_common.h"
namespace Eval::NNUE {
#include "features/half_ka_v2.h"
static_assert(kTransformedFeatureDimensions % kMaxSimdWidth == 0, "");
static_assert(Network::kOutputDimensions == 1, "");
#include "layers/input_slice.h"
#include "layers/affine_transform.h"
#include "layers/clipped_relu.h"
namespace Stockfish::Eval::NNUE {
// Input features used in evaluation function
using FeatureSet = Features::HalfKAv2;
// Number of input feature dimensions after conversion
constexpr IndexType TransformedFeatureDimensions = 512;
constexpr IndexType PSQTBuckets = 8;
constexpr IndexType LayerStacks = 8;
namespace Layers {
// Define network structure
using InputLayer = InputSlice<TransformedFeatureDimensions * 2>;
using HiddenLayer1 = ClippedReLU<AffineTransform<InputLayer, 16>>;
using HiddenLayer2 = ClippedReLU<AffineTransform<HiddenLayer1, 32>>;
using OutputLayer = AffineTransform<HiddenLayer2, 1>;
} // namespace Layers
using Network = Layers::OutputLayer;
static_assert(TransformedFeatureDimensions % MaxSimdWidth == 0, "");
static_assert(Network::OutputDimensions == 1, "");
static_assert(std::is_same<Network::OutputType, std::int32_t>::value, "");
// Trigger for full calculation instead of difference calculation
constexpr auto kRefreshTriggers = RawFeatures::kRefreshTriggers;
} // namespace Eval::NNUE
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_ARCHITECTURE_H_INCLUDED

View File

@ -24,6 +24,8 @@
#include <cstring>
#include <iostream>
#include "../misc.h" // for IsLittleEndian
#if defined(USE_AVX2)
#include <immintrin.h>
@ -43,61 +45,33 @@
#include <arm_neon.h>
#endif
namespace Eval::NNUE {
namespace Stockfish::Eval::NNUE {
// Version of the evaluation file
constexpr std::uint32_t kVersion = 0x7AF32F16u;
constexpr std::uint32_t Version = 0x7AF32F20u;
// Constant used in evaluation value calculation
constexpr int FV_SCALE = 16;
constexpr int kWeightScaleBits = 6;
constexpr int OutputScale = 16;
constexpr int WeightScaleBits = 6;
// Size of cache line (in bytes)
constexpr std::size_t kCacheLineSize = 64;
constexpr std::size_t CacheLineSize = 64;
// SIMD width (in bytes)
#if defined(USE_AVX2)
constexpr std::size_t kSimdWidth = 32;
constexpr std::size_t SimdWidth = 32;
#elif defined(USE_SSE2)
constexpr std::size_t kSimdWidth = 16;
constexpr std::size_t SimdWidth = 16;
#elif defined(USE_MMX)
constexpr std::size_t kSimdWidth = 8;
constexpr std::size_t SimdWidth = 8;
#elif defined(USE_NEON)
constexpr std::size_t kSimdWidth = 16;
constexpr std::size_t SimdWidth = 16;
#endif
constexpr std::size_t kMaxSimdWidth = 32;
// unique number for each piece type on each square
enum {
PS_NONE = 0,
PS_W_PAWN = 1,
PS_B_PAWN = 1 * SQUARE_NB + 1,
PS_W_KNIGHT = 2 * SQUARE_NB + 1,
PS_B_KNIGHT = 3 * SQUARE_NB + 1,
PS_W_BISHOP = 4 * SQUARE_NB + 1,
PS_B_BISHOP = 5 * SQUARE_NB + 1,
PS_W_ROOK = 6 * SQUARE_NB + 1,
PS_B_ROOK = 7 * SQUARE_NB + 1,
PS_W_QUEEN = 8 * SQUARE_NB + 1,
PS_B_QUEEN = 9 * SQUARE_NB + 1,
PS_W_KING = 10 * SQUARE_NB + 1,
PS_END = PS_W_KING, // pieces without kings (pawns included)
PS_B_KING = 11 * SQUARE_NB + 1,
PS_END2 = 12 * SQUARE_NB + 1
};
constexpr uint32_t kpp_board_index[COLOR_NB][PIECE_NB] = {
// convention: W - us, B - them
// viewed from other side, W and B are reversed
{ PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_W_KING, PS_NONE,
PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_B_KING, PS_NONE },
{ PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_B_KING, PS_NONE,
PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_W_KING, PS_NONE }
};
constexpr std::size_t MaxSimdWidth = 32;
// Type of input feature after conversion
using TransformedFeatureType = std::uint8_t;
@ -105,7 +79,7 @@ namespace Eval::NNUE {
// Round n up to be a multiple of base
template <typename IntType>
constexpr IntType CeilToMultiple(IntType n, IntType base) {
constexpr IntType ceil_to_multiple(IntType n, IntType base) {
return (n + base - 1) / base * base;
}
@ -114,19 +88,77 @@ namespace Eval::NNUE {
// necessary to return a result with the byte ordering of the compiling machine.
template <typename IntType>
inline IntType read_little_endian(std::istream& stream) {
IntType result;
std::uint8_t u[sizeof(IntType)];
typename std::make_unsigned<IntType>::type v = 0;
stream.read(reinterpret_cast<char*>(u), sizeof(IntType));
for (std::size_t i = 0; i < sizeof(IntType); ++i)
v = (v << 8) | u[sizeof(IntType) - i - 1];
if (IsLittleEndian)
stream.read(reinterpret_cast<char*>(&result), sizeof(IntType));
else
{
std::uint8_t u[sizeof(IntType)];
typename std::make_unsigned<IntType>::type v = 0;
stream.read(reinterpret_cast<char*>(u), sizeof(IntType));
for (std::size_t i = 0; i < sizeof(IntType); ++i)
v = (v << 8) | u[sizeof(IntType) - i - 1];
std::memcpy(&result, &v, sizeof(IntType));
}
std::memcpy(&result, &v, sizeof(IntType));
return result;
}
} // namespace Eval::NNUE
// write_little_endian() is our utility to write an integer (signed or unsigned, any size)
// to a stream in little-endian order. We swap the byte order before the write if
// necessary to always write in little endian order, independantly of the byte
// ordering of the compiling machine.
template <typename IntType>
inline void write_little_endian(std::ostream& stream, IntType value) {
if (IsLittleEndian)
stream.write(reinterpret_cast<const char*>(&value), sizeof(IntType));
else
{
std::uint8_t u[sizeof(IntType)];
typename std::make_unsigned<IntType>::type v = value;
std::size_t i = 0;
// if constexpr to silence the warning about shift by 8
if constexpr (sizeof(IntType) > 1)
{
for (; i + 1 < sizeof(IntType); ++i)
{
u[i] = v;
v >>= 8;
}
}
u[i] = v;
stream.write(reinterpret_cast<char*>(u), sizeof(IntType));
}
}
// read_little_endian(s, out, N) : read integers in bulk from a little indian stream.
// This reads N integers from stream s and put them in array out.
template <typename IntType>
inline void read_little_endian(std::istream& stream, IntType* out, std::size_t count) {
if (IsLittleEndian)
stream.read(reinterpret_cast<char*>(out), sizeof(IntType) * count);
else
for (std::size_t i = 0; i < count; ++i)
out[i] = read_little_endian<IntType>(stream);
}
// write_little_endian(s, values, N) : write integers in bulk to a little indian stream.
// This takes N integers from array values and writes them on stream s.
template <typename IntType>
inline void write_little_endian(std::ostream& stream, const IntType* values, std::size_t count) {
if (IsLittleEndian)
stream.write(reinterpret_cast<const char*>(values), sizeof(IntType) * count);
else
for (std::size_t i = 0; i < count; ++i)
write_little_endian<IntType>(stream, values[i]);
}
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_COMMON_H_INCLUDED

View File

@ -23,72 +23,158 @@
#include "nnue_common.h"
#include "nnue_architecture.h"
#include "features/index_list.h"
#include <cstring> // std::memset()
namespace Eval::NNUE {
namespace Stockfish::Eval::NNUE {
using BiasType = std::int16_t;
using WeightType = std::int16_t;
using PSQTWeightType = std::int32_t;
// If vector instructions are enabled, we update and refresh the
// accumulator tile by tile such that each tile fits in the CPU's
// vector registers.
#define VECTOR
static_assert(PSQTBuckets % 8 == 0,
"Per feature PSQT values cannot be processed at granularity lower than 8 at a time.");
#ifdef USE_AVX512
typedef __m512i vec_t;
typedef __m256i psqt_vec_t;
#define vec_load(a) _mm512_load_si512(a)
#define vec_store(a,b) _mm512_store_si512(a,b)
#define vec_add_16(a,b) _mm512_add_epi16(a,b)
#define vec_sub_16(a,b) _mm512_sub_epi16(a,b)
static constexpr IndexType kNumRegs = 8; // only 8 are needed
#define vec_load_psqt(a) _mm256_load_si256(a)
#define vec_store_psqt(a,b) _mm256_store_si256(a,b)
#define vec_add_psqt_32(a,b) _mm256_add_epi32(a,b)
#define vec_sub_psqt_32(a,b) _mm256_sub_epi32(a,b)
#define vec_zero_psqt() _mm256_setzero_si256()
#define NumRegistersSIMD 32
#elif USE_AVX2
typedef __m256i vec_t;
typedef __m256i psqt_vec_t;
#define vec_load(a) _mm256_load_si256(a)
#define vec_store(a,b) _mm256_store_si256(a,b)
#define vec_add_16(a,b) _mm256_add_epi16(a,b)
#define vec_sub_16(a,b) _mm256_sub_epi16(a,b)
static constexpr IndexType kNumRegs = 16;
#define vec_load_psqt(a) _mm256_load_si256(a)
#define vec_store_psqt(a,b) _mm256_store_si256(a,b)
#define vec_add_psqt_32(a,b) _mm256_add_epi32(a,b)
#define vec_sub_psqt_32(a,b) _mm256_sub_epi32(a,b)
#define vec_zero_psqt() _mm256_setzero_si256()
#define NumRegistersSIMD 16
#elif USE_SSE2
typedef __m128i vec_t;
typedef __m128i psqt_vec_t;
#define vec_load(a) (*(a))
#define vec_store(a,b) *(a)=(b)
#define vec_add_16(a,b) _mm_add_epi16(a,b)
#define vec_sub_16(a,b) _mm_sub_epi16(a,b)
static constexpr IndexType kNumRegs = Is64Bit ? 16 : 8;
#define vec_load_psqt(a) (*(a))
#define vec_store_psqt(a,b) *(a)=(b)
#define vec_add_psqt_32(a,b) _mm_add_epi32(a,b)
#define vec_sub_psqt_32(a,b) _mm_sub_epi32(a,b)
#define vec_zero_psqt() _mm_setzero_si128()
#define NumRegistersSIMD (Is64Bit ? 16 : 8)
#elif USE_MMX
typedef __m64 vec_t;
typedef __m64 psqt_vec_t;
#define vec_load(a) (*(a))
#define vec_store(a,b) *(a)=(b)
#define vec_add_16(a,b) _mm_add_pi16(a,b)
#define vec_sub_16(a,b) _mm_sub_pi16(a,b)
static constexpr IndexType kNumRegs = 8;
#define vec_load_psqt(a) (*(a))
#define vec_store_psqt(a,b) *(a)=(b)
#define vec_add_psqt_32(a,b) _mm_add_pi32(a,b)
#define vec_sub_psqt_32(a,b) _mm_sub_pi32(a,b)
#define vec_zero_psqt() _mm_setzero_si64()
#define NumRegistersSIMD 8
#elif USE_NEON
typedef int16x8_t vec_t;
typedef int32x4_t psqt_vec_t;
#define vec_load(a) (*(a))
#define vec_store(a,b) *(a)=(b)
#define vec_add_16(a,b) vaddq_s16(a,b)
#define vec_sub_16(a,b) vsubq_s16(a,b)
static constexpr IndexType kNumRegs = 16;
#define vec_load_psqt(a) (*(a))
#define vec_store_psqt(a,b) *(a)=(b)
#define vec_add_psqt_32(a,b) vaddq_s32(a,b)
#define vec_sub_psqt_32(a,b) vsubq_s32(a,b)
#define vec_zero_psqt() psqt_vec_t{0}
#define NumRegistersSIMD 16
#else
#undef VECTOR
#endif
#ifdef VECTOR
// Compute optimal SIMD register count for feature transformer accumulation.
// We use __m* types as template arguments, which causes GCC to emit warnings
// about losing some attribute information. This is irrelevant to us as we
// only take their size, so the following pragma are harmless.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wignored-attributes"
template <typename SIMDRegisterType,
typename LaneType,
int NumLanes,
int MaxRegisters>
static constexpr int BestRegisterCount()
{
#define RegisterSize sizeof(SIMDRegisterType)
#define LaneSize sizeof(LaneType)
static_assert(RegisterSize >= LaneSize);
static_assert(MaxRegisters <= NumRegistersSIMD);
static_assert(MaxRegisters > 0);
static_assert(NumRegistersSIMD > 0);
static_assert(RegisterSize % LaneSize == 0);
static_assert((NumLanes * LaneSize) % RegisterSize == 0);
const int ideal = (NumLanes * LaneSize) / RegisterSize;
if (ideal <= MaxRegisters)
return ideal;
// Look for the largest divisor of the ideal register count that is smaller than MaxRegisters
for (int divisor = MaxRegisters; divisor > 1; --divisor)
if (ideal % divisor == 0)
return divisor;
return 1;
}
static constexpr int NumRegs = BestRegisterCount<vec_t, WeightType, TransformedFeatureDimensions, NumRegistersSIMD>();
static constexpr int NumPsqtRegs = BestRegisterCount<psqt_vec_t, PSQTWeightType, PSQTBuckets, NumRegistersSIMD>();
#pragma GCC diagnostic pop
#endif
// Input feature converter
class FeatureTransformer {
private:
// Number of output dimensions for one side
static constexpr IndexType kHalfDimensions = kTransformedFeatureDimensions;
static constexpr IndexType HalfDimensions = TransformedFeatureDimensions;
#ifdef VECTOR
static constexpr IndexType kTileHeight = kNumRegs * sizeof(vec_t) / 2;
static_assert(kHalfDimensions % kTileHeight == 0, "kTileHeight must divide kHalfDimensions");
static constexpr IndexType TileHeight = NumRegs * sizeof(vec_t) / 2;
static constexpr IndexType PsqtTileHeight = NumPsqtRegs * sizeof(psqt_vec_t) / 4;
static_assert(HalfDimensions % TileHeight == 0, "TileHeight must divide HalfDimensions");
static_assert(PSQTBuckets % PsqtTileHeight == 0, "PsqtTileHeight must divide PSQTBuckets");
#endif
public:
@ -96,174 +182,219 @@ namespace Eval::NNUE {
using OutputType = TransformedFeatureType;
// Number of input/output dimensions
static constexpr IndexType kInputDimensions = RawFeatures::kDimensions;
static constexpr IndexType kOutputDimensions = kHalfDimensions * 2;
static constexpr IndexType InputDimensions = FeatureSet::Dimensions;
static constexpr IndexType OutputDimensions = HalfDimensions * 2;
// Size of forward propagation buffer
static constexpr std::size_t kBufferSize =
kOutputDimensions * sizeof(OutputType);
static constexpr std::size_t BufferSize =
OutputDimensions * sizeof(OutputType);
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
return RawFeatures::kHashValue ^ kOutputDimensions;
static constexpr std::uint32_t get_hash_value() {
return FeatureSet::HashValue ^ OutputDimensions;
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
bool read_parameters(std::istream& stream) {
read_little_endian<BiasType >(stream, biases , HalfDimensions );
read_little_endian<WeightType >(stream, weights , HalfDimensions * InputDimensions);
read_little_endian<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
write_little_endian<BiasType >(stream, biases , HalfDimensions );
write_little_endian<WeightType >(stream, weights , HalfDimensions * InputDimensions);
write_little_endian<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
for (std::size_t i = 0; i < kHalfDimensions; ++i)
biases_[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < kHalfDimensions * kInputDimensions; ++i)
weights_[i] = read_little_endian<WeightType>(stream);
return !stream.fail();
}
// Convert input features
void Transform(const Position& pos, OutputType* output) const {
UpdateAccumulator(pos, WHITE);
UpdateAccumulator(pos, BLACK);
const auto& accumulation = pos.state()->accumulator.accumulation;
#if defined(USE_AVX512)
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth * 2);
static_assert(kHalfDimensions % (kSimdWidth * 2) == 0);
const __m512i kControl = _mm512_setr_epi64(0, 2, 4, 6, 1, 3, 5, 7);
const __m512i kZero = _mm512_setzero_si512();
#elif defined(USE_AVX2)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
constexpr int kControl = 0b11011000;
const __m256i kZero = _mm256_setzero_si256();
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
#ifdef USE_SSE41
const __m128i kZero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
const int8x8_t kZero = {0};
#endif
std::int32_t transform(const Position& pos, OutputType* output, int bucket) const {
update_accumulator(pos, WHITE);
update_accumulator(pos, BLACK);
const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()};
for (IndexType p = 0; p < 2; ++p) {
const IndexType offset = kHalfDimensions * p;
const auto& accumulation = pos.state()->accumulator.accumulation;
const auto& psqtAccumulation = pos.state()->accumulator.psqtAccumulation;
const auto psqt = (
psqtAccumulation[perspectives[0]][bucket]
- psqtAccumulation[perspectives[1]][bucket]
) / 2;
#if defined(USE_AVX512)
auto out = reinterpret_cast<__m512i*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m512i sum0 = _mm512_load_si512(
&reinterpret_cast<const __m512i*>(accumulation[perspectives[p]][0])[j * 2 + 0]);
__m512i sum1 = _mm512_load_si512(
&reinterpret_cast<const __m512i*>(accumulation[perspectives[p]][0])[j * 2 + 1]);
_mm512_store_si512(&out[j], _mm512_permutexvar_epi64(kControl,
_mm512_max_epi8(_mm512_packs_epi16(sum0, sum1), kZero)));
}
constexpr IndexType NumChunks = HalfDimensions / (SimdWidth * 2);
static_assert(HalfDimensions % (SimdWidth * 2) == 0);
const __m512i Control = _mm512_setr_epi64(0, 2, 4, 6, 1, 3, 5, 7);
const __m512i Zero = _mm512_setzero_si512();
for (IndexType p = 0; p < 2; ++p)
{
const IndexType offset = HalfDimensions * p;
auto out = reinterpret_cast<__m512i*>(&output[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
__m512i sum0 = _mm512_load_si512(&reinterpret_cast<const __m512i*>
(accumulation[perspectives[p]])[j * 2 + 0]);
__m512i sum1 = _mm512_load_si512(&reinterpret_cast<const __m512i*>
(accumulation[perspectives[p]])[j * 2 + 1]);
_mm512_store_si512(&out[j], _mm512_permutexvar_epi64(Control,
_mm512_max_epi8(_mm512_packs_epi16(sum0, sum1), Zero)));
}
}
return psqt;
#elif defined(USE_AVX2)
auto out = reinterpret_cast<__m256i*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m256i sum0 = _mm256_load_si256(
&reinterpret_cast<const __m256i*>(accumulation[perspectives[p]][0])[j * 2 + 0]);
__m256i sum1 = _mm256_load_si256(
&reinterpret_cast<const __m256i*>(accumulation[perspectives[p]][0])[j * 2 + 1]);
_mm256_store_si256(&out[j], _mm256_permute4x64_epi64(_mm256_max_epi8(
_mm256_packs_epi16(sum0, sum1), kZero), kControl));
}
constexpr IndexType NumChunks = HalfDimensions / SimdWidth;
constexpr int Control = 0b11011000;
const __m256i Zero = _mm256_setzero_si256();
for (IndexType p = 0; p < 2; ++p)
{
const IndexType offset = HalfDimensions * p;
auto out = reinterpret_cast<__m256i*>(&output[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
__m256i sum0 = _mm256_load_si256(&reinterpret_cast<const __m256i*>
(accumulation[perspectives[p]])[j * 2 + 0]);
__m256i sum1 = _mm256_load_si256(&reinterpret_cast<const __m256i*>
(accumulation[perspectives[p]])[j * 2 + 1]);
_mm256_store_si256(&out[j], _mm256_permute4x64_epi64(
_mm256_max_epi8(_mm256_packs_epi16(sum0, sum1), Zero), Control));
}
}
return psqt;
#elif defined(USE_SSE2)
auto out = reinterpret_cast<__m128i*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m128i sum0 = _mm_load_si128(&reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][0])[j * 2 + 0]);
__m128i sum1 = _mm_load_si128(&reinterpret_cast<const __m128i*>(
accumulation[perspectives[p]][0])[j * 2 + 1]);
const __m128i packedbytes = _mm_packs_epi16(sum0, sum1);
_mm_store_si128(&out[j],
#ifdef USE_SSE41
constexpr IndexType NumChunks = HalfDimensions / SimdWidth;
const __m128i Zero = _mm_setzero_si128();
#else
constexpr IndexType NumChunks = HalfDimensions / SimdWidth;
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, kZero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
for (IndexType p = 0; p < 2; ++p)
{
const IndexType offset = HalfDimensions * p;
auto out = reinterpret_cast<__m128i*>(&output[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
__m128i sum0 = _mm_load_si128(&reinterpret_cast<const __m128i*>
(accumulation[perspectives[p]])[j * 2 + 0]);
__m128i sum1 = _mm_load_si128(&reinterpret_cast<const __m128i*>
(accumulation[perspectives[p]])[j * 2 + 1]);
const __m128i packedbytes = _mm_packs_epi16(sum0, sum1);
);
}
#ifdef USE_SSE41
_mm_store_si128(&out[j], _mm_max_epi8(packedbytes, Zero));
#else
_mm_store_si128(&out[j], _mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s));
#endif
}
}
return psqt;
#elif defined(USE_MMX)
auto out = reinterpret_cast<__m64*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m64 sum0 = *(&reinterpret_cast<const __m64*>(
accumulation[perspectives[p]][0])[j * 2 + 0]);
__m64 sum1 = *(&reinterpret_cast<const __m64*>(
accumulation[perspectives[p]][0])[j * 2 + 1]);
const __m64 packedbytes = _mm_packs_pi16(sum0, sum1);
out[j] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
constexpr IndexType NumChunks = HalfDimensions / SimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
for (IndexType p = 0; p < 2; ++p)
{
const IndexType offset = HalfDimensions * p;
auto out = reinterpret_cast<__m64*>(&output[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
__m64 sum0 = *(&reinterpret_cast<const __m64*>(accumulation[perspectives[p]])[j * 2 + 0]);
__m64 sum1 = *(&reinterpret_cast<const __m64*>(accumulation[perspectives[p]])[j * 2 + 1]);
const __m64 packedbytes = _mm_packs_pi16(sum0, sum1);
out[j] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
}
_mm_empty();
return psqt;
#elif defined(USE_NEON)
const auto out = reinterpret_cast<int8x8_t*>(&output[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
int16x8_t sum = reinterpret_cast<const int16x8_t*>(
accumulation[perspectives[p]][0])[j];
out[j] = vmax_s8(vqmovn_s16(sum), kZero);
}
constexpr IndexType NumChunks = HalfDimensions / (SimdWidth / 2);
const int8x8_t Zero = {0};
for (IndexType p = 0; p < 2; ++p)
{
const IndexType offset = HalfDimensions * p;
const auto out = reinterpret_cast<int8x8_t*>(&output[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
int16x8_t sum = reinterpret_cast<const int16x8_t*>(accumulation[perspectives[p]])[j];
out[j] = vmax_s8(vqmovn_s16(sum), Zero);
}
}
return psqt;
#else
for (IndexType j = 0; j < kHalfDimensions; ++j) {
BiasType sum = accumulation[static_cast<int>(perspectives[p])][0][j];
output[offset + j] = static_cast<OutputType>(
std::max<int>(0, std::min<int>(127, sum)));
}
for (IndexType p = 0; p < 2; ++p)
{
const IndexType offset = HalfDimensions * p;
for (IndexType j = 0; j < HalfDimensions; ++j)
{
BiasType sum = accumulation[perspectives[p]][j];
output[offset + j] = static_cast<OutputType>(std::max<int>(0, std::min<int>(127, sum)));
}
}
return psqt;
#endif
}
#if defined(USE_MMX)
_mm_empty();
#endif
}
} // end of function transform()
private:
void UpdateAccumulator(const Position& pos, const Color c) const {
void update_accumulator(const Position& pos, const Color perspective) const {
// The size must be enough to contain the largest possible update.
// That might depend on the feature set and generally relies on the
// feature set's update cost calculation to be correct and never
// allow updates with more added/removed features than MaxActiveDimensions.
using IndexList = ValueList<IndexType, FeatureSet::MaxActiveDimensions>;
#ifdef VECTOR
// Gcc-10.2 unnecessarily spills AVX2 registers if this array
// is defined in the VECTOR code below, once in each branch
vec_t acc[kNumRegs];
vec_t acc[NumRegs];
psqt_vec_t psqt[NumPsqtRegs];
#endif
// Look for a usable accumulator of an earlier position. We keep track
// of the estimated gain in terms of features to be added/subtracted.
StateInfo *st = pos.state(), *next = nullptr;
int gain = pos.count<ALL_PIECES>() - 2;
while (st->accumulator.state[c] == EMPTY)
int gain = FeatureSet::refresh_cost(pos);
while (st->previous && !st->accumulator.computed[perspective])
{
auto& dp = st->dirtyPiece;
// The first condition tests whether an incremental update is
// possible at all: if this side's king has moved, it is not possible.
static_assert(std::is_same_v<RawFeatures::SortedTriggerSet,
Features::CompileTimeList<Features::TriggerEvent, Features::TriggerEvent::kFriendKingMoved>>,
"Current code assumes that only kFriendlyKingMoved refresh trigger is being used.");
if ( dp.piece[0] == make_piece(c, KING)
|| (gain -= dp.dirty_num + 1) < 0)
// This governs when a full feature refresh is needed and how many
// updates are better than just one full refresh.
if ( FeatureSet::requires_refresh(st, perspective)
|| (gain -= FeatureSet::update_cost(st) + 1) < 0)
break;
next = st;
st = st->previous;
}
if (st->accumulator.state[c] == COMPUTED)
if (st->accumulator.computed[perspective])
{
if (next == nullptr)
return;
@ -271,85 +402,129 @@ namespace Eval::NNUE {
// Update incrementally in two steps. First, we update the "next"
// accumulator. Then, we update the current accumulator (pos.state()).
// Gather all features to be updated. This code assumes HalfKP features
// only and doesn't support refresh triggers.
static_assert(std::is_same_v<Features::FeatureSet<Features::HalfKP<Features::Side::kFriend>>,
RawFeatures>);
Features::IndexList removed[2], added[2];
Features::HalfKP<Features::Side::kFriend>::AppendChangedIndices(pos,
next->dirtyPiece, c, &removed[0], &added[0]);
// Gather all features to be updated.
const Square ksq = pos.square<KING>(perspective);
IndexList removed[2], added[2];
FeatureSet::append_changed_indices(
ksq, next, perspective, removed[0], added[0]);
for (StateInfo *st2 = pos.state(); st2 != next; st2 = st2->previous)
Features::HalfKP<Features::Side::kFriend>::AppendChangedIndices(pos,
st2->dirtyPiece, c, &removed[1], &added[1]);
FeatureSet::append_changed_indices(
ksq, st2, perspective, removed[1], added[1]);
// Mark the accumulators as computed.
next->accumulator.state[c] = COMPUTED;
pos.state()->accumulator.state[c] = COMPUTED;
next->accumulator.computed[perspective] = true;
pos.state()->accumulator.computed[perspective] = true;
// Now update the accumulators listed in info[], where the last element is a sentinel.
StateInfo *info[3] =
// Now update the accumulators listed in states_to_update[], where the last element is a sentinel.
StateInfo *states_to_update[3] =
{ next, next == pos.state() ? nullptr : pos.state(), nullptr };
#ifdef VECTOR
for (IndexType j = 0; j < kHalfDimensions / kTileHeight; ++j)
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
{
// Load accumulator
auto accTile = reinterpret_cast<vec_t*>(
&st->accumulator.accumulation[c][0][j * kTileHeight]);
for (IndexType k = 0; k < kNumRegs; ++k)
&st->accumulator.accumulation[perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_load(&accTile[k]);
for (IndexType i = 0; info[i]; ++i)
for (IndexType i = 0; states_to_update[i]; ++i)
{
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = kHalfDimensions * index + j * kTileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights_[offset]);
for (IndexType k = 0; k < kNumRegs; ++k)
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_sub_16(acc[k], column[k]);
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = kHalfDimensions * index + j * kTileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights_[offset]);
for (IndexType k = 0; k < kNumRegs; ++k)
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_add_16(acc[k], column[k]);
}
// Store accumulator
accTile = reinterpret_cast<vec_t*>(
&info[i]->accumulator.accumulation[c][0][j * kTileHeight]);
for (IndexType k = 0; k < kNumRegs; ++k)
&states_to_update[i]->accumulator.accumulation[perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_store(&accTile[k], acc[k]);
}
}
#else
for (IndexType i = 0; info[i]; ++i)
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
{
std::memcpy(info[i]->accumulator.accumulation[c][0],
st->accumulator.accumulation[c][0],
kHalfDimensions * sizeof(BiasType));
st = info[i];
// Load accumulator
auto accTilePsqt = reinterpret_cast<psqt_vec_t*>(
&st->accumulator.psqtAccumulation[perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_load_psqt(&accTilePsqt[k]);
for (IndexType i = 0; states_to_update[i]; ++i)
{
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
}
// Store accumulator
accTilePsqt = reinterpret_cast<psqt_vec_t*>(
&states_to_update[i]->accumulator.psqtAccumulation[perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
vec_store_psqt(&accTilePsqt[k], psqt[k]);
}
}
#else
for (IndexType i = 0; states_to_update[i]; ++i)
{
std::memcpy(states_to_update[i]->accumulator.accumulation[perspective],
st->accumulator.accumulation[perspective],
HalfDimensions * sizeof(BiasType));
for (std::size_t k = 0; k < PSQTBuckets; ++k)
states_to_update[i]->accumulator.psqtAccumulation[perspective][k] = st->accumulator.psqtAccumulation[perspective][k];
st = states_to_update[i];
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = kHalfDimensions * index;
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < kHalfDimensions; ++j)
st->accumulator.accumulation[c][0][j] -= weights_[offset + j];
for (IndexType j = 0; j < HalfDimensions; ++j)
st->accumulator.accumulation[perspective][j] -= weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
st->accumulator.psqtAccumulation[perspective][k] -= psqtWeights[index * PSQTBuckets + k];
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = kHalfDimensions * index;
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < kHalfDimensions; ++j)
st->accumulator.accumulation[c][0][j] += weights_[offset + j];
for (IndexType j = 0; j < HalfDimensions; ++j)
st->accumulator.accumulation[perspective][j] += weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
st->accumulator.psqtAccumulation[perspective][k] += psqtWeights[index * PSQTBuckets + k];
}
}
#endif
@ -358,43 +533,69 @@ namespace Eval::NNUE {
{
// Refresh the accumulator
auto& accumulator = pos.state()->accumulator;
accumulator.state[c] = COMPUTED;
Features::IndexList active;
Features::HalfKP<Features::Side::kFriend>::AppendActiveIndices(pos, c, &active);
accumulator.computed[perspective] = true;
IndexList active;
FeatureSet::append_active_indices(pos, perspective, active);
#ifdef VECTOR
for (IndexType j = 0; j < kHalfDimensions / kTileHeight; ++j)
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
{
auto biasesTile = reinterpret_cast<const vec_t*>(
&biases_[j * kTileHeight]);
for (IndexType k = 0; k < kNumRegs; ++k)
&biases[j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasesTile[k];
for (const auto index : active)
{
const IndexType offset = kHalfDimensions * index + j * kTileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights_[offset]);
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (unsigned k = 0; k < kNumRegs; ++k)
for (unsigned k = 0; k < NumRegs; ++k)
acc[k] = vec_add_16(acc[k], column[k]);
}
auto accTile = reinterpret_cast<vec_t*>(
&accumulator.accumulation[c][0][j * kTileHeight]);
for (unsigned k = 0; k < kNumRegs; k++)
&accumulator.accumulation[perspective][j * TileHeight]);
for (unsigned k = 0; k < NumRegs; k++)
vec_store(&accTile[k], acc[k]);
}
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
{
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_zero_psqt();
for (const auto index : active)
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
}
auto accTilePsqt = reinterpret_cast<psqt_vec_t*>(
&accumulator.psqtAccumulation[perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
vec_store_psqt(&accTilePsqt[k], psqt[k]);
}
#else
std::memcpy(accumulator.accumulation[c][0], biases_,
kHalfDimensions * sizeof(BiasType));
std::memcpy(accumulator.accumulation[perspective], biases,
HalfDimensions * sizeof(BiasType));
for (std::size_t k = 0; k < PSQTBuckets; ++k)
accumulator.psqtAccumulation[perspective][k] = 0;
for (const auto index : active)
{
const IndexType offset = kHalfDimensions * index;
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < kHalfDimensions; ++j)
accumulator.accumulation[c][0][j] += weights_[offset + j];
for (IndexType j = 0; j < HalfDimensions; ++j)
accumulator.accumulation[perspective][j] += weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
accumulator.psqtAccumulation[perspective][k] += psqtWeights[index * PSQTBuckets + k];
}
#endif
}
@ -404,14 +605,11 @@ namespace Eval::NNUE {
#endif
}
using BiasType = std::int16_t;
using WeightType = std::int16_t;
alignas(kCacheLineSize) BiasType biases_[kHalfDimensions];
alignas(kCacheLineSize)
WeightType weights_[kHalfDimensions * kInputDimensions];
alignas(CacheLineSize) BiasType biases[HalfDimensions];
alignas(CacheLineSize) WeightType weights[HalfDimensions * InputDimensions];
alignas(CacheLineSize) PSQTWeightType psqtWeights[InputDimensions * PSQTBuckets];
};
} // namespace Eval::NNUE
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED

View File

@ -24,6 +24,8 @@
#include "position.h"
#include "thread.h"
namespace Stockfish {
namespace {
#define V Value
@ -107,8 +109,9 @@ namespace {
e->blockedCount += popcount(shift<Up>(ourPawns) & (theirPawns | doubleAttackThem));
// Loop through all pawns of the current color and score each pawn
while (b) {
s = pop_lsb(&b);
while (b)
{
s = pop_lsb(b);
assert(pos.piece_on(s) == make_piece(Us, PAWN));
@ -288,7 +291,7 @@ Score Entry::do_king_safety(const Position& pos) {
if (pawns & attacks_bb<KING>(ksq))
minPawnDist = 1;
else while (pawns)
minPawnDist = std::min(minPawnDist, distance(ksq, pop_lsb(&pawns)));
minPawnDist = std::min(minPawnDist, distance(ksq, pop_lsb(pawns)));
return shelter - make_score(0, 16 * minPawnDist);
}
@ -298,3 +301,5 @@ template Score Entry::do_king_safety<WHITE>(const Position& pos);
template Score Entry::do_king_safety<BLACK>(const Position& pos);
} // namespace Pawns
} // namespace Stockfish

View File

@ -23,7 +23,7 @@
#include "position.h"
#include "types.h"
namespace Pawns {
namespace Stockfish::Pawns {
/// Pawns::Entry contains various information about a pawn structure. A lookup
/// to the pawn hash table (performed by calling the probe function) returns a
@ -65,6 +65,6 @@ typedef HashTable<Entry, 131072> Table;
Entry* probe(const Position& pos);
} // namespace Pawns
} // namespace Stockfish::Pawns
#endif // #ifndef PAWNS_H_INCLUDED

View File

@ -34,6 +34,8 @@
using std::string;
namespace Stockfish {
namespace Zobrist {
Key psq[PIECE_NB][SQUARE_NB];
@ -71,13 +73,13 @@ std::ostream& operator<<(std::ostream& os, const Position& pos) {
<< std::setfill(' ') << std::dec << "\nCheckers: ";
for (Bitboard b = pos.checkers(); b; )
os << UCI::square(pop_lsb(&b)) << " ";
os << UCI::square(pop_lsb(b)) << " ";
if ( int(Tablebases::MaxCardinality) >= popcount(pos.pieces())
&& !pos.can_castle(ANY_CASTLING))
{
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::kCacheLineSize);
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
Position p;
p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread());
@ -249,8 +251,6 @@ Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Th
set_castling_right(c, rsq);
}
set_state(st);
// 4. En passant square.
// Ignore if square is invalid or not on side to move relative rank 6.
bool enpassant = false;
@ -264,24 +264,12 @@ Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Th
// a) side to move have a pawn threatening epSquare
// b) there is an enemy pawn in front of epSquare
// c) there is no piece on epSquare or behind epSquare
// d) enemy pawn didn't block a check of its own color by moving forward
enpassant = pawn_attacks_bb(~sideToMove, st->epSquare) & pieces(sideToMove, PAWN)
&& (pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove)))
&& !(pieces() & (st->epSquare | (st->epSquare + pawn_push(sideToMove))))
&& ( file_of(square<KING>(sideToMove)) == file_of(st->epSquare)
|| !(blockers_for_king(sideToMove) & (st->epSquare + pawn_push(~sideToMove))));
&& !(pieces() & (st->epSquare | (st->epSquare + pawn_push(sideToMove))));
}
// It's necessary for st->previous to be intialized in this way because legality check relies on its existence
if (enpassant) {
st->previous = new StateInfo();
remove_piece(st->epSquare - pawn_push(sideToMove));
st->previous->checkersBB = attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove);
st->previous->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), st->previous->pinners[BLACK]);
st->previous->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), st->previous->pinners[WHITE]);
put_piece(make_piece(~sideToMove, PAWN), st->epSquare - pawn_push(sideToMove));
}
else
if (!enpassant)
st->epSquare = SQ_NONE;
// 5-6. Halfmove clock and fullmove number
@ -293,8 +281,7 @@ Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Th
chess960 = isChess960;
thisThread = th;
st->accumulator.state[WHITE] = Eval::NNUE::INIT;
st->accumulator.state[BLACK] = Eval::NNUE::INIT;
set_state(st);
assert(pos_is_ok());
@ -318,7 +305,7 @@ void Position::set_castling_right(Color c, Square rfrom) {
Square kto = relative_square(c, cr & KING_SIDE ? SQ_G1 : SQ_C1);
Square rto = relative_square(c, cr & KING_SIDE ? SQ_F1 : SQ_D1);
castlingPath[cr] = (between_bb(rfrom, rto) | between_bb(kfrom, kto) | rto | kto)
castlingPath[cr] = (between_bb(rfrom, rto) | between_bb(kfrom, kto))
& ~(kfrom | rfrom);
}
@ -357,7 +344,7 @@ void Position::set_state(StateInfo* si) const {
for (Bitboard b = pieces(); b; )
{
Square s = pop_lsb(&b);
Square s = pop_lsb(b);
Piece pc = piece_on(s);
si->key ^= Zobrist::psq[pc][s];
@ -408,7 +395,7 @@ Position& Position::set(const string& code, Color c, StateInfo* si) {
/// Position::fen() returns a FEN representation of the position. In case of
/// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function.
const string Position::fen() const {
string Position::fen() const {
int emptyCnt;
std::ostringstream ss;
@ -474,7 +461,7 @@ Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners
while (snipers)
{
Square sniperSq = pop_lsb(&snipers);
Square sniperSq = pop_lsb(snipers);
Bitboard b = between_bb(s, sniperSq) & occupancy;
if (b && !more_than_one(b))
@ -515,11 +502,23 @@ bool Position::legal(Move m) const {
assert(color_of(moved_piece(m)) == us);
assert(piece_on(square<KING>(us)) == make_piece(us, KING));
// st->previous->blockersForKing consider capsq as empty.
// If pinned, it has to move along the king ray.
// En passant captures are a tricky special case. Because they are rather
// uncommon, we do it simply by testing whether the king is attacked after
// the move is made.
if (type_of(m) == EN_PASSANT)
return !(st->previous->blockersForKing[sideToMove] & from)
|| aligned(from, to, square<KING>(us));
{
Square ksq = square<KING>(us);
Square capsq = to - pawn_push(us);
Bitboard occupied = (pieces() ^ from ^ capsq) | to;
assert(to == ep_square());
assert(moved_piece(m) == make_piece(us, PAWN));
assert(piece_on(capsq) == make_piece(~us, PAWN));
assert(piece_on(to) == NO_PIECE);
return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK))
&& !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP));
}
// Castling moves generation does not check if the castling path is clear of
// enemy attacks, it is delayed at a later time: now!
@ -542,7 +541,7 @@ bool Position::legal(Move m) const {
// If the moving piece is a king, check whether the destination square is
// attacked by the opponent.
if (type_of(piece_on(from)) == KING)
return !(attackers_to(to) & pieces(~us));
return !(attackers_to(to, pieces() ^ from) & pieces(~us));
// A non-king move is legal if and only if it is not pinned or it
// is moving along the ray towards or away from the king.
@ -611,8 +610,8 @@ bool Position::pseudo_legal(const Move m) const {
if (more_than_one(checkers()))
return false;
// Our move must be a blocking evasion or a capture of the checking piece
if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to))
// Our move must be a blocking interposition or a capture of the checking piece
if (!(between_bb(square<KING>(us), lsb(checkers())) & to))
return false;
}
// In case of king moves under check we have to remove king so as to catch
@ -652,15 +651,18 @@ bool Position::gives_check(Move m) const {
case PROMOTION:
return attacks_bb(promotion_type(m), to, pieces() ^ from) & square<KING>(~sideToMove);
// The double-pushed pawn blocked a check? En Passant will remove the blocker.
// The only discovery check that wasn't handle is through capsq and fromsq
// So the King must be in the same rank as fromsq to consider this possibility.
// st->previous->blockersForKing consider capsq as empty.
// En passant capture with check? We have already handled the case
// of direct checks and ordinary discovered check, so the only case we
// need to handle is the unusual case of a discovered check through
// the captured pawn.
case EN_PASSANT:
return st->previous->checkersBB
|| ( rank_of(square<KING>(~sideToMove)) == rank_of(from)
&& st->previous->blockersForKing[~sideToMove] & from);
{
Square capsq = make_square(file_of(to), rank_of(from));
Bitboard b = (pieces() ^ from ^ capsq) | to;
return (attacks_bb< ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK))
| (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP));
}
default: //CASTLING
{
// Castling is encoded as 'king captures the rook'
@ -700,8 +702,8 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
++st->pliesFromNull;
// Used by NNUE
st->accumulator.state[WHITE] = Eval::NNUE::EMPTY;
st->accumulator.state[BLACK] = Eval::NNUE::EMPTY;
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
auto& dp = st->dirtyPiece;
dp.dirty_num = 1;
@ -986,7 +988,7 @@ void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Squ
}
/// Position::do(undo)_null_move() is used to do(undo) a "null move": it flips
/// Position::do_null_move() is used to do a "null move": it flips
/// the side to move without executing any move on the board.
void Position::do_null_move(StateInfo& newSt) {
@ -1001,8 +1003,8 @@ void Position::do_null_move(StateInfo& newSt) {
st->dirtyPiece.dirty_num = 0;
st->dirtyPiece.piece[0] = NO_PIECE; // Avoid checks in UpdateAccumulator()
st->accumulator.state[WHITE] = Eval::NNUE::EMPTY;
st->accumulator.state[BLACK] = Eval::NNUE::EMPTY;
st->accumulator.computed[WHITE] = false;
st->accumulator.computed[BLACK] = false;
if (st->epSquare != SQ_NONE)
{
@ -1025,6 +1027,9 @@ void Position::do_null_move(StateInfo& newSt) {
assert(pos_is_ok());
}
/// Position::undo_null_move() must be used to undo a "null move"
void Position::undo_null_move() {
assert(!checkers());
@ -1090,8 +1095,8 @@ bool Position::see_ge(Move m, Value threshold) const {
if (!(stmAttackers = attackers & pieces(stm)))
break;
// Don't allow pinned pieces to attack (except the king) as long as
// there are pinners on their original square.
// Don't allow pinned pieces to attack as long as there are
// pinners on their original square.
if (pinners(~stm) & occupied)
stmAttackers &= ~blockers_for_king(stm);
@ -1107,7 +1112,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = PawnValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
attackers |= attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN);
}
@ -1116,7 +1121,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = KnightValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
}
else if ((bb = stmAttackers & pieces(BISHOP)))
@ -1124,7 +1129,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = BishopValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
attackers |= attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN);
}
@ -1133,7 +1138,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = RookValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
attackers |= attacks_bb<ROOK>(to, occupied) & pieces(ROOK, QUEEN);
}
@ -1142,7 +1147,7 @@ bool Position::see_ge(Move m, Value threshold) const {
if ((swap = QueenValueMg - swap) < res)
break;
occupied ^= lsb(bb);
occupied ^= least_significant_square_bb(bb);
attackers |= (attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN))
| (attacks_bb<ROOK >(to, occupied) & pieces(ROOK , QUEEN));
}
@ -1216,7 +1221,7 @@ bool Position::has_game_cycle(int ply) const {
Square s1 = from_sq(move);
Square s2 = to_sq(move);
if (!(between_bb(s1, s2) & pieces()))
if (!((between_bb(s1, s2) ^ s2) & pieces()))
{
if (ply > i)
return true;
@ -1313,7 +1318,7 @@ bool Position::pos_is_ok() const {
assert(0 && "pos_is_ok: Bitboards");
StateInfo si = *st;
ASSERT_ALIGNED(&si, Eval::NNUE::kCacheLineSize);
ASSERT_ALIGNED(&si, Eval::NNUE::CacheLineSize);
set_state(&si);
if (std::memcmp(&si, st, sizeof(StateInfo)))
@ -1338,3 +1343,5 @@ bool Position::pos_is_ok() const {
return true;
}
} // namespace Stockfish

View File

@ -31,6 +31,7 @@
#include "nnue/nnue_accumulator.h"
namespace Stockfish {
/// StateInfo struct stores information needed to restore a Position object to
/// its previous state when we retract a move. Whenever a move is made on the
@ -50,11 +51,11 @@ struct StateInfo {
// Not copied when making a move (will be recomputed anyhow)
Key key;
Bitboard checkersBB;
Piece capturedPiece;
StateInfo* previous;
Bitboard blockersForKing[COLOR_NB];
Bitboard pinners[COLOR_NB];
Bitboard checkSquares[PIECE_TYPE_NB];
Piece capturedPiece;
int repetition;
// Used by NNUE
@ -87,7 +88,7 @@ public:
// FEN string input/output
Position& set(const std::string& fenStr, bool isChess960, StateInfo* si, Thread* th);
Position& set(const std::string& code, Color c, StateInfo* si);
const std::string fen() const;
std::string fen() const;
// Position representation
Bitboard pieces(PieceType pt) const;
@ -114,7 +115,6 @@ public:
Bitboard blockers_for_king(Color c) const;
Bitboard check_squares(PieceType pt) const;
Bitboard pinners(Color c) const;
bool is_discovered_check_on_king(Color c, Move m) const;
// Attacks to/from a given square
Bitboard attackers_to(Square s) const;
@ -127,7 +127,6 @@ public:
bool capture(Move m) const;
bool capture_or_promotion(Move m) const;
bool gives_check(Move m) const;
bool advanced_pawn_push(Move m) const;
Piece moved_piece(Move m) const;
Piece captured_piece() const;
@ -172,6 +171,9 @@ public:
// Used by NNUE
StateInfo* state() const;
void put_piece(Piece pc, Square s);
void remove_piece(Square s);
private:
// Initialization helpers (used while setting up a position)
void set_castling_right(Color c, Square rfrom);
@ -179,8 +181,6 @@ private:
void set_check_info(StateInfo* si) const;
// Other helpers
void put_piece(Piece pc, Square s);
void remove_piece(Square s);
void move_piece(Square from, Square to);
template<bool Do>
void do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto);
@ -193,11 +193,11 @@ private:
int castlingRightsMask[SQUARE_NB];
Square castlingRookSquare[CASTLING_RIGHT_NB];
Bitboard castlingPath[CASTLING_RIGHT_NB];
Thread* thisThread;
StateInfo* st;
int gamePly;
Color sideToMove;
Score psq;
Thread* thisThread;
StateInfo* st;
bool chess960;
};
@ -301,19 +301,10 @@ inline Bitboard Position::check_squares(PieceType pt) const {
return st->checkSquares[pt];
}
inline bool Position::is_discovered_check_on_king(Color c, Move m) const {
return st->blockersForKing[c] & from_sq(m);
}
inline bool Position::pawn_passed(Color c, Square s) const {
return !(pieces(~c, PAWN) & passed_pawn_span(c, s));
}
inline bool Position::advanced_pawn_push(Move m) const {
return type_of(moved_piece(m)) == PAWN
&& relative_rank(sideToMove, to_sq(m)) > RANK_5;
}
inline int Position::pawns_on_same_color_squares(Color c, Square s) const {
return popcount(pieces(c, PAWN) & ((DarkSquares & s) ? DarkSquares : ~DarkSquares));
}
@ -396,7 +387,7 @@ inline void Position::remove_piece(Square s) {
byTypeBB[ALL_PIECES] ^= s;
byTypeBB[type_of(pc)] ^= s;
byColorBB[color_of(pc)] ^= s;
/* board[s] = NO_PIECE; Not needed, overwritten by the capturing one */
board[s] = NO_PIECE;
pieceCount[pc]--;
pieceCount[make_piece(color_of(pc), ALL_PIECES)]--;
psq -= PSQT::psq[pc][s];
@ -423,4 +414,6 @@ inline StateInfo* Position::state() const {
return st;
}
} // namespace Stockfish
#endif // #ifndef POSITION_H_INCLUDED

View File

@ -24,6 +24,7 @@
#include "bitboard.h"
#include "types.h"
namespace Stockfish {
namespace
{
@ -126,3 +127,5 @@ void init() {
}
} // namespace PSQT
} // namespace Stockfish

View File

@ -24,7 +24,7 @@
#include "types.h"
namespace PSQT
namespace Stockfish::PSQT
{
extern Score psq[PIECE_NB][SQUARE_NB];
@ -32,7 +32,7 @@ extern Score psq[PIECE_NB][SQUARE_NB];
// Fill psqt array from a set of internally linked parameters
extern void init();
} // namespace PSQT
} // namespace Stockfish::PSQT
#endif // PSQT_H_INCLUDED

View File

@ -35,6 +35,8 @@
#include "uci.h"
#include "syzygy/tbprobe.h"
namespace Stockfish {
namespace Search {
LimitsType Limits;
@ -57,14 +59,14 @@ using namespace Search;
namespace {
// Different node types, used as a template parameter
enum NodeType { NonPV, PV };
enum NodeType { NonPV, PV, Root };
constexpr uint64_t TtHitAverageWindow = 4096;
constexpr uint64_t TtHitAverageResolution = 1024;
// Futility margin
Value futility_margin(Depth d, bool improving) {
return Value(234 * (d - improving));
return Value(214 * (d - improving));
}
// Reductions lookup table, initialized at startup
@ -72,7 +74,7 @@ namespace {
Depth reduction(bool i, Depth d, int mn) {
int r = Reductions[d] * Reductions[mn];
return (r + 503) / 1024 + (!i && r > 915);
return (r + 534) / 1024 + (!i && r > 904);
}
constexpr int futility_move_count(bool improving, Depth depth) {
@ -81,7 +83,7 @@ namespace {
// History and stats update bonus, based on depth
int stat_bonus(Depth d) {
return d > 14 ? 66 : 6 * d * d + 231 * d - 206;
return d > 14 ? 73 : 6 * d * d + 229 * d - 215;
}
// Add a small random component to draw evaluations to avoid 3-fold blindness
@ -100,53 +102,10 @@ namespace {
Move best = MOVE_NONE;
};
// Breadcrumbs are used to mark nodes as being searched by a given thread
struct Breadcrumb {
std::atomic<Thread*> thread;
std::atomic<Key> key;
};
std::array<Breadcrumb, 1024> breadcrumbs;
// ThreadHolding structure keeps track of which thread left breadcrumbs at the given
// node for potential reductions. A free node will be marked upon entering the moves
// loop by the constructor, and unmarked upon leaving that loop by the destructor.
struct ThreadHolding {
explicit ThreadHolding(Thread* thisThread, Key posKey, int ply) {
location = ply < 8 ? &breadcrumbs[posKey & (breadcrumbs.size() - 1)] : nullptr;
otherThread = false;
owning = false;
if (location)
{
// See if another already marked this location, if not, mark it ourselves
Thread* tmp = (*location).thread.load(std::memory_order_relaxed);
if (tmp == nullptr)
{
(*location).thread.store(thisThread, std::memory_order_relaxed);
(*location).key.store(posKey, std::memory_order_relaxed);
owning = true;
}
else if ( tmp != thisThread
&& (*location).key.load(std::memory_order_relaxed) == posKey)
otherThread = true;
}
}
~ThreadHolding() {
if (owning) // Free the marked location
(*location).thread.store(nullptr, std::memory_order_relaxed);
}
bool marked() { return otherThread; }
private:
Breadcrumb* location;
bool otherThread, owning;
};
template <NodeType NT>
template <NodeType nodeType>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
template <NodeType NT>
template <NodeType nodeType>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = 0);
Value value_to_tt(Value v, int ply);
@ -163,7 +122,7 @@ namespace {
uint64_t perft(Position& pos, Depth depth) {
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::kCacheLineSize);
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
uint64_t cnt, nodes = 0;
const bool leaf = (depth == 2);
@ -193,7 +152,7 @@ namespace {
void Search::init() {
for (int i = 1; i < MAX_MOVES; ++i)
Reductions[i] = int((21.3 + 2 * std::log(Threads.size())) * std::log(i + 0.25 * std::log(i)));
Reductions[i] = int(21.9 * std::log(i));
}
@ -294,7 +253,7 @@ void Thread::search() {
// To allow access to (ss-7) up to (ss+2), the stack must be oversized.
// The former is needed to allow update_continuation_histories(ss-1, ...),
// which accesses its argument at ss-6, also near the root.
// The latter is needed for statScores and killer initialization.
// The latter is needed for statScore and killer initialization.
Stack stack[MAX_PLY+10], *ss = stack+7;
Move pv[MAX_PLY+1];
Value bestValue, alpha, beta, delta;
@ -309,6 +268,9 @@ void Thread::search() {
for (int i = 7; i > 0; i--)
(ss-i)->continuationHistory = &this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel
for (int i = 0; i <= MAX_PLY + 2; ++i)
(ss+i)->ply = i;
ss->pv = pv;
bestValue = delta = alpha = -VALUE_INFINITE;
@ -350,19 +312,7 @@ void Thread::search() {
multiPV = std::min(multiPV, rootMoves.size());
ttHitAverage = TtHitAverageWindow * TtHitAverageResolution / 2;
int ct = int(Options["Contempt"]) * PawnValueEg / 100; // From centipawns
// In analysis mode, adjust contempt in accordance with user preference
if (Limits.infinite || Options["UCI_AnalyseMode"])
ct = Options["Analysis Contempt"] == "Off" ? 0
: Options["Analysis Contempt"] == "Both" ? ct
: Options["Analysis Contempt"] == "White" && us == BLACK ? -ct
: Options["Analysis Contempt"] == "Black" && us == WHITE ? -ct
: ct;
// Evaluation score is from the white point of view
contempt = (us == WHITE ? make_score(ct, ct / 2)
: -make_score(ct, ct / 2));
trend = SCORE_ZERO;
int searchAgainCounter = 0;
@ -408,21 +358,21 @@ void Thread::search() {
alpha = std::max(prev - delta,-VALUE_INFINITE);
beta = std::min(prev + delta, VALUE_INFINITE);
// Adjust contempt based on root move's previousScore (dynamic contempt)
int dct = ct + (113 - ct / 2) * prev / (abs(prev) + 147);
// Adjust trend based on root move's previousScore (dynamic contempt)
int tr = 113 * prev / (abs(prev) + 147);
contempt = (us == WHITE ? make_score(dct, dct / 2)
: -make_score(dct, dct / 2));
trend = (us == WHITE ? make_score(tr, tr / 2)
: -make_score(tr, tr / 2));
}
// Start with a small aspiration window and, in the case of a fail
// high/low, re-search with a bigger window until we don't fail
// high/low anymore.
failedHighCnt = 0;
int failedHighCnt = 0;
while (true)
{
Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt - searchAgainCounter);
bestValue = ::search<PV>(rootPos, ss, alpha, beta, adjustedDepth, false);
bestValue = Stockfish::search<Root>(rootPos, ss, alpha, beta, adjustedDepth, false);
// Bring the best move to the front. It is critical that sorting
// is done with a stable algorithm because all the values but the
@ -518,8 +468,8 @@ void Thread::search() {
totBestMoveChanges += th->bestMoveChanges;
th->bestMoveChanges = 0;
}
double bestMoveInstability = 1 + 2 * totBestMoveChanges / Threads.size();
double bestMoveInstability = 1.073 + std::max(1.0, 2.25 - 9.9 / rootDepth)
* totBestMoveChanges / Threads.size();
double totalTime = Time.optimum() * fallingEval * reduction * bestMoveInstability;
// Cap used time in case of a single legal move for a better viewer experience in tournaments
@ -565,18 +515,18 @@ namespace {
// search<>() is the main search function for both PV and non-PV nodes
template <NodeType NT>
template <NodeType nodeType>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
constexpr bool PvNode = NT == PV;
const bool rootNode = PvNode && ss->ply == 0;
constexpr bool PvNode = nodeType != NonPV;
constexpr bool rootNode = nodeType == Root;
const Depth maxNextDepth = rootNode ? depth : depth + 1;
// Check if we have an upcoming move which draws by repetition, or
// if the opponent had an alternative move earlier to this position.
if ( pos.rule50_count() >= 3
if ( !rootNode
&& pos.rule50_count() >= 3
&& alpha < VALUE_DRAW
&& !rootNode
&& pos.has_game_cycle(ss->ply))
{
alpha = value_draw(pos.this_thread());
@ -586,7 +536,7 @@ namespace {
// Dive into quiescence search when the depth reaches zero
if (depth <= 0)
return qsearch<NT>(pos, ss, alpha, beta);
return qsearch<PvNode ? PV : NonPV>(pos, ss, alpha, beta);
assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
@ -595,14 +545,14 @@ namespace {
Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64];
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::kCacheLineSize);
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
TTEntry* tte;
Key posKey;
Move ttMove, move, excludedMove, bestMove;
Depth extension, newDepth;
Value bestValue, value, ttValue, eval, maxValue, probCutBeta;
bool formerPv, givesCheck, improving, didLMR, priorCapture;
bool givesCheck, improving, didLMR, priorCapture;
bool captureOrPromotion, doFullDepthSearch, moveCountPruning,
ttCapture, singularQuietLMR;
Piece movedPiece;
@ -610,12 +560,12 @@ namespace {
// Step 1. Initialize node
Thread* thisThread = pos.this_thread();
ss->inCheck = pos.checkers();
priorCapture = pos.captured_piece();
Color us = pos.side_to_move();
moveCount = captureCount = quietCount = ss->moveCount = 0;
bestValue = -VALUE_INFINITE;
maxValue = VALUE_INFINITE;
ss->inCheck = pos.checkers();
priorCapture = pos.captured_piece();
Color us = pos.side_to_move();
moveCount = captureCount = quietCount = ss->moveCount = 0;
bestValue = -VALUE_INFINITE;
maxValue = VALUE_INFINITE;
// Check for the available remaining time
if (thisThread == Threads.main())
@ -648,11 +598,11 @@ namespace {
assert(0 <= ss->ply && ss->ply < MAX_PLY);
(ss+1)->ply = ss->ply + 1;
(ss+1)->ttPv = false;
(ss+1)->ttPv = false;
(ss+1)->excludedMove = bestMove = MOVE_NONE;
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
Square prevSq = to_sq((ss-1)->currentMove);
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
ss->doubleExtensions = (ss-1)->doubleExtensions;
Square prevSq = to_sq((ss-1)->currentMove);
// Initialize statScore to zero for the grandchildren of the current position.
// So statScore is shared between all grandchildren and only the first grandchild
@ -673,7 +623,6 @@ namespace {
: ss->ttHit ? tte->move() : MOVE_NONE;
if (!excludedMove)
ss->ttPv = PvNode || (ss->ttHit && tte->is_pv());
formerPv = ss->ttPv && !PvNode;
// Update low ply history for previous move if we are near root and position is or has been in PV
if ( ss->ttPv
@ -808,7 +757,7 @@ namespace {
if ((ss-1)->currentMove != MOVE_NULL)
ss->staticEval = eval = evaluate(pos);
else
ss->staticEval = eval = -(ss-1)->staticEval + 2 * Tempo;
ss->staticEval = eval = -(ss-1)->staticEval;
// Save static evaluation into transposition table
tte->save(posKey, VALUE_NONE, ss->ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval);
@ -817,7 +766,7 @@ namespace {
// Use static evaluation difference to improve quiet move ordering
if (is_ok((ss-1)->currentMove) && !(ss-1)->inCheck && !priorCapture)
{
int bonus = std::clamp(-depth * 4 * int((ss-1)->staticEval + ss->staticEval - 2 * Tempo), -1000, 1000);
int bonus = std::clamp(-depth * 4 * int((ss-1)->staticEval + ss->staticEval), -1000, 1000);
thisThread->mainHistory[~us][from_to((ss-1)->currentMove)] << bonus;
}
@ -839,10 +788,10 @@ namespace {
// Step 8. Null move search with verification search (~40 Elo)
if ( !PvNode
&& (ss-1)->currentMove != MOVE_NULL
&& (ss-1)->statScore < 22661
&& (ss-1)->statScore < 23767
&& eval >= beta
&& eval >= ss->staticEval
&& ss->staticEval >= beta - 24 * depth - 34 * improving + 162 * ss->ttPv + 159
&& ss->staticEval >= beta - 20 * depth - 22 * improving + 168 * ss->ttPv + 159
&& !excludedMove
&& pos.non_pawn_material(us)
&& (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor))
@ -850,7 +799,7 @@ namespace {
assert(eval - beta >= 0);
// Null move dynamic reduction based on depth and value
Depth R = (1062 + 68 * depth) / 256 + std::min(int(eval - beta) / 190, 3);
Depth R = (1090 + 81 * depth) / 256 + std::min(int(eval - beta) / 205, 3);
ss->currentMove = MOVE_NULL;
ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0];
@ -888,7 +837,7 @@ namespace {
probCutBeta = beta + 209 - 44 * improving;
// Step 9. ProbCut (~10 Elo)
// Step 9. ProbCut (~4 Elo)
// If we have a good enough capture and a reduced search returns a value
// much above beta, we can (almost) safely prune the previous move.
if ( !PvNode
@ -903,17 +852,8 @@ namespace {
&& ttValue != VALUE_NONE
&& ttValue < probCutBeta))
{
// if ttMove is a capture and value from transposition table is good enough produce probCut
// cutoff without digging into actual probCut search
if ( ss->ttHit
&& tte->depth() >= depth - 3
&& ttValue != VALUE_NONE
&& ttValue >= probCutBeta
&& ttMove
&& pos.capture_or_promotion(ttMove))
return probCutBeta;
assert(probCutBeta < VALUE_INFINITE);
MovePicker mp(pos, ttMove, probCutBeta - ss->staticEval, &captureHistory);
int probCutCount = 0;
bool ttPv = ss->ttPv;
@ -969,6 +909,23 @@ namespace {
moves_loop: // When in check, search starts from here
ttCapture = ttMove && pos.capture_or_promotion(ttMove);
// Step 11. A small Probcut idea, when we are in check
probCutBeta = beta + 409;
if ( ss->inCheck
&& !PvNode
&& depth >= 4
&& ttCapture
&& (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 3
&& ttValue >= probCutBeta
&& abs(ttValue) <= VALUE_KNOWN_WIN
&& abs(beta) <= VALUE_KNOWN_WIN
)
return probCutBeta;
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
nullptr , (ss-4)->continuationHistory,
nullptr , (ss-6)->continuationHistory };
@ -985,12 +942,16 @@ moves_loop: // When in check, search starts from here
value = bestValue;
singularQuietLMR = moveCountPruning = false;
ttCapture = ttMove && pos.capture_or_promotion(ttMove);
bool doubleExtension = false;
// Mark this node as being searched
ThreadHolding th(thisThread, posKey, ss->ply);
// Indicate PvNodes that will probably fail low if the node was searched
// at a depth equal or greater than the current depth, and the result of this search was a fail low.
bool likelyFailLow = PvNode
&& ttMove
&& (tte->bound() & BOUND_UPPER)
&& tte->depth() >= depth;
// Step 11. Loop through all pseudo-legal moves until no moves remain
// Step 12. Loop through all pseudo-legal moves until no moves remain
// or a beta cutoff occurs.
while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE)
{
@ -1025,18 +986,10 @@ moves_loop: // When in check, search starts from here
movedPiece = pos.moved_piece(move);
givesCheck = pos.gives_check(move);
// Indicate PvNodes that will probably fail low if node was searched with non-PV search
// at depth equal or greater to current depth and result of this search was far below alpha
bool likelyFailLow = PvNode
&& ttMove
&& (tte->bound() & BOUND_UPPER)
&& ttValue < alpha + 200 + 100 * depth
&& tte->depth() >= depth;
// Calculate new depth for this move
newDepth = depth - 1;
// Step 12. Pruning at shallow depth (~200 Elo)
// Step 13. Pruning at shallow depth (~200 Elo)
if ( !rootNode
&& pos.non_pawn_material(us)
&& bestValue > VALUE_TB_LOSS_IN_MAX_PLY)
@ -1062,8 +1015,8 @@ moves_loop: // When in check, search starts from here
}
else
{
// Countermoves based pruning (~20 Elo)
if ( lmrDepth < 4 + ((ss-1)->statScore > 0 || (ss-1)->moveCount == 1)
// Continuation history based pruning (~20 Elo)
if ( lmrDepth < 5
&& (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold
&& (*contHist[1])[movedPiece][to_sq(move)] < CounterMovePruneThreshold)
continue;
@ -1075,7 +1028,7 @@ moves_loop: // When in check, search starts from here
&& (*contHist[0])[movedPiece][to_sq(move)]
+ (*contHist[1])[movedPiece][to_sq(move)]
+ (*contHist[3])[movedPiece][to_sq(move)]
+ (*contHist[5])[movedPiece][to_sq(move)] / 3 < 26237)
+ (*contHist[5])[movedPiece][to_sq(move)] / 3 < 28255)
continue;
// Prune moves with negative SEE (~20 Elo)
@ -1084,24 +1037,25 @@ moves_loop: // When in check, search starts from here
}
}
// Step 13. Extensions (~75 Elo)
// Step 14. Extensions (~75 Elo)
// Singular extension search (~70 Elo). If all moves but one fail low on a
// search of (alpha-s, beta-s), and just one fails high on (alpha, beta),
// then that move is singular and should be extended. To verify this we do
// a reduced search on all the other moves but the ttMove and if the
// result is lower than ttValue minus a margin, then we will extend the ttMove.
if ( depth >= 7
if ( !rootNode
&& depth >= 7
&& move == ttMove
&& !rootNode
&& !excludedMove // Avoid recursive singular search
/* && ttValue != VALUE_NONE Already implicit in the next condition */
&& abs(ttValue) < VALUE_KNOWN_WIN
&& (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 3)
{
Value singularBeta = ttValue - ((formerPv + 4) * depth) / 2;
Depth singularDepth = (depth - 1 + 3 * formerPv) / 2;
Value singularBeta = ttValue - 2 * depth;
Depth singularDepth = (depth - 1) / 2;
ss->excludedMove = move;
value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode);
ss->excludedMove = MOVE_NONE;
@ -1110,6 +1064,15 @@ moves_loop: // When in check, search starts from here
{
extension = 1;
singularQuietLMR = !ttCapture;
// Avoid search explosion by limiting the number of double extensions to at most 3
if ( !PvNode
&& value < singularBeta - 93
&& ss->doubleExtensions < 3)
{
extension = 2;
doubleExtension = true;
}
}
// Multi-cut pruning
@ -1132,19 +1095,14 @@ moves_loop: // When in check, search starts from here
return beta;
}
}
// Check extension (~2 Elo)
else if ( givesCheck
&& (pos.is_discovered_check_on_king(~us, move) || pos.see_ge(move)))
extension = 1;
// Last captures extension
else if ( PieceValue[EG][pos.captured_piece()] > PawnValueEg
&& pos.non_pawn_material() <= 2 * RookValueMg)
else if ( givesCheck
&& depth > 6
&& abs(ss->staticEval) > Value(100))
extension = 1;
// Add extension to new depth
newDepth += extension;
ss->doubleExtensions = (ss-1)->doubleExtensions + (extension == 2);
// Speculative prefetch as early as possible
prefetch(TT.first_entry(pos.key_after(move)));
@ -1156,117 +1114,87 @@ moves_loop: // When in check, search starts from here
[movedPiece]
[to_sq(move)];
// Step 14. Make the move
// Step 15. Make the move
pos.do_move(move, st, givesCheck);
// Step 15. Reduced depth search (LMR, ~200 Elo). If the move fails high it will be
// re-searched at full depth.
// Step 16. Late moves reduction / extension (LMR, ~200 Elo)
// We use various heuristics for the sons of a node after the first son has
// been searched. In general we would like to reduce them, but there are many
// cases where we extend a son if it has good chances to be "interesting".
if ( depth >= 3
&& moveCount > 1 + 2 * rootNode
&& ( !captureOrPromotion
|| moveCountPruning
|| ss->staticEval + PieceValue[EG][pos.captured_piece()] <= alpha
|| cutNode
|| (!PvNode && !formerPv && captureHistory[movedPiece][to_sq(move)][type_of(pos.captured_piece())] < 4506)
|| thisThread->ttHitAverage < 432 * TtHitAverageResolution * TtHitAverageWindow / 1024))
|| (cutNode && (ss-1)->moveCount > 1)
|| !ss->ttPv)
&& (!PvNode || ss->ply > 1 || thisThread->id() % 4 != 3))
{
Depth r = reduction(improving, depth, moveCount);
// Decrease reduction if the ttHit running average is large
if (PvNode)
r--;
// Decrease reduction if the ttHit running average is large (~0 Elo)
if (thisThread->ttHitAverage > 537 * TtHitAverageResolution * TtHitAverageWindow / 1024)
r--;
// Increase reduction if other threads are searching this position
if (th.marked())
r++;
// Decrease reduction if position is or has been on the PV
// and node is not likely to fail low. (~10 Elo)
if (ss->ttPv && !likelyFailLow)
// and node is not likely to fail low. (~3 Elo)
if ( ss->ttPv
&& !likelyFailLow)
r -= 2;
// Increase reduction at root and non-PV nodes when the best move does not change frequently
if ((rootNode || !PvNode) && thisThread->rootDepth > 10 && thisThread->bestMoveChanges <= 2)
if ( (rootNode || !PvNode)
&& thisThread->bestMoveChanges <= 2)
r++;
// More reductions for late moves if position was not in previous PV
if (moveCountPruning && !formerPv)
r++;
// Decrease reduction if opponent's move count is high (~5 Elo)
// Decrease reduction if opponent's move count is high (~1 Elo)
if ((ss-1)->moveCount > 13)
r--;
// Decrease reduction if ttMove has been singularly extended (~3 Elo)
// Decrease reduction if ttMove has been singularly extended (~1 Elo)
if (singularQuietLMR)
r--;
if (captureOrPromotion)
// Increase reduction for cut nodes (~3 Elo)
if (cutNode)
r += 1 + !captureOrPromotion;
if (!captureOrPromotion)
{
// Unless giving check, this capture is likely bad
if ( !givesCheck
&& ss->staticEval + PieceValue[EG][pos.captured_piece()] + 210 * depth <= alpha)
r++;
}
else
{
// Increase reduction if ttMove is a capture (~5 Elo)
// Increase reduction if ttMove is a capture (~3 Elo)
if (ttCapture)
r++;
// Increase reduction at root if failing high
r += rootNode ? thisThread->failedHighCnt * thisThread->failedHighCnt * moveCount / 512 : 0;
// Increase reduction for cut nodes (~10 Elo)
if (cutNode)
r += 2;
// Decrease reduction for moves that escape a capture. Filter out
// castling moves, because they are coded as "king captures rook" and
// hence break make_move(). (~2 Elo)
else if ( type_of(move) == NORMAL
&& !pos.see_ge(reverse_move(move)))
r -= 2 + ss->ttPv - (type_of(movedPiece) == PAWN);
ss->statScore = thisThread->mainHistory[us][from_to(move)]
+ (*contHist[0])[movedPiece][to_sq(move)]
+ (*contHist[1])[movedPiece][to_sq(move)]
+ (*contHist[3])[movedPiece][to_sq(move)]
- 5337;
// Decrease/increase reduction by comparing opponent's stat score (~10 Elo)
if (ss->statScore >= -89 && (ss-1)->statScore < -116)
r--;
else if ((ss-1)->statScore >= -112 && ss->statScore < -100)
r++;
- 4923;
// Decrease/increase reduction for moves with a good/bad history (~30 Elo)
// If we are not in check use statScore, if we are in check
// use sum of main history and first continuation history with an offset
if (ss->inCheck)
r -= (thisThread->mainHistory[us][from_to(move)]
+ (*contHist[0])[movedPiece][to_sq(move)] - 4341) / 16384;
else
r -= ss->statScore / 14382;
if (!ss->inCheck)
r -= ss->statScore / 14721;
}
Depth d = std::clamp(newDepth - r, 1, newDepth);
// In general we want to cap the LMR depth search at newDepth. But if
// reductions are really negative and movecount is low, we allow this move
// to be searched deeper than the first move, unless ttMove was extended by 2.
Depth d = std::clamp(newDepth - r, 1, newDepth + (r < -1 && moveCount <= 5 && !doubleExtension));
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
doFullDepthSearch = value > alpha && d != newDepth;
// If the son is reduced and fails high it will be re-searched at full depth
doFullDepthSearch = value > alpha && d < newDepth;
didLMR = true;
}
else
{
doFullDepthSearch = !PvNode || moveCount > 1;
didLMR = false;
}
// Step 16. Full depth search when LMR is skipped or fails high
// Step 17. Full depth search when LMR is skipped or fails high
if (doFullDepthSearch)
{
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
@ -1293,12 +1221,12 @@ moves_loop: // When in check, search starts from here
std::min(maxNextDepth, newDepth), false);
}
// Step 17. Undo move
// Step 18. Undo move
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 18. Check for a new best move
// Step 19. Check for a new best move
// Finished searching the move. If a stop occurred, the return value of
// the search cannot be trusted, and we return immediately without
// updating best move, PV and TT.
@ -1350,7 +1278,6 @@ moves_loop: // When in check, search starts from here
else
{
assert(value >= beta); // Fail high
ss->statScore = 0;
break;
}
}
@ -1375,7 +1302,7 @@ moves_loop: // When in check, search starts from here
return VALUE_DRAW;
*/
// Step 19. Check for mate and stalemate
// Step 20. Check for mate and stalemate
// All legal moves have been searched and if there are no legal moves, it
// must be a mate or a stalemate. If we are in a singular extension search then
// return a fail low score.
@ -1383,8 +1310,9 @@ moves_loop: // When in check, search starts from here
assert(moveCount || !ss->inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
if (!moveCount)
bestValue = excludedMove ? alpha
: ss->inCheck ? mated_in(ss->ply) : VALUE_DRAW;
bestValue = excludedMove ? alpha :
ss->inCheck ? mated_in(ss->ply)
: VALUE_DRAW;
// If there is a move which produces search value greater than alpha we update stats of searched moves
else if (bestMove)
@ -1423,10 +1351,11 @@ moves_loop: // When in check, search starts from here
// qsearch() is the quiescence search function, which is called by the main search
// function with zero depth, or recursively with further decreasing depth per call.
template <NodeType NT>
template <NodeType nodeType>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
constexpr bool PvNode = NT == PV;
static_assert(nodeType != Root);
constexpr bool PvNode = nodeType == PV;
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
@ -1434,7 +1363,7 @@ moves_loop: // When in check, search starts from here
Move pv[MAX_PLY+1];
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::kCacheLineSize);
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
TTEntry* tte;
Key posKey;
@ -1452,7 +1381,6 @@ moves_loop: // When in check, search starts from here
}
Thread* thisThread = pos.this_thread();
(ss+1)->ply = ss->ply + 1;
bestMove = MOVE_NONE;
ss->inCheck = pos.checkers();
moveCount = 0;
@ -1508,7 +1436,7 @@ moves_loop: // When in check, search starts from here
// and addition of two tempos
ss->staticEval = bestValue =
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
: -(ss-1)->staticEval + 2 * Tempo;
: -(ss-1)->staticEval;
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
@ -1533,7 +1461,7 @@ moves_loop: // When in check, search starts from here
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen and checking knight promotions, and other checks(only if depth >= DEPTH_QS_CHECKS)
// queen promotions, and other checks (only if depth >= DEPTH_QS_CHECKS)
// will be generated.
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
&thisThread->captureHistory,
@ -1550,15 +1478,13 @@ moves_loop: // When in check, search starts from here
moveCount++;
// Futility pruning
// Futility pruning and moveCount pruning
if ( bestValue > VALUE_TB_LOSS_IN_MAX_PLY
&& !givesCheck
&& futilityBase > -VALUE_KNOWN_WIN
&& !pos.advanced_pawn_push(move))
&& type_of(move) != PROMOTION)
{
assert(type_of(move) != EN_PASSANT); // Due to !pos.advanced_pawn_push
// moveCount pruning
if (moveCount > 2)
continue;
@ -1598,7 +1524,7 @@ moves_loop: // When in check, search starts from here
[pos.moved_piece(move)]
[to_sq(move)];
// CounterMove based pruning
// Continuation history based pruning
if ( !captureOrPromotion
&& bestValue > VALUE_TB_LOSS_IN_MAX_PLY
&& (*contHist[0])[pos.moved_piece(move)][to_sq(move)] < CounterMovePruneThreshold
@ -1607,7 +1533,7 @@ moves_loop: // When in check, search starts from here
// Make and search the move
pos.do_move(move, st, givesCheck);
value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth - 1);
value = -qsearch<nodeType>(pos, ss+1, -beta, -alpha, depth - 1);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
@ -1942,7 +1868,7 @@ string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
bool RootMove::extract_ponder_from_tt(Position& pos) {
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::kCacheLineSize);
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
bool ttHit;
@ -2011,3 +1937,5 @@ void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) {
m.tbRank = 0;
}
}
} // namespace Stockfish

View File

@ -25,6 +25,8 @@
#include "movepick.h"
#include "types.h"
namespace Stockfish {
class Position;
namespace Search {
@ -50,6 +52,7 @@ struct Stack {
bool inCheck;
bool ttPv;
bool ttHit;
int doubleExtensions;
};
@ -106,4 +109,6 @@ void clear();
} // namespace Search
} // namespace Stockfish
#endif // #ifndef SEARCH_H_INCLUDED

View File

@ -50,9 +50,11 @@
#include <windows.h>
#endif
using namespace Tablebases;
using namespace Stockfish::Tablebases;
int Tablebases::MaxCardinality;
int Stockfish::Tablebases::MaxCardinality;
namespace Stockfish {
namespace {
@ -103,9 +105,6 @@ template<> inline void swap_endian<uint8_t>(uint8_t&) {}
template<typename T, int LE> T number(void* addr)
{
static const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
static const bool IsLittleEndian = (Le.c[0] == 4);
T v;
if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare)
@ -190,7 +189,8 @@ public:
std::stringstream ss(Paths);
std::string path;
while (std::getline(ss, path, SepChar)) {
while (std::getline(ss, path, SepChar))
{
fname = path + "/" + f;
std::ifstream::open(fname);
if (is_open())
@ -472,8 +472,6 @@ TBTables TBTables;
// If the corresponding file exists two new objects TBTable<WDL> and TBTable<DTZ>
// are created and added to the lists and hash table. Called at init time.
void TBTables::add(const std::vector<PieceType>& pieces) {
if (sizeof(char*) < 8 && pieces.size() >= 6)
return; // Not enough address space to support 6-men TB on 32-bit OS
std::string code;
@ -567,7 +565,8 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
int buf64Size = 64;
Sym sym;
while (true) {
while (true)
{
int len = 0; // This is the symbol length - d->min_sym_len
// Now get the symbol length. For any symbol s64 of length l right-padded
@ -605,8 +604,8 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
// We binary-search for our value recursively expanding into the left and
// right child symbols until we reach a leaf node where symlen[sym] + 1 == 1
// that will store the value we need.
while (d->symlen[sym]) {
while (d->symlen[sym])
{
Sym left = d->btree[sym].get<LR::Left>();
// If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and
@ -711,7 +710,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
leadPawns = b = pos.pieces(color_of(pc), PAWN);
do
squares[size++] = pop_lsb(&b) ^ flipSquares;
squares[size++] = pop_lsb(b) ^ flipSquares;
while (b);
leadPawnsCnt = size;
@ -731,7 +730,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu
// directly map them to the correct color and square.
b = pos.pieces() ^ leadPawns;
do {
Square s = pop_lsb(&b);
Square s = pop_lsb(b);
squares[size] = s ^ flipSquares;
pieces[size++] = Piece(pos.piece_on(s) ^ flipColor);
} while (b);
@ -1537,6 +1536,14 @@ bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) {
WDLScore wdl = -probe_wdl(pos, &result);
dtz = dtz_before_zeroing(wdl);
}
else if (pos.is_draw(1))
{
// In case a root move leads to a draw by repetition or
// 50-move rule, we set dtz to zero. Note: since we are
// only 1 ply from the root, this must be a true 3-fold
// repetition inside the game history.
dtz = 0;
}
else
{
// Otherwise, take dtz for the new position and correct by 1 ply
@ -1587,6 +1594,7 @@ bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) {
ProbeState result;
StateInfo st;
WDLScore wdl;
bool rule50 = Options["Syzygy50MoveRule"];
@ -1595,7 +1603,10 @@ bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) {
{
pos.do_move(m.pv[0], st);
WDLScore wdl = -probe_wdl(pos, &result);
if (pos.is_draw(1))
wdl = WDLDraw;
else
wdl = -probe_wdl(pos, &result);
pos.undo_move(m.pv[0]);
@ -1612,3 +1623,5 @@ bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) {
return true;
}
} // namespace Stockfish

View File

@ -23,7 +23,7 @@
#include "../search.h"
namespace Tablebases {
namespace Stockfish::Tablebases {
enum WDLScore {
WDLLoss = -2, // Loss
@ -73,6 +73,6 @@ inline std::ostream& operator<<(std::ostream& os, const ProbeState v) {
return os;
}
}
} // namespace Stockfish::Tablebases
#endif

View File

@ -26,6 +26,8 @@
#include "syzygy/tbprobe.h"
#include "tt.h"
namespace Stockfish {
ThreadPool Threads; // Global object
@ -126,14 +128,16 @@ void Thread::idle_loop() {
void ThreadPool::set(size_t requested) {
if (size() > 0) { // destroy any existing thread(s)
if (size() > 0) // destroy any existing thread(s)
{
main()->wait_for_search_finished();
while (size() > 0)
delete back(), pop_back();
}
if (requested > 0) { // create new thread(s)
if (requested > 0) // create new thread(s)
{
push_back(new MainThread(0));
while (size() < requested)
@ -258,3 +262,5 @@ void ThreadPool::wait_for_search_finished() const {
if (th != front())
th->wait_for_search_finished();
}
} // namespace Stockfish

View File

@ -32,6 +32,7 @@
#include "search.h"
#include "thread_win32_osx.h"
namespace Stockfish {
/// Thread class keeps together all the thread-related stuff. We use
/// per-thread pawn and material hash tables so that once we get a
@ -54,6 +55,7 @@ public:
void idle_loop();
void start_searching();
void wait_for_search_finished();
size_t id() const { return idx; }
Pawns::Table pawnsTable;
Material::Table materialTable;
@ -72,8 +74,7 @@ public:
LowPlyHistory lowPlyHistory;
CapturePieceToHistory captureHistory;
ContinuationHistory continuationHistory[2][2];
Score contempt;
int failedHighCnt;
Score trend;
};
@ -128,4 +129,6 @@ private:
extern ThreadPool Threads;
} // namespace Stockfish
#endif // #ifndef THREAD_H_INCLUDED

View File

@ -31,6 +31,8 @@
#include <pthread.h>
namespace Stockfish {
static const size_t TH_STACK_SIZE = 8 * 1024 * 1024;
template <class T, class P = std::pair<T*, void(T::*)()>>
@ -57,10 +59,16 @@ public:
void join() { pthread_join(thread, NULL); }
};
} // namespace Stockfish
#else // Default case: use STL classes
namespace Stockfish {
typedef std::thread NativeThread;
} // namespace Stockfish
#endif
#endif // #ifndef THREAD_WIN32_OSX_H_INCLUDED

View File

@ -24,6 +24,8 @@
#include "timeman.h"
#include "uci.h"
namespace Stockfish {
TimeManagement Time; // Our global time management object
@ -95,3 +97,5 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
if (Options["Ponder"])
optimumTime += optimumTime / 4;
}
} // namespace Stockfish

View File

@ -23,6 +23,8 @@
#include "search.h"
#include "thread.h"
namespace Stockfish {
/// The TimeManagement class computes the optimal time to think depending on
/// the maximum available time, the game move number and other parameters.
@ -44,4 +46,6 @@ private:
extern TimeManagement Time;
} // namespace Stockfish
#endif // #ifndef TIMEMAN_H_INCLUDED

View File

@ -26,6 +26,8 @@
#include "tt.h"
#include "uci.h"
namespace Stockfish {
TranspositionTable TT; // Our global transposition table
/// TTEntry::save() populates the TTEntry with a new node's data, possibly
@ -156,3 +158,5 @@ int TranspositionTable::hashfull() const {
return cnt / ClusterSize;
}
} // namespace Stockfish

View File

@ -22,6 +22,8 @@
#include "misc.h"
#include "types.h"
namespace Stockfish {
/// TTEntry struct is the 10 bytes transposition table entry, defined as below:
///
/// key 16 bit
@ -100,4 +102,6 @@ private:
extern TranspositionTable TT;
} // namespace Stockfish
#endif // #ifndef TT_H_INCLUDED

View File

@ -26,9 +26,10 @@
using std::string;
namespace Stockfish {
bool Tune::update_on_last;
const UCI::Option* LastOption = nullptr;
BoolConditions Conditions;
static std::map<std::string, int> TuneResults;
string Tune::next(string& names, bool pop) {
@ -108,23 +109,7 @@ template<> void Tune::Entry<Score>::read_option() {
template<> void Tune::Entry<Tune::PostUpdate>::init_option() {}
template<> void Tune::Entry<Tune::PostUpdate>::read_option() { value(); }
// Set binary conditions according to a probability that depends
// on the corresponding parameter value.
void BoolConditions::set() {
static PRNG rng(now());
static bool startup = true; // To workaround fishtest bench
for (size_t i = 0; i < binary.size(); i++)
binary[i] = !startup && (values[i] + int(rng.rand<unsigned>() % variance) > threshold);
startup = false;
for (size_t i = 0; i < binary.size(); i++)
sync_cout << binary[i] << sync_endl;
}
} // namespace Stockfish
// Init options with tuning session results instead of default values. Useful to
@ -138,7 +123,11 @@ void BoolConditions::set() {
#include <cmath>
namespace Stockfish {
void Tune::read_results() {
/* ...insert your values here... */
}
} // namespace Stockfish

View File

@ -24,6 +24,8 @@
#include <type_traits>
#include <vector>
namespace Stockfish {
typedef std::pair<int, int> Range; // Option's min-max values
typedef Range (RangeFun) (int);
@ -44,27 +46,6 @@ struct SetRange {
#define SetDefaultRange SetRange(default_range)
/// BoolConditions struct is used to tune boolean conditions in the
/// code by toggling them on/off according to a probability that
/// depends on the value of a tuned integer parameter: for high
/// values of the parameter condition is always disabled, for low
/// values is always enabled, otherwise it is enabled with a given
/// probability that depnends on the parameter under tuning.
struct BoolConditions {
void init(size_t size) { values.resize(size, defaultValue), binary.resize(size, 0); }
void set();
std::vector<int> binary, values;
int defaultValue = 465, variance = 40, threshold = 500;
SetRange range = SetRange(0, 1000);
};
extern BoolConditions Conditions;
inline void set_conditions() { Conditions.set(); }
/// Tune class implements the 'magic' code that makes the setup of a fishtest
/// tuning session as easy as it can be. Mainly you have just to remove const
/// qualifiers from the variables you want to tune and flag them for tuning, so
@ -157,14 +138,6 @@ class Tune {
return add(value, (next(names), std::move(names)), args...);
}
// Template specialization for BoolConditions
template<typename... Args>
int add(const SetRange& range, std::string&& names, BoolConditions& cond, Args&&... args) {
for (size_t size = cond.values.size(), i = 0; i < size; i++)
add(cond.range, next(names, i == size - 1) + "_" + std::to_string(i), cond.values[i]);
return add(range, std::move(names), args...);
}
std::vector<std::unique_ptr<EntryBase>> list;
public:
@ -185,9 +158,6 @@ public:
#define UPDATE_ON_LAST() bool UNIQUE(p, __LINE__) = Tune::update_on_last = true
// Some macro to tune toggling of boolean conditions
#define CONDITION(x) (Conditions.binary[__COUNTER__] || (x))
#define TUNE_CONDITIONS() int UNIQUE(c, __LINE__) = (Conditions.init(__COUNTER__), 0); \
TUNE(Conditions, set_conditions)
} // namespace Stockfish
#endif // #ifndef TUNE_H_INCLUDED

View File

@ -83,6 +83,8 @@
# define pext(b, m) 0
#endif
namespace Stockfish {
#ifdef USE_POPCNT
constexpr bool HasPopCnt = true;
#else
@ -189,7 +191,6 @@ enum Value : int {
BishopValueMg = 825, BishopValueEg = 915,
RookValueMg = 1276, RookValueEg = 1380,
QueenValueMg = 2538, QueenValueEg = 2682,
Tempo = 28,
MidgameLimit = 15258, EndgameLimit = 3915
};
@ -482,6 +483,8 @@ constexpr Key make_key(uint64_t seed) {
return seed * 6364136223846793005ULL + 1442695040888963407ULL;
}
} // namespace Stockfish
#endif // #ifndef TYPES_H_INCLUDED
#include "tune.h" // Global visibility to tuning setup

View File

@ -34,6 +34,8 @@
using namespace std;
namespace Stockfish {
extern vector<string> setup_bench(const Position&, istream&);
namespace {
@ -205,13 +207,13 @@ namespace {
// Coefficients of a 3rd order polynomial fit based on fishtest data
// for two parameters needed to transform eval to the argument of a
// logistic function.
double as[] = {-8.24404295, 64.23892342, -95.73056462, 153.86478679};
double bs[] = {-3.37154371, 28.44489198, -56.67657741, 72.05858751};
double as[] = {-3.68389304, 30.07065921, -60.52878723, 149.53378557};
double bs[] = {-2.0181857, 15.85685038, -29.83452023, 47.59078827};
double a = (((as[0] * m + as[1]) * m + as[2]) * m) + as[3];
double b = (((bs[0] * m + bs[1]) * m + bs[2]) * m) + bs[3];
// Transform eval to centipawns with limited range
double x = std::clamp(double(100 * v) / PawnValueEg, -1000.0, 1000.0);
double x = std::clamp(double(100 * v) / PawnValueEg, -2000.0, 2000.0);
// Return win rate in per mille (rounded to nearest)
return int(0.5 + 1000 / (1 + std::exp((a - x) / b)));
@ -275,7 +277,15 @@ void UCI::loop(int argc, char* argv[]) {
else if (token == "d") sync_cout << pos << sync_endl;
else if (token == "eval") trace_eval(pos);
else if (token == "compiler") sync_cout << compiler_info() << sync_endl;
else
else if (token == "export_net")
{
std::optional<std::string> filename;
std::string f;
if (is >> skipws >> f)
filename = f;
Eval::NNUE::save_eval(filename);
}
else if (!token.empty() && token[0] != '#')
sync_cout << "Unknown command: " << cmd << sync_endl;
} while (token != "quit" && argc == 1); // Command line args are one-shot
@ -369,3 +379,5 @@ Move UCI::to_move(const Position& pos, string& str) {
return MOVE_NONE;
}
} // namespace Stockfish

View File

@ -24,6 +24,8 @@
#include "types.h"
namespace Stockfish {
class Position;
namespace UCI {
@ -78,4 +80,6 @@ Move to_move(const Position& pos, std::string& str);
extern UCI::OptionsMap Options;
} // namespace Stockfish
#endif // #ifndef UCI_H_INCLUDED

View File

@ -31,6 +31,8 @@
using std::string;
namespace Stockfish {
UCI::OptionsMap Options; // Global object
namespace UCI {
@ -59,8 +61,6 @@ void init(OptionsMap& o) {
constexpr int MaxHashMB = Is64Bit ? 33554432 : 2048;
o["Debug Log File"] << Option("", on_logger);
o["Contempt"] << Option(24, -100, 100);
o["Analysis Contempt"] << Option("Both var Off var White var Black var Both", "Both");
o["Threads"] << Option(1, 1, 512, on_threads);
o["Hash"] << Option(16, 1, MaxHashMB, on_hash_size);
o["Clear Hash"] << Option(on_clear_hash);
@ -190,3 +190,5 @@ Option& Option::operator=(const string& v) {
}
} // namespace UCI
} // namespace Stockfish

View File

@ -36,7 +36,7 @@ import org.petero.droidfish.EngineOptions;
/** Stockfish engine running as process, started from assets resource. */
public class InternalStockFish extends ExternalEngine {
private static final String defaultNet = "nn-62ef826d1a6d.nnue";
private static final String defaultNet = "nn-3475407dc199.nnue";
private static final String netOption = "evalfile";
private File defaultNetFile; // To get the full path of the copied default network file